Piecewise Cubic Hermite Interpolation at the Gaussian Points

Elias N. Houstis
Purdue University, enh@cs.purdue.edu
T. S. Papatheodorou
Report Number:
76-199

Houstis, Elias N. and Papatheodorou, T. S., "Piecewise Cubic Hermite Interpolation at the Gaussian Points" (1976). Department of Computer Science Technical Reports. Paper 140.
https://docs.lib.purdue.edu/cstech/140

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries.
Please contact epubs@purdue.edu for additional information.

PIECEWISE CUBIC HERMITE INTERPOLATION

AT TlIE GAUSSIAN POINTS
by
E.N. Houstis

Dept. of Computer Sciences Purdue University
W. Lafayette, IN 47907
and T.S. Papatheodorou Dept. of Mathematics Clarkson College of Tech. Potsdam, NY 13676

Abstract

$!$

PIECEWISE CUBIC HERMITE INTERPOLATION AT THE GAUSSIAN POINTS by E. N. Houstis

Dept. of Computer Sciences Purdue University W. Lafayette, Indiana 47907 and T.S. Papatheodorou Dept. of Mathematics Clarkson College of Technology Potsdam, New York 13676

\section*{ABSTRACT}

An interpolation scheme based on piecewise cubic polynomials with the Gaussian points as interpolation points is analyzed. Optimal order a priori estimates are obtained for the interpolation error in the maximum norm.


```
    "Piecewise Cubic Ilermitc Interpolation
    at the Gaussian Points"
```

 by
 E.N. Houstis
and
T.S. Papatheodorou

Introduction. We consider an interpolation scheme based on piecewise cubic polynomials with continuous first derivatives and the Gaussian points as interpolation points.

This scheme has been applied as a collocation method by DeBoor and Swartz [2] and Houstis [6] for the numerical solution of ordinary differential equations. Also, Douglas and Dupont [3], [4], [5] and Houstis [7], have studied a collocation method for partial differential equations based on the above scheme.

In sections l and 2 we present the formulation for one and two dimensions. In section 3 of this report we obtain optimal order asymptotic estimates for the interpolation error in the L_{∞}-norm.

1. One-dimensional interpolation scheme. Let $\Delta=\left(x_{i}\right)_{l}^{N+1}$ be a partition of $I \equiv[a, b], h_{i} \equiv\left|x_{i+1}-x_{i}\right|, I_{i} \equiv\left[x_{i}, x_{i+1}\right]$ and $h=m a x h_{i}$. Throughout this report we denote by P_{3} the set of polynomials of degree less than 4 , and $P_{3, \Delta}$ the set of functions that reduce to polynomials of degree less than 4 in each subinterval [$\left.x_{i}, x_{i+l}\right]$. Also we denote by H_{Δ} the ($2 \mathrm{~N}+2$)-dimensional vector space of all continuously differentiable piecewise cubic polynomials with respect to \triangle. We take $-l<\rho_{1}, \rho_{2}<l$ and $w_{j}>0, j=1,2$ to be the

Gaussian points and weights respectively, so that

$$
\int_{-1}^{+1} p(x) d x=\sum_{i=1}^{2} p\left(\rho_{i}\right) w_{i}, \operatorname{peP}_{3}([-1,1])
$$

The Gaussian points and weights in the subinterval
$\left[\mathbf{x}_{\mathbf{j}}, \mathrm{x}_{\mathrm{j}+1}\right]$ are
(1.1) $\quad \xi_{2 j+i} \equiv \frac{x_{j}+x_{j+1}}{2}+\rho_{i} \frac{h_{j}}{2} \quad i=1,2$.

We introduce an interpolation operator

$$
\Omega_{N}: C^{1}(I) \rightarrow H_{\Delta}
$$

such that
(1.2) $\left(Q_{N} f\right)\left(\sigma_{\ell}\right)=f\left(\sigma_{\ell}\right), \ell=1, \ldots, 2 N+2$,
where $\sigma_{1}=a, \sigma_{\ell}=\xi_{2 j+i}, j=1, \ldots, N, i=1,2, \sigma_{2 N+2}=b$.

