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Piecewise linear differential equations and integrate-and-fire neurons: Insights from
two-dimensional membrane models

Arnaud Tonnelier* and Wulfram Gerstner
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~Received 10 September 2002; published 19 February 2003!

We derive and study two-dimensional generalizations of integrate-and-fire models which can be found from
a piecewise linear idealization of the FitzHugh-Nagumo or Morris-Lecar model. These models give rise to new
properties not present in one-dimensional integrate-and-fire models. A detailed analytical study of the models
is presented. In particular,~i! for the piecewise linear FitzHugh-Nagumo model, we determine analytically the
bistability regime between stationary solutions and oscillations, that is, typical for class-II models.~ii ! In the
piecewise Morris-Lecar model, we find a noncanonical class-I transition from a stationary state to oscillations
with logarithmic dependence similar to that found for leaky integrate-and-fire models.~iii ! Furthermore, we
establish a relation to the recently proposed resonate-and-fire model and show that a short input current pulse
can trigger several spikes.
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I. INTRODUCTION

Neuronal activity is the result of a highly nonlinear d
namic process that was first described mathematically
Hodgkin and Huxley~1952! with a set of four coupled dif-
ferential equations. Precise descriptions of neuronal acti
involve an extensive number of variables and parame
@1,2#, which often prevent a clear understanding of the u
derlying dynamics. Hence, a simplified description of ne
ronal activity is desirable and has been the subject of num
ous works. A pioneering work dates back to Lapicque@3#
who proposed a single-variable threshold model for the
scription of neuronal spike dynamics. Simple models of n
ronal activity have become quite popular in neural netw
modeling @4,5#. Phenomenological descriptions based on
reduction of detailed models has been attempted by m
authors using low-dimensional differential equations@6–11#.
Facing the lack of standardized descriptions, some aut
have proposed a generic description of neuronal activity
ing concepts of bifurcation theory for dynamical syste
@12–14#. Despite the large number of biophysical mech
nisms, there are only two majors dynamic mechanisms
excitability for nonbursting cells reported as excitability
class I and II@12,15,16#. Excitable properties of a cell ar
determined according to the emerging frequency of repeti
firing. Class I is obtained when repetitive action potenti
are generated with an arbitrarily low frequency, whereas
class-II action potentials emerge at a nonzero freque
Typically, class I and II are related to a saddle node on a li
cycle bifurcation and a fold limit cycle bifurcation, respe
tively.

Most models of neuronal activity use nonautonomous
ferential equations. Alternatively, integral representations
the cell activity have been formulated@17#. Experimenters
typically measure the membrane potential which stands
the observable variable, while it is usually impossible

*Email address: Arnaud.Tonnelier@epfl.ch
1063-651X/2003/67~2!/021908~16!/$20.00 67 0219
y

ty
rs
-
-
r-

-
-

k
a
ny

rs
s-
s
-
of

e
s
n
y.
it

-
f

r

monitor other dynamic variables, such as gating variab
Therefore, it is valuable to have a direct expression for
membrane potential

v~ t !5 (
t* PT

h~ t2t* !1R„t,I ~ t !…, ~1!

which stands for a generalized version of the spike-respo
model @17,18#. Expression~1! allows a clear understandin
of the neuronal behavior: the functionh is the invariant
spike form including the spike afterpotential, the setT de-
scribes the spike events that are to be taken into account
R models the subthreshold response of the cell to an exte
input I (t). A spike event occurs ifv(t) crosses a thresholdq
from below. The motivations for the formulation~1! come
from the well-known experimental observations that~i!
spikes are generated by some type of threshold process
~ii ! spikes have an approximately invariant form.

In this paper, we suggest modeling a simple spiking n
ron with piecewise linear differential equations. We sho
that this framework allows a qualitative description of exc
able systems through bifurcation analysis but also a qua
tative analysis of neuronal behavior through an explicit in
gral representation of the membrane potential. We ma
focus on two-dimensional membrane models but our anal
can be applied to higher-dimensional systems. Piecewise
ear systems are introduced as a first-order approximatio
the nonlinear neuronal dynamics. In particular, our mod
can be derived as a piecewise linear idealization of
FitzHugh-Nagumo model introduced by McKean@19# or as a
piecewise linear version of the Morris-Lecar model@8#. At
each level, we derive an integral representation equivalen
the differential formulation. We analyze the behavior of the
models under an external currentI (t) and we emphasize new
features not present in one-dimensional integrate-and
models. We discuss more specifically two input scenarios~i!
a single-short current pulse and~ii ! a constant bias current
Our analysis uses the classical tools of differential equa
theory but also an equivalent integral formulation.
©2003 The American Physical Society08-1
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A. TONNELIER AND W. GERSTNER PHYSICAL REVIEW E67, 021908 ~2003!
We will consider piecewise linear differential equatio
with a discontinuous right-hand side

dX

dt
5F~X!, ~2!

whereF is expressed as a linear combination ofXPRn with
the Heaviside step functionh(x). In order to define precisely
a solution of Eq.~2!, we need to extend the differential equ
tion to a differential inclusion@20,21#

dX

dt
PF~X!, ~3!

where the right-hand side of Eq.~3! is defined with the set-
valued Heaviside function

h~x!5H $1%, x.0

@0,1#, x50

$0%, x,0.

A solution of Eq.~2! is an absolute continuous function d
fined on an intervalI PR, which satisfies Eq.~3! for almost
all tPI . We will mainly use planar systems of piecewi
linear differential equations with a line of discontinuity an
we refer to Ref.@22# for precise results on the uniqueness
the initial-value problem. In a previous paper,@23#, a particu-
larly simple special case of Eq.~3! has been analyzed. Her
we generalize our methods so as to study more real
piecewise linear approximations of the FitzHugh-Nagu
and Morris-Lecar models. This paper is organized as follo
In Sec. II, we recall the standard integrate-and-fire model
its equivalent integral representation. In Sec. III, we int
duce two-dimensional membrane models as a generaliza
of integrate-and-fire~IF! models including a smooth recov
ery process. We focus on two particular recovery dynam
that reveal the main qualitative properties of our tw
dimensional modeling. We conclude with a discussion.

II. ONE-DIMENSIONAL MODELS OF NEURONAL
ACTIVITY

As a starting point, we recall the standard leaky IF mod
The IF model is one of the simplest description of the n
ronal activity given by a single variablev(t), which stands
for the membrane potential. The behavior of the neur
driven by a currentI (t), is given by a linear differentia
equation

dv~ t !

dt
52

v~ t !

t1
1c1I ~ t !, ~4!

where t1.0 is the membrane time constant andc1
21 is a

capacity. This model is represented by anRC circuit, where
t5(RC)21 andc15C21. To keep the mathematical formu
lation as simple as possible, we take the resting potentia
the membrane to be 0. It is obvious that a linear evolution
not a realistic model of neuronal activity. In order to accou
for spikes one defines the threshold process
02190
r

ic
o
s.
d

-
on

s
-

l.
-

,

of
is
t

v~ t !5q⇒tPF andv~ t1!5v r , ~5!

whereq.0 is the threshold,F the firing set,v r the reset
value, andt15 lime→0,e.0t1e. In this paper, we assume fo
simplicity that the firing set is a countable discrete set@i.e.,
I (t) is bounded and the threshold line is crossed tra
versely#. In the standard IF model the action potential is n
described explicitly and spikes are reduced to formal eve
t fPF, wheret f is the firing time.

