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ABSTRACT 

An interpolation scheme based on piecewise cubic poly-
nomials with the Gaussian points as interpolation points is 
analyzed. Optimal order a priori estimates are obtained for 
the interpolation error in the maximum norm. 

} 



"Piecewise Cubic Uermitc Interpolation 
at the Gaussian Points" 

by 
E.N. Houstis and T.S. Papatheodorou 

Introduction.. We consider an interpolation scheme based on 
piecewise cubic polynomials with continuous first derivatives 
and the Gaussian points as interpolation points. 

This scheme has been applied as a collocation method by 
DeBoor and Svartz [2] and Houstis [6] for the numerical solution 
of ordinary differential equations. Also, Douglas and Dupont [3], 
[4], [5] and Houstis [7], have studied a collocation method 
for partial differential equations based on the above scheme. 

In sections 1 and 2 we present the formulation for one and 
two dimensions. In section 3 of this report we obtain optimal 
order asymptotic estimates for the interpolation error in the 
L -norm. 

00 

N+l 1. One-dimensional interpolation scheme. Let A=(x^)1 be a 
partition of 1= [a,b] ,11.= | [x±,xi+1] and h^axh^ Through-
out this report we denote by P 3 the set of polynomials of degree 
less than 4, and P3 ^ the set of functions that reduce to 
polynomials of degree less than 4 in each subinterval • 
Also we denote by the (2N+2)-dimensional vector space of all 
continuously differentiable piecewise cubic polynomials with 
respect to A. We take -l<p1,p,<l and wi>0/j=l,2 to be the 
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Gaussian points and weights respectively, so that 

2 

/ p (x) dx = E p(p4>w., peP^d-l, 1] ) . 
-1 i=l 1 1 

The Gaussian points and weights in the subinteryal 
[Xj, a r e 

x . +x . , . h. 
(1-1} ^2j+i E + Pi r 1 W ' 2 -

We introduce an interpolation operator 

Qn : Ha 

such that 

(1.2) (QNf)(CT^) = f(az)r £=1,...,2N+2, 

where cr^a, j=l,...,N,i=l,2, a2N+2=b, 

This interpolation scheme is well defined. In fact, if 
h(x)eHA also interpolates f as above, then e(x)-Q^f(x)-h(x) is 
a cubic polynomial on [x^x..^], (Ki<N and eta^) = 0, l£i<2N+2. 
We show that e(x) is identically zero in [x.,x J. if this is i i+J. 
not so, then without loss of generality we may assume that 
e(x)^0 for all xetx^x^. Rolle's Theorem implies that 
e(x2)Dxe(x2)>0. Similarly, Dxe restricted in [x2,x3] has roots 
in (x2,cr4), (a4,a5). Thus, e (x3) D^e (x3) >0. By induction 
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e^N+l^ Dx e > 0 contradicting the relation e(xN+1)=0. This 
proves that e(x)=0 in I. 

2. Two-dimensional interpolation scheme. In this section we 
introduce a two-dimensional analogue of the interpolation scheme 

>M 1*1 
of the previous section. Let A = (y.) be a partition of y d ^ 
[c,d] , J5lc,d], | f J_. = Iy_., yj+1] and k=maxk... Also, 

we denote by p=AxAy a partition of [a,b]x[c,d] and by H the P 
vector space of all piecewise bicubic polynomials p(x,y) with 
respect to p, such that DxD^p(x,y) is continuous on [a,b]x[c,d] 
for all 0<_lfr}<l. 

The Gaussian points and weights in the subinterval [y.,y. .] 1 i"rl 
are 

y.+y. ., k. 
2i+j~ 2 + pj 2~ ' 3-1r 2 

A two-dimensional interpolation operator is defined as the 
tensor product 

V q n a qM = QN
QM 

3- Error analysis. In this section, we establish a priori 
bounds for the interpolation scheme introduced in section 2. 
For later use, we define the Gramian matrix 

GN=(Bi(0;.) ; i,j=l,. . .,2N+2) 

of the interpolation operator Q^. Using the (2N+2)x (2N+2) matrix 
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u N 

W3 find that 

where 

.-1 
"N G 

A E 

N 

a & 

y « 

i' A 
° L 1 
~ i " i 

i i 

B | A 
I I 

I I 
! B ' 

B 1 
0 

B E 
$ a 

-6 -Y 

and 

a = 9+4/3 18 8 = 9-4/3 I 8 ~ Y = 3+/3 36 <5 = 3-/3 36 

We will also use the matrix 

T E BA 1 = -7 48 

1 -7 
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It is easy to see that for all integers n, (T° = I) , 

T = n 
n 

n 

48c n 

where 
a = -7a +48c , c = a -7c n+1 n n n+1 n n 

s+t s t More generally, from T = T T we get 

a = a a.+48c c. , c , =c a,+a c. s+t s t— s t ' s+t s t— s t 

(3.1) 
csat = 2 ^s+t^s-t1 

C C . = -pr-pr ( a , , - a . ) s t 96 s+t s-t 

asat = 2 ^s+t^s-t1 

a-l - aJI ' g-jT cz 

Let A n = l a n / C n l = - an/c
n- Since det(Tn) = 1, we can easily 

show that Xn is decreasing with n and for all n 

/T8" < Xn = 7, \1 = 7 

(3.2) c n = (-l)n+1|cn|, an = (-1)n|a
n! 