This interpolation scheme is well defined. In fact, if $h(x) \in H_{\Delta}$ also interpolates f as above, then $e(x) \equiv Q_{N} f(x)-h(x)$ is a cubic polynomial on $\left[x_{i}, x_{i+1}\right], 0 \leq i \leq N$ and $e\left(\sigma_{i}\right)=0,1 \leq i \leq 2 N+2$. We show that $e(x)$ is identically zero in $\left[x_{i}, x_{i+1}\right]$. If this is not so, then without loss of generality we may assume that $e(x) \neq 0$ for all $x \varepsilon\left[x_{1}, x_{2}\right]$. Rolle's Theorem implies that $e\left(x_{2}\right) D_{x} e\left(x_{2}\right)>0$. Similarly, $D_{x} e$ restricted in $\left[x_{2}, x_{3}\right]$ has roots in $\left(x_{2}, \sigma_{4}\right),\left(\sigma_{4}, \sigma_{5}\right)$. Thus, $e\left(x_{3}\right) D_{x} e\left(x_{3}\right)>0$. By induction
$e\left(x_{N+1}\right) D_{x} e\left(x_{N+1}\right)>0$ contradicting the relation $e\left(x_{N+1}\right)=0$. This proves that $e(x) \equiv 0$ in I.
2. Two-dimensional 'interpolation scheme. In this section we introduce a two-dimensional analogue of the interpolation scheme of the previous section. Let $\Delta_{y}=\left(y_{j}\right)_{I}^{M+1}$ be a partition of $[c, d], J \equiv[c, d], k_{j} \equiv\left|y_{j+1}-y_{j}\right|, J_{j} \equiv\left[y_{j}, y_{j+1}\right]$ and $k \equiv \max k_{j}$. Also, we denote by $\rho \equiv \Delta x \Delta y$ a partition of $[a, b] x[c, d]$ and by H_{ρ} the vector space of all piecewise bicubic polynomials $p(x, y)$ with respect to ρ, such that $D_{x}^{l} D_{Y}^{\eta} p(x, y)$ is continuous on $[a, b] x[c, d]$ for all $0 \leq \ell, \eta \leq 1$.

The Gaussian points and weights in the subinterval $\left[y_{i}, y_{i+1}\right]$ are

$$
\tau_{2 i+j} \equiv \frac{y_{i}+y_{i+1}}{2}+\rho_{j} \frac{k_{i}}{2}, j=1,2 .
$$

A two-dimensional interpolation operator is defined as the tensor product

$$
Q_{p} \equiv Q_{N} \otimes Q_{M}=Q_{N} Q_{M}
$$

3. Error analysis. In this section, we establish a priori bounds for the interpolation scheme introduced in section 2. For later use, we define the Gramian matrix

$$
G_{N} \equiv\left(B_{i}\left(\sigma_{j}\right) ; i, j=1, \ldots, 2 N+2\right)
$$

of the interpolation operator Q_{N}. Using the $(2 N+2) x(2 N+2)$ matrix

$$
\mathrm{H}_{\mathrm{N}}=\left[\begin{array}{llllll}
1 & & & & & \\
& h & & & & \\
& & \cdot & & & 0 \\
& & & \cdot & & \\
& 0 & & & \cdot & \\
& & & & l & \\
& & & & & h
\end{array}\right]
$$

ws find that
where

$$
A \equiv\left[\begin{array}{ll}
\alpha & \beta \\
\gamma & \delta
\end{array}\right] \quad r \quad B \equiv\left[\begin{array}{cc}
\beta & \alpha \\
-\delta & -\gamma
\end{array}\right]
$$

and

$$
\alpha=\frac{9+4 \sqrt{3}}{18}, \beta=\frac{9-4 \sqrt{3}}{18}, \gamma=\frac{3+\sqrt{3}}{36}, \delta=\frac{3-\sqrt{3}}{36}
$$

We will also use the matrix

$$
T \equiv B A^{-1}=\left[\begin{array}{cc}
-7 & 48 \\
1 & -7
\end{array}\right]
$$