Alternatively to the modeling with differential equation
one may work with an integral representation of the neuro
activity. For the standard IF model, it is straightforward
derive the integral formulation@17#. Let us suppose that a
first spike has occurred at timet̂ f . For t. t̂ f the formal result
of the integration of Eq.~4! is

v~ t !5v re
2(t2 t̂ f )/t11c1E

0

t2 t̂ f

e2s/t1I ~ t2s!ds. ~6!

Expression~6! is valid up to the moment of the next thres
old crossing and whenv(t)5q, the integration must restar
The formulation~6! is obtained if the reset condition is in
troduced as an initial condition. From another point of vie
if one treats the reset conditions as a current pulseI r(t)5
2(q2v r)d(t2t f) @17#, the integration yields

v~ t !5 (
t fPF

2h r~ t2t f !1c1E
0

`

e2s/t1I ~ t2s!ds, ~7!

where h r(t)5(q2v r)e
2t/t1 if t.0 and 0 otherwise. The

firing timest fPF are given by Eq.~5!. In contrast to Eq.~6!,
expression~7! has not to be rewritten when a new firing tim
is defined. The formulation~7! allows a clear understandin
of the IF dynamics; the neuron acts as a convolution fi
that emits a reset pulse when the threshold is reach
The convolution is described by the kernele1(s)
5c1exp(2s/t1)h(s) and functionh r(s) describes the rese
pulse related to the reset condition~5!. In Fig. 1, we show the
voltage v(t) of the standard IF model driven by an inp
currentI (t). Note that the summation in Eq.~7! is not related
to an adaptation and one has to emphasize that IF mo
have no memory beyond the last spike@which is not clear
from Eq. ~7!#.

Let us now consider a simple input scenario which reve
the basic behavior of the standard IF model. We suppose
the IF neuron is stimulated by a constant input currentI (t)
5I . An interesting property is how repetitive firing arises
the system. It is easy to show that the IF neuron fires re
larly if the input current is larger than a critical valueI 1
5(c1t1)21q . In this case, the firing rate of the IF model
given by

n5S t1ln
c1t1I

c1t1I 2q D 21

. ~8!

Note that the transition is marked by arbitrarily low freque
cies and, thus, the excitability is reported as being clas
From Eq. ~8!, the frequency in the transition to repetitiv
firing is proportional to 1/ln(I2I1).
8-2
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III. TWO-DIMENSIONAL MODELS

There are two major drawbacks of models based on o
dimensional differential equations:~i! subthreshold oscilla-
tions cannot be reproduced and~ii ! the reset condition is a
nonrealistic recovery process. Firstly, damped oscillations
membrane potential are reported experimentally for m
biological neurons@24# and in biophysically detailed neura
models@25#. This dynamical property is assumed to play
important role in the neuronal information processing a
reveals the sensitivity of neurons to the fine temporal str
ture of input spike train@26#. Secondly, the reset process
the one-dimensional modeling of neuronal activity is a b
approximation of a biologically realistic smooth recove
process. In this section, we introduce a two-dimensio
model which addresses these problems. Let us consid
recovery variablew(t)PR. The two-dimensional system is

dv~ t !

dt
5 f „v~ t !…2w~ t !1I e~ t !,

~9!

dw~ t !

dt
5g„v~ t !,w~ t !…,

where f (v) is the piecewise linear function given by

f ~v !52
v

t~v !
1mh~v2q!, ~10!

where t(v)5t1 if v,q ~subthreshold regime! and t(v)
5t2 otherwise~superthreshold regime!. I e(t) is an effective
current, i.e.,I e(t)5c1I (t) if v(t),q andc2I (t) otherwise.

FIG. 1. Voltagev(t) ~b! of the standard integrate-and-fire mod
~4! and ~5! driven by the input currentI (t) ~a!. Parameters aret1

51, q51, andv r520.2. InputI (t) consists of a superposition o
four sinusoidal components plus a positive bias currentI 050.94,
which drives the membrane potential towards the threshold.
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We will focus on a specific instance of the functiong. In the
context of piecewise linear differential equation the gene
form of g is

g~v,w!5gv,iv2gw,iw1gi , ~11!

where i 51 whenv,q and i 52 otherwise. In other words
g, is a piecewise linear function and we allow for a disco
tinuity at v5q. Parametersgv,i ,gw,i , and g2 are positive
constants and we takeg150. The sign of parameters is mo
tivated by the inhibitory role ofw and the requirement of a
stable resting state at the origin. A complete study of E
~9!–~11! is not the goal of the present work; rather we wou
like to study some simple configurations that illustrate t
qualitative behavior of two-dimensional excitable membra
models. We will emphasize those features of the tw
dimensional models that go beyond those of the o
dimensional IF models discussed above. Graphical or g
metrical representation of the dynamics in the phase plan
a classical tool for the study of neural excitability and osc
lations@12#. Here, our analysis is completed by the analytic
description of the neuronal activity through an equivale
integral formulation.

A. The piecewise linear FitzHugh-Nagumo„PFN… model

First, we explore the simple case, whereg is the linear
function

g~v,w!5b~v2gw!, ~12!

whereg>0 andb.0. Since we are interested in qualitativ
properties, we consider for simplicityt15t25t. Hence, we
study

dv~ t !

dt
52

v~ t !

t
1mh@v~ t !2q#2w~ t !1I e~ t !,

~13!
dw~ t !

dt
5b~v2gw!.

One recognizes the piecewise linear version of the FitzHu
Nagumo model introduced by McKean@19#. Nullclines of
the piecewise linear system~13! are shown in Fig. 2. In Ref.
@23#, we focused our study on the existence of periodic

FIG. 2. Nullclines of McKean’s model~13! in the monostable
case without input, i.e.,I e(t)50.
8-3
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A. TONNELIER AND W. GERSTNER PHYSICAL REVIEW E67, 021908 ~2003!
lutions of Eq. ~13! for g50 without input current, i.e.,
I e(t)50. In the present study, thew nullcline has a finite
positive slope so as to allow the analysis of the phase t
sition and the bistability withI e as a bifurcation parameter

1. Integral formulation of the PFN model

In this section, we show that the two-dimensional mo
~13! admits an equivalent integral formulation. This repr
sentation allows a direct comparison with expressions pr
ously obtained for one-dimensional IF models. Based on
integral formulation, we determine some properties of
neuronal activity.