n+11 1 n1 
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Since 

l«J " I " c ^ l - l c ^ D . l e J = ^ (|an+1|-|an|) 

we also have ^ 

= 1 ( I V l l + l°P |- | 0q |-|Vl | ) 

(3.3) 

I°*l " If (lap+ll+|ap|-|aq|-|aq-l|) " 

We introduce a (2N+2)x (2N+2) matrix R in partition form 

rll - r12 • a ft rl,2N+l rl,2N+2 

R11 
» 

• a ft R1,N+1 
m 

• 

V i » ft ft 

a 

m 

N+l 
r2N+2 rl r2N+2,2 • • a r2N+2,2N+1 r2N+2,2W+2 
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where the first and last rows are defined as 

[r, ~ . , , r.. - .] =-
N
 [cN-j+l aN-j+l] 

2N+2 r 2j-1' r2N+2,2jJ-~5^~ [~Cj-l aj-l3 
j=l, ,N+1 

while the 2x2 matrices R are defined as n ,m 

Rn ^ ^ [ ( - T ) ^ 1 , + a (-T)n-mlf n'ra m n,m ' 1 ' n=l,...,N , nL=l,..., N+1 

with 

0 1 

m 
m c N 

'N-m+1 
0 

N-m+1 
0 

m=2,...,N+1 

and 

n,m < 

1 . _ < < 1 if 2 = m = n 

0 otherwise 
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Lemma 3.1. The matrix H 1 G^ is inverti'ble and its inverse 
is the matrix R. 
Proof: Let S=R (H^G^) . , It is enough to show that S=I. We 
partition S into blocks: 

S = 

11 
(0 11 

u> HI 

11 

'11 

Nl 
S2N+2,1 T2N+2,1 

4 

IN 
IN 

NN 

2N+2,N 

w 
'1, 2N+2 
l,2N+2 

u 
N,2N+2 

2N+2,2N+2 

where each s.^ is lxl, E^^ is 2x2, ok,, is 2x1 and t ^ is 1x2. 

Performing the multiplication of the matrices R and H^1 G^ we 

obtain 
S11 = rll = 1 

Tij * [sl,2j Sl,2j+lJ = [rl,2j-l rl,2j] A+Irl,2j-1 rl,2j+2] ^il = [r B 

_ ( - D 3 
CN <[cN-j+l aN-j+l]"tCN-jaN-j]T}A 

" [tCN-j+l aN-j+l]-[CN-j+l aN-j+l]}A 

= [0, 0] 
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and 
Sl,2N+2 rl,2N+l 0 -

Similarly 
"0" 

Ui,l ~ Ui,2N+2 0 ' ^2N+2,j
 = [0 0] ' = 

and 

S2N+2,1 0 ' S2N+2,2N+2 1' 

For the square blocks Sn m we find 
S = R A + R - B n,m n,m n,m+l 

= A~1(-T)n"1{ZTn + Z T + (CT -a ) (-T)1"1"} A m m+i n,m n,m+l 

From the definition of Z and T we obtain Z + Z ,, T = 6? I, m m -,m+l 1 
Then from the definition of a we get n,m 3 

S = 6m I. n,m n 

This concludes the proof of Lemma 3.1. 

Lemma 3.2. If GN is the Grammian of the interpolation operator QN 
then 

(3 . 4 ) ||(H^1 G n ) - 1 | < 100 

for all N > 2. 

Proof. Let 
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From the definition of R and relations (3.1), (3.2), (3. 
we obtain 3) 

I | R , | 1 * * J - l < l ' l , 2 j + l M * l f 2 j l > 

_ 1 „N 
sj=i (i c

N- j +il +K_ j + 1D 

" 1 JLl'|cJ + |aJ) lcNl 

"N 
£ 7 l i i + 9 + _5 i i L 

12 ,=.., 1^1 

< 23/2 

Z JfiL 
|CN| 2 i c 

It is easy to see that I |r| I = I |t?l I ''2N+2 - llRlli • For the remaining 
rows we use (3.1) (3.2) to get that for 2 ^ I n 

A V m - <-T>n~X
 + a 

~ I cN-n-m+2'+' cN-n+m' ' ̂ - n - n ^ '+' aN-n+m! 