It is easy to see that for all integers $n,\left(T^{\circ} \equiv \mathrm{I}\right)$,

$$
T_{n}=\left[\begin{array}{cc}
a_{n} & 48 c_{n} \\
c_{n} & a_{n}
\end{array}\right]
$$

where

$$
a_{n+1}=-7 a_{n}+48 c_{n}, c_{n+1}=a_{n}-7 c_{n} .
$$

More generally, from $T^{s+t}=T^{\mathbf{S}} T^{\mathbf{t}}$ we get

$$
a_{s \pm t}=a_{s} a_{t}+48 c_{s} c_{t}, c_{s+t}=c_{s} a_{t}+a_{s} c_{t}
$$

$$
c_{s} a_{t}=\frac{1}{2}\left(c_{s+t}+c_{s-t}\right)
$$

(3.1)

$$
\begin{aligned}
& c_{s} c_{t}=\frac{1}{96}\left(a_{s+t}-a_{s-t}\right) \\
& a_{s} a_{t}=\frac{1}{2}\left(a_{s+t}+a_{s-t}\right) \\
& a_{-\ell}=a_{\ell}, c_{-\ell}=-c_{\ell}
\end{aligned}
$$

Let $\lambda_{n} \equiv\left|a_{n} / c_{n}\right|=-a_{n} / c_{n}$. since $\operatorname{det}\left(T^{n}\right)=1$, we can easily show that λ_{n} is decreasing with n and for all n

$$
\sqrt{48}<\lambda_{n} \leqq 7, \lambda_{1}=7
$$

$$
\begin{gathered}
(3.2) \quad c_{n}=(-1)^{n+1}\left|c_{n}\right|, a_{n}=(-1)^{n}\left|a_{n}\right| \\
\left|a_{n+1}\right|>\left|a_{n}\right|,\left|c_{n+1}\right|>\left|c_{n}\right|
\end{gathered}
$$

Since

$$
\left|a_{n}\right|=\frac{1}{2}\left(\left|c_{n+1}\right|-\left|c_{n-1}\right|\right),\left|c_{n}\right|=\frac{1}{96}\left(\left|a_{n+1}\right|-\left|a_{n}\right|\right)
$$

we also have

$$
\sum_{\ell=q}^{p}\left|a_{\ell}\right|=\frac{1}{2}\left(\left|c_{p+1}\right|+\left|c_{p}\right|-\left|c_{q}\right|-\left|c_{q-1}\right|\right)
$$

(3.3)

$$
\sum_{\ell=q}^{p}\left|c_{\ell}\right|=\frac{1}{96}\left(\left|a_{p+1}\right|+\left|a_{p}\right|-\left|a_{q}\right|-\left|a_{q-1}\right|\right) .
$$

We introduce a $(2 N+2) \times(2 N+2)$ matrix R in partition form

where the first and last rows are defined as

$$
\begin{aligned}
& {\left[r_{1,2 j-1}, r_{1,2 j}\right] \equiv \frac{(-1)^{j+1}}{c_{N}}\left[c_{N-j+1} a_{N-j+1}\right]^{-}} \\
& \left.\left[r_{2 N+2,2 j-1}, r_{2 N+2,2 j}\right] \equiv \frac{(-1)^{N-j}}{c_{N}}{ }_{\left[-c_{j-1}\right.} a_{j-1}\right]
\end{aligned}
$$

while the $2 x 2$ matrices $R_{n, m}$ are defined as

$$
\begin{gathered}
R_{n, m} \equiv A^{-1}\left[(-T)^{n-1} z_{m}+\sigma_{n, m}(-T)^{n-m}\right], \\
n=1, \ldots, N \quad, \quad m=1, \ldots, N+1
\end{gathered}
$$

with

$$
z_{1}=\left[\begin{array}{ll}
0 & \lambda_{N} \\
0 & 1
\end{array}\right], z_{m}=\frac{(-1)^{m}}{c_{N}}\left[\begin{array}{cc}
c_{N-m+1} & a_{N-m+1} \\
0 & 0
\end{array}\right] \quad m=2, \ldots, N+1
$$

and

$$
\sigma_{n, m}= \begin{cases}1 & \text { if } 2 \leqq m \leqq n \\ 0 & \text { otherwise }\end{cases}
$$