We define the two sets@27#

v~ t !5q and
dv
dt

~ t2!.0⇒tPF,

v~ t !5q and
dv
dt

~ t2!,0⇒tPR,

where (dv/dt)(t2) denotes the left-hand side derivative.F
is the firing set analogous to the one that we have alre
encountered in Sec. II andR the resetting set. The jum
conditions result from the discontinuity of the vector fie
and indicate that a firing time~a reset time! is defined when
the threshold line is crossed from left to right~right to left!.
We assume that the two setsF andR are countable discret
sets. Hence, sliding solutions@20# are not considered in ou
analysis; some comments are available in the Appendice

We demonstrate~Appendix A! that the PFN model is
equivalent to

v~ t !5 (
t fPF

h f~ t2t f !2 (
trPR

h r~ t2t r !1E
0

`

e~s!I e~ t2s!ds,

~14!

whereh f(s), h r(s), ande(s) are given in Appendix A. By
abuse of notation, we have chosen the same symbols fo
IF and PFN kernels. From the Appendix, we haveh f(t)
5h r(t) and we refer to both kernels simply ash(t). We
emphasize the existence of a memory effect, i.e., the po
bility to emit several spikes in response to a single-sh
input currentI (t)5q0d(t2t0). This property is related to a
memory process caused by the smooth recovery dyna
We will derive a precise analysis of this PFN feature in t
following section.

2. Leaky integrator versus leaky resonator

Depending on the stability of the resting state~stable node
or stable focus!, the PFN model presents two qualitative
different behaviors, i.e., leaky integrator versus leaky re
nator. Such a distinction implies some differences in the n
rocomputational properties of neurons@26# and would not be
possible for one-dimensional IF models since they alw
exhibit an exponential convergence to the resting state. In
PFN model, the stability of the resting state is monitored
D51/4(1/t1gb)22b ~see Appendix A! and depending on
its sign the two kernelsh ande are expressed with differen
02190
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functions; trigonometric or hyperbolic ones. To make o
discussion as clear as possible, we takeg50 in Eq. ~13!.
Most of the results are directly generalizable forg.0.

Leaky integrator. The caseD.0, i.e., 4bt2,1, is re-
ferred to as the leaky integrator case, and we will explain t
terminology later. We setv51/2A1/t224b and from Ap-
pendix A, we have

h~ t !5
m

v
e2t/2tsinhvt,

e~ t !5e2t/2tS coshvt2
1

2tv
sinhvt D ~15!

for t.0 andh(t)5e(t)50 otherwise. The functionh has a
pulse shape without negative part@Fig. 3~a!#. The terme* I
in Eq. ~14! is the response of a convolution filter with im
pulsive responsee. Its typical shape is depicted in Fig. 3~b!.
Note thate(t) presents an exponential convergence to
rest state with a short negative bump. Let us remark that
filter is stable, i.e.,ePL1(R), and realizable, i.e., supp(e)
5R1. To understand more closely the sensitivity of the ne
ron to the input frequency, we calculate the transfer funct
of the filter E, the Fourier transform ofe,

E~j!5
2ipj

b24p2j212ip
j

t

. ~16!

The resonance frequencies are clearly illustrated by the
of the energy spectrumuE(j)u2 ~Fig. 4!. High frequencies
(uju large! are destroyed and the energy spectrum ha
maximum at the frequency

FIG. 3. Kernels of the PFN model in the leaky integrator co
figuration. ~a! shows kernelh and ~b! kernel e. Functionh has a

global maximum att̄ 51/v arctanh2vt and its global minimum is
0. Parameters aret2153, m510, andb52.
8-4
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PIECEWISE LINEAR DIFFERENTIAL EQUATIONS AND . . . PHYSICAL REVIEW E67, 021908 ~2003!
jp5
Ab

2p
, ~17!

which points out a privileged frequency. The filter gain
zero, i.e.,E(0)50, and thus filter responses have a ze
mean value~for g50).

The sensibility to a single-incoming pulse has alrea
been studied in Ref.@23# and will not be repeated here. Th
main result is that the neuron emits a single spike ifq0
.q. Moreover, in the limiting situationb→0 the behavior
is very similar to the one-dimensional IF models~see the
discussion! justifying the designationleaky integrator@28#.

Leaky resonator. We now investigate the other situati
that is, when 4t2b.1. We find~Appendix A!

h~ t !5
m

v
e2t/2tsinvt,

~18!

e~ t !5e2t/2tS cosvt2
1

2tv
sinvt D

for t.0 andh(t)5e(t)50 otherwise. In Eq.~18!, we have
setv51/2A4b21/t2. The functionh has a spike shape tha
includes an hyperpolarization period@Fig. 5~a!#. The afterpo-
tential is amplified by the resetting pulseh(t2t r). In this
configuration, a dynamical threshold that includes the re
ting pulse is a reasonable approximation of neuronal acti
~see the discussion in the last section!. The terme* I is the
response of a convolution filter with an impulse response
shows damped oscillations. The damping is monitored by
parametert @Figs. 5~b!, and 5~c!#. The filter is still stable and
its transfer function is the same~since the transition from the
integrator to the resonator states whenv51/2A1/t224b be-
comes imaginary!. The limiting situationt@1 is a special
case of 4t2b.0 and ast→`, we find

e~ t !5cosvpt1O~1/t!

for t.0, wherevp5Ab. Therefore, for a sinusoidal inpu
I (t)5sinv0t h(t), we find the leading approximation of th
convolution part of the activity

FIG. 4. Spectrum~16! of the subthreshold response of the piec
wise linear FitzHugh-Nagumo model. Parameters aret2153 and
b52.
02190
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e* I ~ t !55
v0

v0
22vp

2 ~cosvpt2cosv0t ! if v0Þvp

t

2
sinvpt if v05vp .

For v05vp , a resonating phenomenon occurs which yie
an unstable system. This limiting behavior explains the d
ignation leaky resonator.

In the leaky resonator case, the neuron prefers perio
inputs of a frequency that is equal to the frequency of
subthreshold oscillations. Moreover, the spike solution
more complex in the sense that a short stimulusI 5q0d(t)
may elicit a spike train@23#

v~ t !5 (
t fPF

h f~ t2t f !2 (
trPR

h r~ t2t r !1q0e~ t !.

The brief current pulseq0d(t) leads to an instantaneou
shifting of v(t) from the resting state and the spike soluti
is a trajectory that spirals around the resting state~see Fig.
6!. The number of emitted spikes depends on the proxim
of a fold limit cycle bifurcation. The study of this bifurcatio
is left to the following section.

-

FIG. 5. Kernels of the piecewise linear FitzHugh-Nagum
model in the leaky resonator configuration.~a! Plot of the kernelh

for t50.5, m510, b53. The maximum is reached att̄
51/v arctan 2vt. The impulsive responsee is shown forb52 and
t52 ~b!, t50.4 ~c!.
8-5
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3. Constant input and oscillations

In this section, we study some input scenarios that emp
size the major differences between the two-dimensional P
model and the one-dimensional IF models. We go back to
caseg.0 in Eq. ~12! so that a constant input qualitative
acts on the dynamics by shifting thev nullcline @29#. Before
starting the study, we note that the change of variables

~ ṽ,w̃, t̃ ,q̃,b̃,g̃, Ĩ !5S v
mt

,
w

m
,

t

t
,

q

mt
,t2b,

g

t
,
I

m D
allows us to taket5m51. Recall that the requirement o
the threshold is 0,q,1. Without external inputs, we avoi
an additional stable fixed point in the superthreshold reg
fixing g andq such that

g

11g
,q. ~19!

