Piecewise linear digital curve representation
and compression using graph theory and a line

segment alphabet

Andras Hajdu*, and loannis PitaSenior Member, |IEEE
Department of Informatics
Aristotle University of Thessaloniki
Box 451, 54124 Thessaloniki, Greece
Tel: +30-231-099-6361
Fax: +30-231-099-8453
e-mail: {hajdua, pitas@aiia.csd.auth.gr}

Abstract

The use of an alphabet of line segments to compose a curveassibfe approach for curve data
compression. Many approaches are developed with the dckwthat they can process simple curves
only. Curves having more sophisticated topology with sskrsections can be handled by methods
considering recursive decomposition of the canvas coingithe curve. In this paper, we propose a
graph theory based algorithm for tracing the curve diretlgliminate the decomposition needs. This
approach obviously improves the compression performaagdonger line segments can be used. We
tune our method further by selecting optimal turns at juriduring tracing the curve. We assign a
polygon approximation to the curve which consists of lsteming from an alphabet of line segments.
We also discuss how other application fields can take adgantd the provided curve description

scheme.

Index Terms

curve compression, Euler graph, Chinese Postman probletimal curve tracing, curve partition-

ing.

EDICS Category: COD-LSYI, MOD-MRPH

October 26, 2007 DRAFT

1

Piecewise linear digital curve representation
and compression using graph theory and a line

segment alphabet

. INTRODUCTION

Digital planar curves are used in several fields of computaplgcs, discrete geometry and
digital image analysis. Many results have been produceatdary their geometric behavior since
[1]. A special topic is digital curve compression. Besidese techniques like chain coding, a
usual way is to partition the curve into straight line segtag®] for compression. These methods
usually focus on simple curves with no self-intersecti@rs] assume the preliminary knowledge
on the sequential order of the curve points. The state-@fath approach JBEAM [3] considers
an alphabet of short line segments (called beamlets) to asenthe curve. This method divides
the binary image containing the curve using quadtree deositipn till having asingle linear
curve segment in every quadtree cell that can be substibytedbeamlet. The advantage of this
approach is that any curve can be handled by sufficiently firzeltjee decomposition. However,
a drawback is the obligation of decomposing subsequentigrva cell contains such segments
that already could be coded separately.

In this paper, we propose a graph theoretical approachde tnarves having arbitrary topology
to obtain better compression performance, when splitigdurve into straight line segments.
Because of the tracing step, the proposed method has bettgiression performance than
JBEAM [3]. The main improvement lies in the fact that we pemfoa complete tracing of the
curve instead of decomposing its storing canvas recuysivélile only line segments remain in
the quadtree cells.

The structure of this paper is as follows. In section Il weatkihe graph theoretical background
that serves as a basis for our approach in tracing curvesldtfeegplain how the suitable graph
representation of the digital curve is obtained. Sectibalékcribes how the tracing is optimized
regarding coding the curve with straight line segments. ie¢hod selected for compression is

presented in section IV. Section V contains our comparativayses with other state-of-the-art

October 26, 2007 DRAFT

approaches. We explain some variants of the basic approaskdtion VI with highlighting
their advantages and drawbacks. Finally, some open issubsther possible applications are

discussed in section VII.

[I. TRACING CURVES USING GRAPH THEORY

In this section we recall some notions and results of graghcamve theory that we apply to
trace a curve and also some techniques that were consideutain the corresponding graph

representation of the curve.

A. Graph theoretical background

A graph G is defined as a paifV, £), whereV is a set ofverticesand E C V x V =
{{u,v} | u,v € V} is a set ofedgesbetween the vertices. As we use graph representations
of curves, we focus omndirectedgraphs, sovu,v € V : {u,v} = {v,u} holds. To cover a
wide class of curves, we allowoops (edges of type{u,«}) and multiple edges (more edges
between two vertices). Théegreeof a vertex is the number of edges containing the vertex. A
pathis a list of vertices{uy,us, ..., u,} having edges between any two consecutive vertices:
{uy, uo}, {ug, ugt, ..., {un_1,u,}, with uy = w, in the case of aroute (closed path).G is
connectedif any two of its vertices have a path connecting them. A patlough G which
includes every edge exactly once is calledEauier path(or an Euler routeif the start and end
vertices coincide) [4], [5]. Note that any Euler route iscaén Euler pathG is an Euler graph
if it contains an Euler path through all of its edges. Boler decompositiomf G has the form
G = Lnj G; such that all the&7;’s are disjoint Euler graphs (in the sense that they cannotago
the slgrlne edge). We recall some well-known facts on Eulerhgrapd their decomposition (see
e.g. [6], [7]):

i) Every Euler graph is connected.

ii) A connected graph contains an Euler route iff all of itstiees have even degree. The route can
start from any vertex.

iif) A connected graph contains an Euler path iff at most twat® vertices have odd degree. If
there are two vertices with odd degree, the path starts fithareof them and ends in the other.

iv) Every connected graph has an Euler decomposition irgoidit Euler graphs.