Lemma 3.1. The matrix $H_{N}^{-1} G_{N}$ is invertible and its inverse is the matrix R. Proof: Let $S \equiv R\left(H_{N}^{-1} G_{N}\right)$. It is enough to show that $S=I$. We partition S into blocks:
where each $s_{i j}$ is $l x l, S_{i j}$ is $2 \times 2, \omega_{i j}$ is 2×1 and $\tau_{i j}$ is 1×2. Performing the multiplication of the matrices R and $H_{N}^{-1} G_{N}$ we obtain

$$
\begin{aligned}
& s_{11}=r_{11}=1 \\
& \tau_{i j}=\left[s_{1,2 j} \quad s_{1,2 j+1}\right]=\left[\begin{array}{lll}
r_{1,2 j-1} & \left.r_{1,2 j}\right] A+\left[r_{1,2 j-1} \quad r_{1,2 j+2}\right.
\end{array}\right] B \\
&=\frac{(-1) j}{c_{N}}\left\{\left[c_{N-j+1} a_{N-j+1}\right]-\left[c_{N-j} a_{N-j}\right] T\right\}_{A} \\
&=\frac{(-1) j}{c_{N}}\left[\left[\begin{array}{lll}
c_{N-j+1} & \left.\left.a_{N-j+1}\right]-\left[c_{N-j+1} a_{N-j+1}\right]\right]_{A} \\
& =[0,0]
\end{array}\right.\right.
\end{aligned}
$$

and

$$
s_{1,2 N+2}=r_{1,2 N+1}=0
$$

Similarly

$$
\omega_{i, 1}=\omega_{i, 2 N+2}=\left[\begin{array}{l}
0 \\
0
\end{array}\right], \tau_{2 N+2, j}=\left[\begin{array}{ll}
0 & 0
\end{array}\right], i, j=1, \ldots, N
$$

and

$$
s_{2 N+2,1}=0 \quad, s_{2 N+2,2 N+2}=1
$$

For the square blocks $S_{n, m}$ we find

$$
\begin{aligned}
S_{n, m} & =R_{n, m} A+R_{n, m+1} B \\
& =A^{-1}(-T)^{n-1}\left\{z_{m}+Z_{m+1} T+\left(\sigma_{n, m}-\sigma_{n, m+1}\right)(-T)^{1-m}\right\} A
\end{aligned}
$$

From the definition of Z_{m} and T we obtain $Z_{m}+Z_{m+1} T=\delta_{I}^{m} I$.
Then from the definition of $\sigma_{n, m}$ we get

$$
s_{n, m}=\delta_{n}^{m} I
$$

This concludes the proof of Lemma 3.1.

Lemma 3.2. If G_{N} is the Grammian of the interpolation operator Q_{N} then
(3.4) $\quad\left\|\left(H_{N}^{-1} G_{N}\right)^{-1}\right\|_{\infty}<I 00$
for all $\mathrm{N} \geq 2$.

Proof. Let

$$
||\mathrm{R}||_{\ell} \equiv \varepsilon_{\mathrm{m}=1}^{2 \mathrm{~N}+2}\left|\mathrm{x}_{\ell \mathrm{m}}\right|
$$

From the definition of R and relations (3.1), (3.2), (3.3), we obtain

$$
\begin{aligned}
\|R\|_{1} & \equiv \varepsilon_{j=1}^{N}\left(\left|r_{1,2 j+1}\right|+\left|x_{1,2 j}\right|\right) \\
& =\frac{1}{\left|c_{N}\right|} \varepsilon_{j=1}^{N}\left(\left|c_{N-j+1}\right|+\left|a_{N-j+1}\right|\right) \\
& =\frac{1}{\left|c_{N}\right|} \varepsilon_{\ell=1}^{N}\left(\left|c_{\ell}\right|+\left|a_{\ell}\right|\right) \\
& \leqq \frac{7}{12} \frac{\left.\right|^{a_{N}} \mid}{\left|{ }^{C_{N}}\right|}+\frac{9}{2}+\frac{5}{15} \frac{\left.\right|^{a_{1}} \mid}{\left|{ }^{C_{N}}\right|}-\frac{7}{2} \frac{\left.\right|^{C} 1 \mid}{\left|{ }^{C_{N} \mid}\right|} \\
& \leqq 23 / 2 \quad .
\end{aligned}
$$