In this configuration the spike dynamics, in the superthre
old regime, is driven by the virtual fixed point@g(1
1g)21,(11g)21#. For gÞ0, as the input currentI in-

FIG. 6. Spike solution of the piecewise linear FitzHug
Nagumo model in the leaky resonator case. The neuron is exc
from its resting potential by a single-short current pulseI
5q0d(t). Panel~a! shows the trajectory in thev-w phase plane.
The nullclines are shown in thin lines. The enlarged figure sho
the trajectory in the vicinity of the threshold.~b! shows the time
coursev(t) of the membrane potential. The threshold is shown
thin line. Parameters are t51, m52, q50.1639, b51,
g50.08, q050.8.
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creases, the PFN presents twononsmoothsaddle-node bifur-
cations atI 5I 1 and I 2, where

I 15qS 11
1

g D21,

I 25qS 11
1

g D .

The nonsmooth term indicates that the saddle point app
or disappears along the line of discontinuity. It is a singu
fixed point and a precise mathematical formulation requi
the notion of differential inclusions@21#.

For 0,I ,I 1 the system has a single stable fixed poi
for I 1,I ,I 2 two stable fixed points and a singular sadd
point and for I .I 2 a high activity fixed point. We show
~Appendix B! that for I ,I 2 the effect of a constant inpu
current is to decrease the effective threshold following
law

q̃5q2
g

11g
I .

The situationI .I 2 is described in the Appendix. Thus, fo
the analysis of the effects of a constant input, we consi
I 50. In one-dimensional IF models oscillations are obtain
by shifting, throughI ~or equivalently throughq), the low-
activity fixed point in the superthreshold region. In the PF
this procedure yields the appearance of a stable fixed poin
the superthreshold regime and, therefore, does not inv
oscillations. Here, we have to investigate another mechan
for the appearance of oscillations~when they exist!.

A periodic solution is related to a periodic configuratio
of the two setsF andR. In other words, the existence of
periodic solution is related to the existence of two realsT and
z such thatt f5t2k52z1kT andt r5t2k115z1kT. Thus, a
periodic solutionv` is given by

v`~ t !5 lim
n→`

vn~ t !,

wherevn is the spike solution defined from Eq.~14!

vn~ t !5 (
k52n

n

h~ t2t2k!2h~ t2t2k11!,

where for convenience we rewrite the summation as a s
metric one. ParameternPN monitors the number of spikes
We show that~Appendix C!

v`~ t !5 v̄`1h`~ t1z!2h`~ t2z!,

wherev̄`52gz/@(11g)T# is the mean value ofv`(t) and
h`(t) has an expression given in Appendix C. The existen
of periodic solutions is obtained from the matching con
tions

v`~z!5q,

v`~2z!5q,

ed

s
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which amounts to the resolution of a system of two transc
dental equations~Appendix C!

F~x,y!1
gy

x~11g!
2q50,

~20!

F~x,x2y!2
gy

x~11g!
1q50,

where we write for the notational conveniencex5T/2 and
y5z. The existence of periodic solutions is related to t
existence of solutions 0,y,x of the transcendental syste
~20!. In Fig. 7~a!, we depict in the plane (q,b) the locus of
existence of periodic solutions for different values ofg. In
the terminology of bifurcation theory, the curves@Fig. 7~a!#
are fold limit cycle bifurcations@30#. Oscillations appear
with a nonzero frequency that indicates a class-II excitabi
Figure 7~a! shows a nontrivial dependence of the oscillatio
upon the threshold. For example, the shaded region gives
g50.1, the regime of the coexistence between limit cyc
and fixed points. The special caseg50 has already been
analyzed in@23#, where an asymptotic valueq* 51/p was
found above which no oscillations are possible. Note that
a steady applied current the PFN system still presen

FIG. 7. ~a! Locus of existence of periodic solutions~inside the
solid lines! for different values ofg. The dotted lines represent th
nonsmooth saddle-node bifurcations which yield an additio
stable fixed point~to the left side of the line!. From left to right,
these lines are obtained forg50.01, g50.1, andg50.15. For a
value ofg50.1, the shaded area indicates the region of the co
istence between a stable limit cycle and two stable fixed points.
long-dashed line represents the critical threshold valueq* above
which there is no oscillation. Panel~b! shows in the phase plane th
bistable behavior of the piecewise linear FitzHugh-Nagumo mo
for t51, m51, q50.1, b52, andg50.1.
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stable fixed point and, thus, when a limit cycle exists, t
system presents a bistable behavior@Fig. 7~b!#. A brief cur-
rent pulse can switch the system from the resting state to
oscillatory response and vice versa. The separatrix betw
these two regimes is described by an unstable limit cy
Such behavior has been reported for many models and
served in biological experiments~see Ref.@12#!. Moreover,
for certain values of (q,b,g) the system is tristable, that is
there coexists two stable steady states and a stable os
tion. This behavior might be critical for the occurrence
complex bursting behavior.

The advantage of our piecewise linear version of
FitzHugh-Nagumo model is that the problem of the existen
of oscillations has been analytically reduced to a solution
transcendental equations which has not been possible in
vious works@12#.

B. The piecewise linear Morris-Lecar model

The linear evolution~12! of the recovery variablew over
the whole phase plane is the simplest dynamic. As for
membrane potential an abrupt evolution ofw(t) near the
threshold is conceivable. In this case, the recovery func
has the form

g~v,w!5b@bv2gw1ah~v2q!#, ~21!

where a.0. The goal of this section is to illustrate som
new aspects of the dynamics induced by the new recov
function ~21!. When the origin is a focus~necessarily stable
because of the sign of parameters! it is possible to obtain
oscillations through the same mechanism as in the P
model; the trajectories spiral ‘‘enough’’ around the origin
give rise to a stable limit cycle~for a sufficiently small
threshold!. In this configuration the model still exhibit
class-II excitability. Since we are interested in a new situ
tion, we consider for simplicityb50 ~the origin is a node!
and we will show that this situation give rise to a new b
havior. We study the system

dv~ t !

dt
52

v~ t !

t
1mh@v~ t !2q#2w1I ~ t !,

~22!

dw~ t !

dt
5b$ah@v~ t !2q#2w~ t !%.

This system can be obtained as a piecewise linear reduc
of the Morris-Lecar model, as we show now.

1. Piecewise linear reduction

The Morris-Lecar equation is a quantitatively accura
model of neurophysiological activity, specifically, the ba
nacle muscle fiber@8#. The model incorporates two chan
nels: a calcium channel that monitors the spike process a
potassium channel that defines the recovery process. E
tions are

l

x-
e

el
8-7
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C
dv
dt

5ḡCam`~v !~vCa2v !1ḡKw~vK2v !1ḡL~vL2v !1I ,

dw

dt
5e

w`~v !2w

tw~v !
, ~23!

where functionsm`(v), w`(v), andtw(v) are given in Ap-
pendix E. In Eq.~23!, v denotes the membrane potential a
w is the fraction of open potassium channels. The Mor
Lecar model is more realistic than the FitzHugh-Nagu
model and thus has been increasingly popular for theore
studies of single cell or network behavior@12,31,32#.