48 C~'aN-n-m+2'+'^-n+m'} 'cN-n-m+2'+'cN-n+J 

while for n < m 
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AR n,m 2 c N1 

IcN+n-mI+ICN-n-m+2' IaN+n-m'+'aN-n-in+2 

4 8 (laN+n-m' laN-n-m+2') 'CN+n-iri'"l N+n-m1 '°N-n-m+2 

Finally, for m=l 

AR h, 1 
'N 1 

0 
0 

l^-n+l' 
lcN-n+l' 

Using again the relations (3.1) through (3.3) we now find 

N 
E | | AR 
m=l h,m' '1 

1 
2 2 | ̂ -n+l 1 + _1 (1 aN-ri+l j + j^-nl + ^ + 1 I , 

i_ i 96 i_ i i r i i i i i<g IcnI I°NI l°Nl lcNl 

+ 1 <• + 9 + ifsiil + M , 
I I ilCNli I«hI J 

< 35 
3 

and 
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L l M A V - M 2 m=l 

1 
2 

'N1 
2 |Cm-"+:lI + 1 t'3"""1 + 9 ^ + 48 + '"N-n+1 

[ _ I 96 
lCNi 

+ '°N-n' + laN -ll + >anl + lcN-ll + + ) 
lcNl Icn! IcnI lcNl 

± 2 

By definition now, we have for £=1,2 

|r| N n N _ 
2n+A = I llA ™ti,mUl S 2 I lA I m=l m=l 

while. 
>"1(1 _ 7/3+9 

Thus, for the norm ||r|\n = max||r||± the following bound holds 

M r I L = ll(H ^ ^ I L < 100. 

This concludes the proof of Lemma 3.2. 
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Remark. As the proof of Lemma 3.2 suggests the bound (3.4) 
can be improved. Our conjecture is that a more careful analysis 
will show that the norm [| (H^G ) 1 J ̂  is decreasing in N, that 

l i . l l c t f V " 1 ! ! - - 5 2 ^ 

and that for all N > 2 

= I K H J V 1 ! ! - 5 IIh21<32H 

Numerical experiments confirm this conjecture. 

Lemma 3.3. The Gramian matrix G^ of the interpolation operator 
Qn is nonsingular and 

(3.5) I IG"11 |„ ̂  100 N 

for all N > 2. 
Proof. (3.5) follows easily from Lemmata 3.1 and 3.2. 

Lemma 3.4. Let QN be the interpolation operator defined by 
(2.2). Then, (i) Q^ is a linear projector on C1(I) with range 
H^ and (ii) there exists a constant c such that [[Q^U = c N. 
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Proof. Conclusion (i) follows easily from Lemma 3.3. To prove 
(ii) let A be the dual space of HA and {B.}?Nt2 and {6 }?Nt2 

A 1 1 = 1 CT. 1=1 1 
\ 

be bases for H^ and A, where 6 are the point evaluation 

functionals. Using [1, Prop. 3] one may easily show that 

I Iq.H & max "'f' 1"*"" ||(60.Bj)-1|Lmax||60 || 
aeRn Hall l 3 i 

= 2 i Is;1! L - <» 

where, G^ = (6 B.) and, by (3.5) , c = 2 00. This concludes the 
i J 

proof of Lemma 3.4. 

Theorem 3.1. If feW4,ro(I), then 
(i) QNf ->-f , as N ->-a> 

and 
(ii) for the interpolation error we have 

l|oNf-flL = 
where c is independent of h. • 

Proof. Let 3Hf be the Hermite interpolant of f, defined by 
interpolation of f and its first derivative at the nodes of the 
partition A. Prom the triangle inequality we find 

(3.6) ||f-QNf|L = (l+||QN||)||f-3Hf|| 
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Moreover, for the llermite interpolation error, it is known 
[10, Thrm 3.6] 

(3.7) | |f - 8 Hf|L £ ^ h4|[D4f||ro . 

From (3.6), (3.7) and Lemma 3.4, we now get 

llf - V I L = 0(h3>-
This proves conclusion (i) . 

Also, Theorem 2 [9, p. 251] and conclusion (i) imply that there 
is a constant K, independent of N, such that 

(3.8) ||QN|| ^ K N=2,3,... 

From (3.6) and (3.8) conclusion (ii) follows. 

Theorem 3.2. If feW4'™(IxJ) then for the interpolation error 
we have 

l l Q p f - * I L = C I P I 4 

where |p[ = max (h,k) and c is a constant independent of h and k. 

Proof. From (3.6)-(3.8) and the triangle inequality we have 

N f - % f l L = I I * - V I L + N V - W I L 

= l!f-VlL-HlQNl! 

^ c (h4
+k4) £ c|p|4 

which concludes the proof of the theorem. 
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4. Numerical results. In this section we present some 
numerical results concerning the approximation of the functions 
x 4 . . . 
e ,x by interpolation at Gaussian points with the space H^. 
These results indicate that the interpolation scheme introduced 
at Section 2 is fourth-order accurate in the L -norm. The 

00 

partition A used is uniform with mesh length h = 1/N. The 
rate of convergence estimate 

- 't error for h . ,, ~ 
" l o g error for h/2)/lo9 2 

is also given. 

N l|eX-QweX|L Convergence Rate 

3 3.106xl0"5 

6 2.325xl0~6 3.74 
12 1.646x1 CT7 3.8 
24 1.096xl0~8 3.9 
48 7.070xl0"10 3.95 

N 1 l*4-'V4l 1,, . Convergence Rate 

3 4.155xl0"4 

6 2.678xlQ"5 3.96 
12 1.674xl0"6 3.99 
24 1.047xl0~7 4.00 
48 6.541xl0~9 4.00 
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