It is easy to see that $\|R\|_{2 N+2}=\|R\|_{1}$. For the remaining rows we. use (3.1) (3.2) to get that for $2 \leqq m \leqq n$

$$
\begin{aligned}
& A R_{n, m}=(-T)^{n-1} z_{m}+\sigma_{n, m}(-T)^{n-m} \\
& =\frac{1}{2\left|c_{N}\right|}\left[\begin{array}{ll}
-\left|c_{N-n-m+2}\right|+\left|c_{N-n+m}\right| & \left|a_{N-n-m+2}\right|+\left|a_{N-n+m}\right| \\
\frac{1}{48}\left(-\left|a_{N-n-m+2}\right|+\left|a_{N-n+m}\right|\right) & \left|c_{N-n-m+2}\right|+\left|c_{N-n+m}\right|
\end{array}\right]
\end{aligned}
$$

while for $n<m$

$$
A R_{n, m}=\frac{1}{2\left|c_{N}\right|}\left[\begin{array}{cc}
-\left|c_{N+n-m n}\right|+\left|c_{N-n-m+2}\right| & \left|a_{N+n-m}\right|+\left|a_{N-n-n+2}\right| \\
\frac{1}{48}\left(\left|a_{N+n-m}\right|-\left|a_{N-n-m+2}\right|\right) & \left|c_{N+n-m}\right|-\left|c_{N-n-m+2}\right|
\end{array}\right]
$$

Finally, for $m=1$

$$
A R_{n, 1}=\frac{1}{\left|c_{N}\right|}\left[\begin{array}{ll}
0 & \left|a_{N-n+1}\right| \\
0 & \left|c_{N-n+1}\right|
\end{array}\right]
$$

Using again the relations (3.1) through (3.3) we now find
$\sum_{m=1}^{N}\left\|A R_{n, m}\right\|_{1} \leqq$

$$
\left.+\frac{1}{2}\left(\frac{\left|c_{N-n}\right|}{\left|c_{N}\right|}+9+\frac{\left|c_{N-1}\right|}{\left|\left|c_{N}\right|!\right.}+\frac{\left|a_{N}\right|}{\left|c_{N}\right|}\right)\right] \leqq \frac{35}{3}
$$

and
$\sum_{m=1}^{N}\left\|A R_{n, \mathrm{ra}}\right\| \|_{2} \leqq$
$\frac{1}{2} \cdot\left[2 \frac{\left|c_{N-n+1}\right|}{\left|c_{N}\right|}+\frac{1}{96}\left(\frac{\left|a_{N-n}\right|}{\left|c_{N}\right|}+9 \frac{\left|a_{N}\right|}{\left|c_{N}\right|}+48+\frac{\left|c_{N-n+1}\right|}{\left|c_{N}\right|}\right.\right.$
$\left.\left.+\frac{\left|c_{N-n}\right|}{\left|c_{N}\right|}+\frac{\left|a_{N-1}\right|}{\left|c_{N}\right|}+\frac{\left|a_{n}\right|}{\left|c_{N}\right|}+\frac{\left|c_{N-1}\right|}{\left|c_{N}\right|} \right\rvert\,\right] \leqq \leqq 2$

By definition now, we have for $\ell=1,2$

$$
\|R\|_{2 n+\ell}=\sum_{m=1}^{N}| | A^{-1} A R_{n, m}\| \|_{\ell} \leqq \sum_{m=1}^{N}| | A^{-1}\left|\left\|_{\infty}| | A R_{n, m}\right\|_{\ell}\right.
$$

while

$$
\left\|A^{-1}\right\|_{\infty}=\frac{7 \sqrt{3}+9}{4}
$$

Thus, for the norm $\|R\|_{\infty}=\max _{i}\|R\|_{i}$ the following bound holds

$$
\|R\|_{\infty}=\left\|\left(H^{-1} G_{N}\right)^{-1}\right\|_{\infty}<100 .
$$

This concludes the proof of Lemma 3.2.