The first step of the reduction is obtained by taking t
high gain limit for m`(v) and setm`(v)5h(v2v1). We
applied the same procedure tow`(v) and findw`(v)5h(v
2v3). Taking v35v15q, a constant relaxation time
tw(v)5t and rescalinge, we obtain

C
dv
dt

5ḡCah~v2q!~vCa2v !1ḡKw~vK2v !

1ḡL~vL2v !1I ,
~24!

dw

dt
5e@h~v2q!2w#.

As a further simplification, we approximate thev nullcline
by a piecewise linear function. Rescaling parameters
shifting the resting state to the origin we obtain the piecew
linear system~22! that we call the piecewise linear Morris
Lecar ~PML! model. Geometrically, our reduction i
sketched in Fig. 8.

FIG. 8. ~a! Nullclines of the Morris-Lecar model and~b! its
piecewise linear reduction to a single-threshold system. Param

in ~a! are V1521.2, V2518, V3512, V4517, ḡCa54.4, ḡK

58.0, ḡL52, VK5284, VL5260, VCa5120.
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2. Integral formulation of the PML

As for the PFN model, we introduce the two setsF and
R. The integral formulation of the PML is given by~Appen-
dix F!

v~ t !5 (
t fPF

h f~ t2t f !2 (
trPR

h r~ t2t r !1E
0

`

e~s!I ~ t2s!ds,

~25!

where

e~ t !5e2t/t

andh f , h r are given in Appendix F. Using the integral fo
mulation of the PML model~25!, an analysis similar to tha
for the PFN model can be performed. The kernele(t) is the
same as that of the IF model and hence, the PML neuro
termed leaky integrator. A simple description of the spikeh
is obtained in the limiting situationb→0. A fast phase given
by

h~ t !5mt~12e2t/t!

is followed by a slow phase

h~ t !5t~m2a!1ate2bt.

Note that our analysis concerns a particular reduction of
Morris-Lecar model for which the subthreshold regime ha
very simple dynamic. This special choice reveals a gr
similarity with one-dimensional IF models. We will demon
strate that this similarity also exists in the birth of oscill
tions.

3. Constant input and oscillations

Just as for the PFN equations, a change of variables
lows us to takem5t51. Without input current, we avoid an
additional fixed point in the superthreshold regime if

a.12q

and we still have the requirement on the threshold 0,q
,1. Depending on the input strength, different fixed poin
exist. As I increases, two nonsmooth saddle-node bifur
tions appear at

I 5q5I 1 ,

I 5I 11a215I 2 .

For I ,I 1, one may demonstrate that (I ,0) is a globally at-
tractive fixed point. Due to the stability of the fixed poin
~negative real eigenvalues of the Jacobian matrix! a fold
limit cycle bifurcation cannot occur since the trajectory ca
not spiral around it. In this regime, the qualitative effect o
constant input is to decrease the threshold value of the
lated system. ForI 1,I ,I 2, the system can be rewritten as
piecewise linear version of a Lie´nard equation for which a
limit cycle exists. The periodic solution is given by~Appen-
dix G!

ers
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PIECEWISE LINEAR DIFFERENTIAL EQUATIONS AND . . . PHYSICAL REVIEW E67, 021908 ~2003!
v`~ t !5 v̄`1h`~ t1z!2h`~ t2z!,

wherev̄`52z/T(12a)1I andh` is given in Appendix G.
By abuse of notation, we do not distinguish with the no
tions for the PFN and the PML model. The two unknow
T52x andz5y are solutions of the transcendental syste

I 2I 11F~x,y!50,

I 22I 1F~x,x2y!50,

monitored by the distance ofI to the two bifurcations points
I 1 and I 2. For I .I 2 the limit cycle disappears via a sadd
node on a limit cycle and the new fixed point (a212I ,a) is
globally attractive. Note that there is no bistable behav
~Fig. 9!.

The transition to repetitive firing is marked by arbitrari
low frequencies and the model presents a class-I excitab
More precisely, forI near the critical current the frequency
proportional to 1/lnuI2I* u (I * 5I 1 or I * 5I 2) as for the
integrate-and-fire model~Appendix G! ~see Fig. 10!. When
I 5I * the limit cycle has an infinite period, it is a sadd
node on a limit cycle bifurcation. The PML model present
noncanonicaltransition in the sense that the repetitive firin
does not follow the classicalAI 2I * law obtained in the
smooth case@33#. Note that the logarithmic law is obtaine
in smooth dynamical system when the limit cycle appears
a saddle loop@33#.

FIG. 9. Trajectory of the piecewise linear Morris-Lecar mod
for a constant current~a! I 50.4 and~b! I 50.6. Initial conditions
are (v0 ,w0)5(0.6,0) and parameters aret51, q50.5, m51,
b50.3, a52. In panel~a! the input current is below the saddle
node bifurcation (I ,I 1) and the resting state is globally attractiv
Panel~b! shows the onset of repetitive firing.
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IV. DISCUSSION

Two-dimensional differential equations are often seen a
useful compromise for a more realistic modeling of the ne
ronal activity; systems with less than two dimensions inc
porate some unrealistic reset behaviors and do not revea
the excitable properties of neurons. Higher-dimensional s
tems are difficult to analyze and often do not present sign
cant novel effects. Two-dimensional models of neuronal
tivity have been widely used and studied@6–10,12#. In this
paper, we present two-dimensional systems in the framew
of piecewise linear differential equations. Classically, pie
wise linear systems have been introduced as an idealiza
of smooth nonlinearities in order to analyze and to disc
aspects of neural dynamics@19,34,35#.

Alternatively, our equations may be introduced as a g
eralization of the leaky integrate-and-fire model with the a
to define the simplest nonlinear dynamics. The relation
tween the standard IF model and the two-dimensional m
els is clearly illustrated by introducing a one-dimensional
model with a spike description~IFS!

dv~ t !

dt
52

v~ t !

t
1mh@v~ t !2q#1I e~ t !, ~26!

where the positive constantm drives the spike towards a
stable fixed pointvs5t2m@q. This equation is formally
equivalent to thev dynamics in Eqs.~13! and ~22! of two-
dimensional models. However, instead of a smooth recov
process via the dynamics of a recovery variablew, we simply
define a reset process when the potential reaches a g
superthreshold valueqpeak, that is,

v~ t !5qpeak⇒v~ t1!5v r , ~27!

whereq,qpeak,vs . Models~26! and~27! is a natural gen-
eralization of the standard IF model; the subthreshold and
superthreshold dynamics are both described byRC circuits
~for simplicity, we keep the same relaxation constant in
subthreshold and superthreshold regime!. The superthreshold
regime has an intrinsic drift monitored bym and a reset
condition control byqpeak. We could, for example, relate th

l

FIG. 10. Frequencyn(I ) of repetitive firing as a function of
current for the~class-I! piecewise linear Morris-Lecar model. Th
dashed line shows the logarithmic law near the first critical curr
I 1 ; n(I );21/b ln(I2I1). Parameters aret51, m51, q51, b
50.5, anda52. Hence, the value of the two critical currents
I 151 andI 252, respectively.
8-9
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A. TONNELIER AND W. GERSTNER PHYSICAL REVIEW E67, 021908 ~2003!
superthreshold driftm to the sodium current of the Hodgkin
Huxley model andvs to the sodium equilibrium potential. In
Appendix H1, we give the integral representation of the I
model and emphasize the differences with the standard
model. We present in Fig. 11 the time course of the I
model for the same input as in Fig. 1. In the same Appen
we also show that our two-dimensional piecewise lin
models have, in the limit of a slow recoveryb→0, a fast
regime with nearly identical kernels as the IFS models.

