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15. Piecewise Linear Dehn’s Lemma in 4.Dimensions

By Sadayoshi KOJIMA
Department of Mathematics, Tokyo. Metropolitan University

(Communicated by Kunihiko KODAIRA, M. J. A., Feb. 13, 1979)

1. Statement of result. Let W be a compact 4-manifold with
non-empty boundary W-M. Throughout this. note, we shall adopt
the convention that the handle decomposition of W possesses no 4-
handles and only one 0-handle.

In [4], Norman has given a number of cases, for which the ana-
logue of Dehn’s lemma in 4-dimensions works. See also Fenn [2].
Some examples, for which such an analogue fails, can be seen in [1] and
[3]. Our version of Dehn’s lemma is as follows"

Theorem. Let W be a compact 4-manifold with non-empty
boundary 3W--M, and let h" (D2, S1)--(W, M) be a proper map whose
restriction to S is an embedding. Suppose that W admits a handle
decomposition without 1-handles (hence is simply-connected), then h
is homotopic to a PL-embedding keeping the boundary fixed. In par-
ticular, every loop on M bounds a PL-disc in W.

2. Key lemma. For a compact 4-manifold N with boundary
N--MUM’ (disjoint), the triad (N;M,M’) always, admits a self-
indexing Morse function f" N--[0, 4] such that f-(0)=M and f-1(4)
=M’. Let D be a proper smooth submanifold of N of codimension
two.

Lemma. D can be isotopically deformed in N keeping the bound-
ary fixed so that it satisfies the following

(1) g--f [D" D--[0, 4] is also a Morse function.
(2) For a critical point of g of index 1, its critical value is less

than 2.
Proof. The condition (1) is attained by small perturbation of D,

because it is a smooth submanifold. Then, one may assume that there
are no critical points of f on D, and no critical value of g is 1, 2 or 3.
Next, push down (or push up) a small neighborhood on D of each crit-
ical point of g of index 0 (or index 2) so that its critical value turns
out to be less. than 1 (or greater than 3). Then, it ollows from the
general position lemma that the same procedure as above makes the
critical value of each critical point of g of index 1 less than 3.

Take a gradient like vector field of f on N, which defines the core
of a 2-handle o N in f-l([a, 2]) for some a (1a2). This also de-
fines the co-core of it in f-1([2, b]) or some b (2(b3). Let C denote



66 S. KOZMA [Vol. 55 (A),

the union of cores and co-cores of all 2-handles of N in f-([a, b]).
Then, S--C f-(b) is the union o all right hand attaching spheres on
f-l(b). By taking real numbers a, b closely to 2 if necessary, one can
make C and disjoint.

Let c, d be real numbers with 2 b cd3. Then, deforming
D isotopically so as to arrange critical levels of g in the situation
above, one may assume that the critical value of each critical point o
g of index 1 is. either c or less than a, and that there are no critical
points, of index 0 and 2 on g-([a, d]).

Now, make a corner on D as in the figure below.

This device gives the trace of the following change of links" the link
L’=D 21 f-(d) is modified by band eonneeted sums at the level e and a
new link L=D f-(b)is obtained. Since f has no eritieal levels in
[b, c], there exists, a trivialization

T" f-(c) [b, c]--f-([b, c]).
Let B=IJ denote one o the bands in f-(c), where I, J are closed
intervals, and T(B {b}) L= T(I3J {b}). In case T(B {b}) does
not intersect S, deform D isotopically to (D-- T(I J [b, c] U B {c}))
U T(I 3J [b, c] U B {b}). This. makes the critical value (= c) corres-
ponding to B come down to b. Moreover, one can push down the
band iurther to the level a, because T(B {b}) S= and f-([a, b])- C
is diffeomorphic to (f-(c)-S) [a, b]. For general case, deform D
similarly as above using the shortened band B’=IJ’, instead o B,
where J’ c__J is a closed interval so that T(I J’ {b}) does not intersect
S. Doing this procedure for each band and smoothing corners again,
we finally obtain the required isotopy of D satisfying the conditions
(1), (2). This completes the proof.

3. Proof of Theorem. By general position, h is homotopic to
a proper immersion h"(D, S)--(W, M) which has only double point
singularities in int D. One can choose this homotopy so that the
boundary remains fixed. Take a small closed ball neighborhood of
each singular point and connect them up by thin tubes in W-h’(D).
Since the resulting 4-ball B contains, all the singularities of h’, D

h’(D) (W-int B) is a connected, smooth submaniold.
We apply Lemma to the triad (W-int B;3B, M) and the sub-
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manifold D. So, for a self-indexing Morse function f:W-int B
-+[0, 4], D will be is.otopically deformed so that g f lD is. also a Morse
function and it has, no critical points of index 0 and 1 on g-([e, 4]).
where e is any number with lae2. Then Df-l(e) is the link
of q components, in f-(e). Choose (q- 1) bands B, B2, ., B_ which
connect those q circles, in f-(e) with compatible orientations. Then
A D ) f-([e, 4]) U B [9 U B_ turns out to be an annulus nd one
of its boundary defines a knot K in f-(e).

Now, since W admits a handle decomposition without 1-handles,
a Morse function f can be chosen so that it has no critical points of
index 1. Then, f-(e) is, in fact diffeomorphic to the 3-sphere and
BU f-([0, e]) is diffeomorphic to the 4-disc. Hence, attaching a cone
p*K from the center p of this 4-disc to the annulus A, one obtains a
properly PL-embedded 2-disc. It can be identified with the image of
some PL-embedding of a 2-disc homotopic to h keeping the boundary
fixed. This. completes, the proof.
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