Remark. As the proof of Lemma 3.2 suggests the bound (3.4) can be improved. Our conjecture is that a more careful analysis will show that the norm $\left\|\left(H_{N}^{-1} G_{N}\right)^{-1}\right\|_{\infty}$ is decreasing in N, that

$$
\lim _{N \rightarrow \infty}| |\left(H_{N}^{-1} G_{N}\right)^{-1} \left\lvert\, l_{\infty}=\frac{69-29 \sqrt{3}}{2}\right.
$$

and that for all $\mathrm{N} \geq 2$

$$
\frac{69-29 \sqrt{3}}{2} \leqq\left|\left|\left(H_{N}^{-1} G_{N}\right)^{-1} \|_{\infty} \leqq\left|\left|H_{2}^{-1} G_{2}\right|\right|=\frac{33 \sqrt{3}+9}{7}\right.\right.
$$

Numerical experiments confirm this conjecture.
Lemma 3.3. The Gramian matrix G_{N} of the interpolation operator Q_{N} is nonsingular and

$$
\begin{equation*}
\left|\mid G_{N}^{-1} \|_{\infty} \leqq 100 \mathrm{~N}\right. \tag{3.5}
\end{equation*}
$$

for all $N \geq 2$.
Proof. (3.5) follows easily from Lemmata 3.1 and 3.2.

Lemma 3.4. Let Q_{N} be the interpolation operator defined by (2.2). Then, (i) Q_{N} is a linear projector on $C^{l}(I)$ with range H_{Δ} and (ii) there exists a constant c such that $\left\|Q_{N}\right\| \leqq c N$.

Proof. Conclusion (i) follows easily from Lemma 3.3. To prove (ii) let A be the dual space of H_{Δ} and $\left\{B_{i}\right\}_{i=1}^{2 N+2}$ and $\left\{\delta_{\sigma_{i}}\right\}_{i=1}^{2 N+2}$ be bases for H_{Δ} and A, where $\delta_{\sigma_{i}}$ are the point evaluation functionals. Using [1, Prop. 3] one may easily show that

$$
\left\|\varepsilon_{\Delta}\right\| \leq \max _{a \varepsilon R^{n}} \frac{\left\|\Sigma_{i} a_{i} B_{i} \mid\right\|_{\infty}}{\||| |}\left\|\left(\delta_{\sigma_{i} B_{j}}\right)^{-1}\right\|\left\|_{\infty} \max _{i}| | \delta_{\sigma_{i}}\right\|
$$

$$
\leqq 2| | G_{N}^{-1} \|_{\infty} \leqq c \mathrm{cN}
$$

where, $G_{N}=\left(\delta_{\sigma_{i}} B_{j}\right)$ and, by (3.5), $c=200$. This concludes the proof of Lemma 3.4.

Theorem 3.1. If $f \varepsilon W^{4, \infty}(I)$, then
(i) $Q_{N} f+£$, as $N \rightarrow \infty$
and
(ii) for the interpolation error we have

$$
\left|\left|Q_{N} \mathrm{f}-\mathrm{E}\right|\right|_{\infty} \leqq \mathrm{ch}^{4}
$$

where c is independent of h.
Proof. Let $\partial_{H} f$ be the Hemite interpolant of f, defined by interpolation of f and its first derivative at the nodes of the partition Δ. From the triangle inequality we find
(3.6) $\left|\left|f-Q_{N} f\right|\right|_{\infty} \leqq\left(I+\left|\left|Q_{N}\right|\right|\right)| | f-\partial_{H} f| |_{\infty} \quad$.

Moreover, for the llermite interpolation error, it is known [10, Thrm 3.6]
(3.7) $\quad\left|\left\lvert\, f-\partial_{H} f\left\|_{\infty} \leqq \frac{1}{384} h^{4}\right\| D^{4} f\right. \|_{\infty}\right.$.