Another point of view is to consider neurons as ‘‘bim
dal’’ systems defined by two different linear behaviors, i.
subthreshold and superthreshold dynamics. The main
sumption for this modeling is to consider neurons to oper
in two modes with a transition from one mode to the oth
that is taken as instantaneous. In other words, the time s
of the transition is much smaller than the scale of the dyna
ics of individual modes.

The geometrical treatment of low-dimensional models
lows to see more clearly the underlying qualitative struct
of models @12#. However, a deep understanding needs
addition of some analytic methods or analytic descriptions
solutions. Our approach provides an exact corresponde
with the integral representation of neuronal activity given

v~ t !5 (
t fPF

h f~ t2t f !2 (
trPR

h r~ t2t r !1E
0

`

e~s!I ~ t2s!ds,

~28!

where the kernelsh f , h r , ande characterize the spike pro
cess and the spike generation. The setsF andR describe the
transitions between the two regimes of the neuron. Note
Eq. ~28! can be introduced independently as a model for
neuronal activity assuming that~i! neurons behave as thres
old elements that fire when the voltage membrane reach
threshold,~ii ! the spike has an invariant shape, and~iii ! the
subthreshold part of the dynamics is well approximated b
linear evolution.

It is obvious that Eq.~28! presents an analogy with th
standard form of the spike-response-model

v~ t !5h~ t2 t̂ f !1E
0

`

e~s!I ~ t2s!ds, ~29!

FIG. 11. Voltagev(t) of the integrate-and-fire model with
spike-description driven by the input currentI (t) shown in Fig.
1~a!. Parameters in the subthreshold regime are the same as F
and for the superthreshold regime parameters aret251, qpeak

510, andm530.
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where t̂ f is the most recent firing time. However, some r
ductions or approximations have to be made in order to
rive Eq. ~29! from Eq. ~28!. Basically, these transformation
follow two steps:~i! reduction of the twoh summations into
one and~ii ! reduction of the single summation into a sing
term. One possible approach is to assume a constant s
durationd5t f2t r , wheret f andt r are two related firing and
reset time andd.0 satisfiesh(d)5q. This approximation
is useful if we assume that the input is shunted in the sup
threshold regime. In this case, the effective current is giv
by

I e~ t !5rF ~ t !I ~ t !, ~30!

whererF is the cutoff function

rF~ t !512 (
t fPF

x [ t f ,t f1d]~ t !.

Since the reset timet r is directly obtained from the firing
time t f , the two summations are reduced into one summa
of h̃(t)5h f(t)2h r(t2d). Usually h̃(t) has an exponentia
decay so that we approximate the single summation by
most recent term and we obtain Eq.~29!.

It has been shown that Eq.~29! provides an accurate de
scription of some conductance-based models@36#. Here, we
have shown that the integral representation~28! can be ob-
tained analytically from two-variable simplifications of de
tailed conductance-based models. These simplifications
the piecewise linear versions of the FitzHugh-Nagum
model and the Morris-Lecar model. Based on this formu
tion, we have shown that integrator models have a typ
kernel given by

e~ t !5e2t/t.

Popular examples are the integrate-and-fire model and
piecewise linear version of the class-I Morris-Lecar mod
Resonator models with damped oscillations have a ke
given by

e~ t !5e2t/tcosvt.

A typical example is the FitzHugh-Nagumo model. There
also an interesting relation to resonate-and-fire models@26#.
In addition, the superthreshold process is described by
kernelh. Like the kernele, this kernel presents to qualita
tively different shapes which yield two different laws for th
frequency of the emerging oscillations. A kernelh without
damped oscillation yields an emerging frequency prop
tional to 1/u ln(I2I* )u, where I * is the value of the critical
current. This case is refered as class-I neural excitability.
a kernelh with damped oscillations, the model has a class
neural excitability and presents a nontrivial emerging f
quency. The mathematical analysis of class II yields n
trivial conditions for the existence of oscillations, while o
cillations in class-I models are easily described from
analysis of the saddle-node bifurcation.

. 1
8-10
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APPENDIX A: THE INTEGRAL FORMULATION OF THE
PFN MODEL

Let us recall the PFN equations

dv~ t !

dt
52

v~ t !

t
1mh@v~ t !2q#2w~ t !1I ~ t !,

~A1!
dw~ t !

dt
5b@v~ t !2gw~ t !#.

For convenience, we writeI rather thanI e . We start by trans-
forming ~A1! into a linear nonautonomous differential equ
tion using

h@v~ t !2q#5 (
t fPF

h~ t2t f !2 (
trPR

h~ t2t r !, ~A2!

and thus,~A1! can be solve using classical integral transfo
methods. Note that~A2! holds for noncontinuous threshol
crossing. As an initial condition, we take„v(0),w(0)…
5(0,0). Applying the Laplace transform

L~v !~p!5E
0

`

e2psv~s!ds,

yields

pL~v !~p!52
1

t
L~v !~p!1

m

p (
t fPF

e2ptf2
m

p (
trPR

e2ptr

2L~w!~p!1L~ I !~p!,

pL~w!~p!5b@L~v !~p!2gL~w!~p!#.

Thus, we obtain

L~v !~p!5
m~p1bg!

pFp21S bg1
1

t D p1bS 11
g

t D G
3S (

t fPF
e2ptf2 (

trPR
e2ptr D

1
p1bg

p21S bg1
1

t D p1bS 11
g

t DL~ I !~p!.

We define

2s5
1

t
1gb,
02190
le
4D5S 1

t
2bg D 2

24b.

We do not investigate the caseD50, which yields distinct
calculations but does not present a particular interest. Us
inverse Laplace transform, the following properties:

L 21@F~p!e2pti#~ t !5L 21@F~p!#~ t !h~ t2t i !,

L 21~FG!5L 21~F !* L 21~G!,

and the formula~for r 1Þr 2)

L 21S 1

~p2r 1!~p2r 2! D ~ t !5
1

r 12r 2
~er 1t2er 2t!,

L 21S 1

p~p2r 1!~p2r 2! D ~ t !5
1

r 1r 2
1

er 1t

r 1~r 12r 2!