From (3.6), (3.7) and Lemma 3.4, we now get

$$
\left\|f-Q_{N} f\right\|_{\infty}=O\left(h^{3}\right)
$$

This proves conclusion (i).
Also, Theorem 2 [9, p. 251] and conclusion (i) imply that there is a constant K, independent of N, such that
(3.8) $\quad\left|\left|Q_{N}\right|\right| \leqq K \quad N=2,3, \ldots$

From (3.6) and (3.8) conclusion (ii) follows.
Theorem 3.2. If $f \varepsilon W^{4, \infty}$ (JxJ) then for the intexpolation error we have

$$
\left|\left|Q_{\rho} f-f\right|\right|_{\infty} \leqq c|\rho|^{4}
$$

where $|\rho|=\max (h, k)$ and c is a constant independent of h and k.

Proof. From (3.6)-(3.8) and the triangle inequality we have
which concludes the proof of the theorem.
4. Numerical results. In this section we present some numerical results concerning the approximation of the functions e^{x}, x^{4} by interpolation at Gaussian points with the space H_{Δ}. These results indicate that the interpolation scheme introduced at Section 2 is fourth-order accurate in the L_{∞}-norm. The partition Δ used is uniform with mesh length $h=1 / N$. The rate of convergence estimate

$$
-\log \left(\frac{\text { errox for } h}{\text { error for } h / 2}\right) / \log 2
$$

is also given.

N	$\left\\|\mathrm{e}^{\mathrm{x}}-Q_{\mathrm{N}} \mathrm{e}^{\mathrm{x}}\right\\|_{\infty}$	Convergence Rate
3	3.106×10^{-5}	
6	2.325×10^{-6}	3.74
12	1.646×10^{-7}	3.8
24	1.096×10^{-8}	3.9
48	7.070×10^{-10}	3.95

N	$\left\\|\mathrm{x}^{4}-Q_{\mathrm{N}} \mathrm{x}^{4}\right\\|_{\infty}$	Convergence Rate
3	4.155×10^{-4}	
6	2.678×10^{-5}	
12	1.674×10^{-6}	3.96
24	1.047×10^{-7}	3.99
48	6.541×10^{-9}	4.00
		4.00

REFERENCES

1. Carl DeBoor, Bounding the error in spline interpolation, SIAM review, 10 (1974), pp. 531-544.
2. C. DeBoor and B. Swartz, Collocation at Gaussian points, SIAM J. Numer. Anal. 10 (1973), pp. 582-606.
3. Jim Douglas, Jr. and Todd Dupont, A finite element collocation method for quasilinear Panabolic Equations, Math. Comp., 27 (1973), pp. 212.
4. Jim Douglas, Jr. and Todd Dupont, A super convergence result for the approximate solution of the heat equation by a collocation method, in Mathematical Foundations of Finite Element Method with Applications to Partial Differential Equations, A: K. Aziz, Editor, Academic Press, New York, 1972.
5. Jim Doublas, Jr, and Todd Dupont, Collocation methods for panabolic equations in a single space variable based on c^{1}-piecewise polynomial s,aces, Springex Lecture Note Series, Vol. 385, Springe:--Verlog, Berlin, 1974.
6. E. N. Houstis, A. collociltion method for systems of nonlinear oxdinary differential equations, to be published in the Journal of MatheméSical Analysis and Applications.
7. E. N. Houstis, Applicatick, of method of collocation on lines for solving nonline x hyperbolic problems, to be published in the Journal c : Mathematics of Computation.
8. M. A. Krasnosel'skii, G. M Vainikko, P. P. Zabreiko, Yu. B. Rutitskii, V. Ya Stetsenko. Approximate solution of operator equations, Wolfers-Noordhoi(f, 1969.
9. L. V. Kantoronich and G. P. Ukilov, Functional analysis in normed spaces, Pergamon $f:$:ess, 1969. (English translation).
10. M. H. Schultz, Spline Analys:\{s, Prentice-Hall, 1973.