1
er 2t

r 2~r 12r 2!
,

we calculate

v~ t !5 (
t fPF

h~ t2t f !2 (
trPR

h~ t2t r !1E
0

`

e~s!I ~ t2s!ds,

where

h~ t !5
gmt

t1g
1me2stF 1

AD
S 12

sgt

t1g D sinhADt

2
gt

t1g
coshADtG ~A3!

for t.0 and 0 otherwise. The convolution part of the activ
is described by the kernel

e~ t !5e2stS coshADt1
1

AD
~bg2s!sinhADt D

for t.0 and 0 otherwise, where the parameterAD varies in
the complex plane. Depending on the sign ofD @related to
the stability of the resting state (0,0)], we obtain hyperbo
or trigonometric functions. Note thatgmt/(t1g) represents
the possible fixed point in the superthreshold regime.

APPENDIX B: THE PFN MODEL WITH CONSTANT
INPUT

For I ,I 2, we define

v05
gI

11g
,

w05
I

11g
,

8-11
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which is a stable fixed point of the PFN model~as long as
I ,I 2). We consider the change of variablesṽ5v2v0 and
w̃5w2w0. Then the PFN equations rewrite

dṽ~ t !

dt
52 ṽ1h~ ṽ1v02q!2w̃,

dw̃~ t !

dt
5b~ ṽ2gw̃!.

Introducing the new thresholdq̃5q2v0, we find the iso-
lated PFN system. Note that we still have a positive thre
old valueq̃.0.

For I .I 2, we note

v15g
I 11

11g
,

w15
I 11

11g
,

and we consider the change of variablesṽ5v12v and w̃
5w12w. Usingh(x)512h(2x), we have

dṽ~ t !

dt
52 ṽ1h~q1 ṽ2v1!2w̃,

dw̃~ t !

dt
5b~ ṽ2gw̃!,

and consideringq̃5v12q, we find the isolated PFN sys
tem.

APPENDIX C: PERIODIC SOLUTIONS OF THE PFN
MODEL

We consider the spike solution in the leaky resonator c
~the leaky integrator neuron can only emit a single spike!

v~ t !5 (
t fPF

h~ t2t f !2 (
trPR

h~ t2t r !1q0e~ t !.

We are interested on periodic solutions and, therefore, we
not consider the transient regime monitored byq0. A peri-
odic solution is obtained as the limit of the spike solution
an infinite number of regular interspike intervals, whi
reads

v`~ t !5 lim
n→`

(
k52n

n

h~ t2kT1z!2h~ t2kT2z!,

where we use the notations previously introduced. We n
@see Eq.~A3!#

h~ t !5
g

11g
h~ t !1h̃~ t !,
02190
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and formal calculations lead to

v`~ t !5
g

11g (
k52`

`

h~ t2kT1z!2h~ t2kT2z!

1 (
k52`

`

h̃~ t2kT1z!2h̃~ t2kT2z!, ~C1!

that we write

v`~ t !5v`
a ~ t !1v`

b ~ t !.

The first termv`
a (t) reads

v`
a ~ t !5( SkTx [ 2z,z]~ t !,

wherex is the indicatrix function andS the shift operator.
This is aT-periodic function such that

v`
a ~ t !5

g

11g
x [ 2z,z]~ t ! on @2T/2,T/2#,

which has a Fourier series expansion given by

v`
a ~ t !5 v̄`1

g

11g (
kÞ0

e2ipkz2e22ipkz

2ipk
e2ipkt/T ,

where we notev̄`52zg/@T(11g)#. We haveh̃PL1(R)
and then the Poisson formula gives

v`
b ~ t !5

1

T (
k52`

1`

ĥ̃~k/T!~e2ipkt1z/T2e2ipk t2z/T!.

From Eq. ~A3! ~written with trigonometric functions since
D,0), we calculate

ĥ̃~j !5S 12
sg

11g D 1

24p2j212ip~11bg!j1b~11g!

2
g

2~11g!

11gb14ipj

24p2j212ip~11bg!j1b~11g!
,

and then we rearrangev`
a andv`

b into

v`~ t !5 v̄`1h`~ t1z!2h`~ t2z!, ~C2!

whereh` has a Fourier series expansion

h`~ t !5(
n

h`,ke
2ipkt/T,

such that
8-12
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h`,k5
1

T

bg1
2ipk

T

2ipk

T F2
4p2k2

T2
1

2ipk

T
~11bg!1b~11g!G .

~C3!

Note that the Fourier coefficient ofv` is given by

v`,k5h`,k~e2ipkz/T2e22ipkz/T!.

Alternatively, one can find this result using the Fourier ser
transform on the differential formulation of the PFN. Now l
us analytically derive the expression ofh`(t). Starting from
~C3!, we split the fraction into simple elements and we u
the two formula

(
k

eikt

k2 ic
5

ip

sinh~pc!
ec(p2t) for tP@0,2p#,

with cPR* and

(
k.0

1

k
sinkt5

1

2
~p2t ! for t P@0,2p#.

We obtain~details not shown!

h`~ t !5
g

11g S 1

2
2

t

TD
1

1

2r ~coshsT2cosrT !
$e2st@c1sinr ~T2t !

2c2cosr ~T2t !#1es(T2t)@c1sinrt 1c2cosrt #%

for tP@0,T#, where r 5A2D, c1511sg/(11g) and c2
5rg/(11g). Functionh`(t) is defined onR by periodicity.
Conversely, by construction the solution given by Eq.~C2! is
a periodic solution of PFN.

Note that our analysis captures periodic solutions t
crossv5q two times~over one period!. Periodic solutions
that remain on the line of discontinuity over a nonempty tim
interval are sliding motion solutions@20# and are not charac
terized by our analysis~because of the definition oft f and
t r). In our system, periodic solutions with sliding motion
are unstable and appear with a bigger stable periodic solu
without a sliding motion. Therefore, stable solutions are s
detected by our analysis.

APPENDIX D: EXISTENCE OF PERIODIC SOLUTIONS
OF THE PFN EQUATIONS

We notex5T/2 andy5z. The existence of periodic so
lutions is related to the existence ofx andy such that

v`~y!5q,

v`~2y!5q,

which reads
02190
s

e

t

on
ll

h`~2y!2h`~0!1
gy

~11g!x
2q50,

~D1!

h`~0!2h`~22y!1
gy

~11g!x
2q50.

From h`(22y)5h`@2(x2y)#, we write ~D1! as

F~x,y!5q2
gy

~11g!x
,

F~x,x2y!52q1
gy

~11g!x
,

whereF(x,y)5h`(2y)2h`(0).

APPENDIX E: THE MORRIS-LECAR MODEL

The differential equations are

C
dv
dt

5ḡCam`~v !~vCa2v !1ḡKw~vK2v !1ḡL~vL2v !1I ,

dw

dt
5e

w`~v !2w

tw~v !
,

where thev-dependent functions are

m`~v !5
1

2 S 11tanh
v2v1

v2
D ,

w`~v !5
1

2 S 11tanh
v2v3

v4
D ,

and

t`~v !5
1

cosh
v2v3

2v4

.

APPENDIX F: THE INTEGRAL FORMULATION OF THE
PML MODEL

As for the PFN model, we transform the PML equatio
into a nonautonomous linear differential system. Applyi
the Laplace transform, we find

pL~v !~p!52
L~v !~p!

t
1

m

p S (
t fPF

e2ptf2 (
trPR

e2ptr D
1L~ I !~p!,

pL~w!~p!52bL~w!~p!1
ab

p S (
t fPF

e2ptf2 (
trPR

e2ptr D .

We obtain
8-13
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L~v !~p!5
mp1b~m2a!

p~p1b!~p1t21! S (
t fPF

e2ptf2 (
trPR

e2ptr D
1

1

p1t21
L~ I !~p!.

Using inverse Laplace transform, we have

v~ t !5 (
t fPF

h~ t2t f !2 (
trPR

h~ t2t r !1E
0

`

e~s!I ~ t2s!ds,

~F1!

where

h~ t !5t~m2a!1S abt2

bt21
2mt De2t/t2

at

bt21
e2bt,

e~ t !5e2t/t.

Note that we do not consider the special caseb51/t.

APPENDIX G: THE PERIODIC SOLUTION OF THE PML
EQUATIONS

Techniques are similar to those described for the P
model and we summarize the main steps. Applying Fou
series on the differential formulation of the PML or, equiv
lently, the Poisson formula on the integral expression of
PML, we find

v`~ t !5 v̄`1h`~ t1z!2h`~ t2z!,

where

v̄`5
2z

T
~12a!1I ,

h`,n5
bT~12a!12ipn

2ipTnS b2
4p2n2

T2
1

2ipn

T
~11b!D ,

and therefore,

v`,n5h`,n~e2ipnz/T2e22ipnz/T!

and

v`,05 v̄` .

We calculate

h`~ t !5~12a!S 1

2
2

t

TD1
b~a21!11

b21

e2t

12e2T

2
a

b21

e2bt

12e2bT
02190
N
r

e

for 0<t<T and h`(t) is defined onR by periodicity. The
periodic solutions are related to the existence ofT andz that
satisfy

v`~z!5v`~2z!5q

and we obtain a system of two transcendental equations

I 2I 11F~x,y!50, ~G1!

I 22I 1F~x,x2y!50, ~G2!

wherex5T/2, y5z, and

F~x,y!5
b~a21!11

12b

12e22y

12e22x
1

a

b21

12e22by

12e22bx
.

ParametersI 1 , I 2 are related to the two saddle-node bifurc
tions. Note that there is no periodic solutions with a slidi
motion since a periodic trajectory cannot meet tangentia
the line of discontinuity.

For I 2I 1 ~or I 22I ) a small positive constant, one expec
to find a large period value~since we are close to the saddl
node bifurcation!. For x@1, we defineu5e22x if b.1 or
u5e22bx if b,1. As u→0, we have

F~x,y!5c1~12e22y!1c2~12e22by!1O~u!, ~G3!

where c15@11b(a21)#/(12b) and c25a/(b21). As-
suming that the periodic solution spends a constant time
the superthreshold regime, that is,y5y01O(u), we have

F~x,x2y!5c11c21O~u!

andy0 is given canceling the right-hand side of Eq.~G3!. We
have c11c2512a and usingI 25I 11a21, the require-
ment ~G2! leads to the necessary conditionI 2I 15O(u),
that is, I is near the first-saddle-node bifurcation. The oth
situation (I close toI 2) is obtained assuming that the dur
tion of the superthreshold regimey and the periodx have the
same order, that is,x2y5y01O(u).

For I 2I 15O(u), we find

I 2I 15ku, ~G4!

wherek is a constant obtained canceling the leading or
expansion ofF. Usingu5e2T ~for b.1), we find

T;2 ln~ I 2I 1!.

Note that the symmetrical situation (I close toI 2) leads to a
similar logarithmic law. Whenb,1, we have

T;2
1

b
ln~ I 2I 1!.

APPENDIX H: THE INTEGRATE-AND-FIRE MODEL
WITH A SPIKE DESCRIPTION

1. Integral formulation of the IFS

The IFS model with the same relaxation time in the su
threshold and superthreshold regime is given by

dv~ t !

dt
52

v~ t !

t
1mh@v~ t !2q#1I e~ t !,
8-14
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v~ t !5qpeak⇒v~ t1!5v r .

Note that the threshold process can be generalized to
continuous threshold crossings. First, we introduce the r
conditions as reset currents

dv~ t !

dt
52

v~ t !

t
1mh@v~ t !2q#2~qpeak2v r !

3 (
trPR

d~ t2t r !1I e~ t !. ~H1!

Using the definition oft f and t r , we have

h@v~ t !2q#5 (
t fPF

h~ t2t f !2 (
trPR

h~ t2t r !, ~H2!

where we assume that each firing timet f is related to a rese
time t r . In other words, the return to the subthreshold regi
is not due to the currentI e(t). This assumption holds whe
c2 is small orm is large.

Using ~H2!, we transform~H1! into a linear nonautono
mous differential equation

dv~ t !

dt
52

v~ t !

t
1m (

t fPF
h~ t2t f !2m (

trPR
h~ t2t r !

2~qpeak2v r ! (
trPR

d~ t2t r !1I e~ t !.

As an initial condition, we takev(0)50. The integration
yields

v~ t !5m (
t fPF

E
0

`

h~ t2t f2s!e2s/tds2m

3 (
trPR

E
0

`

h~ t2t r2s!e2s/tds2~qpeak2v r !

3 (
trPR

E
0

`

d~ t2t r2s!e2s/tds

1E
0

`

e2s/tI e~ t2s!ds,

which gives
.

n

02190
n-
et

e

v~ t !5mt (
t fPF

~12e2(t2t f )/t!2mt (
trPR

~12e2(t2tr )/t!

2~qpeak2v r ! (
trPR

e2(t2tr )/t1E
0

`

e2s/tI e~ t2s!ds.

We thus obtain

v~ t !5 (
t fPF

h f~ t2t f !2 (
trPR

h r~ t2t r !1E
0

`

e~s!I ~ t2s!ds,

where fort>0,

h f~ t !5mt~12e2t/t!,

h r~ t !5~qpeak2v r !e
2t/t1mt~12e2 t/t!, ~H3!

e~ t !5e2t/t,

and 0 otherwise. Just as for the standard IF model, the
model has a resetting kernel,h r(t2t r), related to the rese
process. However, the IFS model provides an explicit fo
of the action potential,h f(t2t f), whereas in Eq.~7! action
potentials where reduced to a point in time.

2. Relations with the two-dimensional models

The relations between the IFS model and the tw
dimensional models are simply illustrated considering a s
recovery process, i.e., small values ofb, in Eqs. ~12! and
~21!. Using the integral formulation of the PFN or PM
models, we calculate the leading order expansion of the
kernels

h0~ t !5mt~12e2t/t!,
~H4!

e0~ t !5e2t/t.

The zero order approximation reveals the similarity with t
expressions of the IFS kernels@see Eq.~H3!#. Unfortunately,
the zero-order terms are not sufficient to account for rec
ery in the two-dimensional systems. Whentb is O(1) order,
expansion~H4! becomes nonuniform and we have to co
sider the different termstb in the expansion ofh. We enter
in a new phase where the smooth recovery process oper
l
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