October 26, 2007 DRAFT

B. Assignment of a graph to a digital curve

The definition of simple curves in the Euclidean space wasrglwy P. Urysohn in 1923 and
K. Menger in 1932 independently (see [8] for a review). Thevea were classified based on the
branching indeces of the curve points, where a branchingximd a curve point is equal to the
number of curve segments meeting at the given point. Theuadegnathematical formulation
for the Euclidean space can be found in [8], [9]. For the @iscdomainZ?, this definition can
also be adapted using the well-known 8-neighboring refatdore precisely (see [8], [9]):

. a digital curveC has branching indexB(p) > 0 at its pointp € C iff exactly B(p)

8-neighbors ofp belong toC,

« p € (Cis aregular point iffB(p) = 2

. p € C'is a branch point iffB(p) > 3,

« p€ Cis an end point iffB(p) =1,

. the 2D digital curveC' is simple iff all of its points are regular.

To make graph theoretical algorithms be applicable to aigitirves, we also need a precise
concept for a junction (see [8], [9]):

. an 8-connected region of branch points is called a junctidre branching index of a
junction J C C'is the number of regular or end points 6f being 8-neighbors of any of
the branch points of.

We mention here that this classic approach for defining thetjons of digital curves might
be restrictive in some applications, which issue will becdgsed in section VII. Using all the
above definitions, we are ready to assign an abstract cuaghdgp a curve (see [9]):

. the abstract curve graptic = (V¢, E¢) of the curveC is an undirected graph, where the
vertices inV, are either junctions or end points 6f. Two vertices are connected by an
edge iff the corresponding junctions or end points are 8ieoted. Thus, the degree of a
vertex is just the branching index of the corresponding tionc

As for the technical details of the extraction of an abst@gctwe graph, we consider 1 pixel
wide curves. If the input curve is not 1 pixel wide, we can gpplpreliminary thinning step on
it. To determine the edge séi-, we locate the end points of the edges as regular points being
8-neighbors to junctions (if both of their 8-neighbors arartth points, the edge is degenerated

having length 1). Then, the edge end points are organizegaits (edges) based on the condition

October 26, 2007 DRAFT

that an 8-connected path can be found between them whosergkeare regular points. Figure
la depicts the result of locating end points and junctiohews framed, in light gray), while
1b take a closer look for the selection of edge end pointk(deay), and for the edges defined

by them. These figures also indicate the branching indicéeeoturve points.

|

N
=)
W
EN
9]
9]

FNENES
XN
[5]
[5]
[5]

|

(@) (b)

v S0

Fig. 1. Locating vertices and extracting the edges for the abstract guapd G = (Vo, Ec). (a) Input test planar curv€
with its end points and junctions to compoBe are framed. (b) Extracting edges féic via locating edge end points (dark

grey) and connecting them with 8-paths.

Note that loops and multiple edges are also handled by tipsoaph without any difficulties.
To find the 8-paths between edge end points we can use thesikecttoodfill8 algorithm [10]
starting from the edge end points. The simplified abstractecgraph representation of the curve
in Figure la is shown in Figure 2. The vertex indices are assign the order of the vertex
scanning procedure in the figure.

Now we are ready to summarize our main approach in the fatigwgurve tracing (CT)

algorithm:

CT algorithm

1) Extract the abstract curve gragh- = (V¢, E¢) of the curveC.
2) Create an Euler decompositiqrj C; of C' based onG¢.

=1
3) Trace all theC);’s separately through their Euler paths.

October 26, 2007 DRAFT

Fig. 2. The simplified abstract curve graph of the curve shown in Fifjareith vertices of odd degree framed.

[11. OPTIMIZED TRACING FOR COMPRESSION

The first step to trace an Euler curve is to locate a startimgexeccording to statemeit)
in section II-A. We check the vertices and select one havitd degree. If all the degrees are
even, we can choose an arbitrary vertex to start from. Themake an edge from the starting
vertex to initialize the tracer. For example, in the grapbvah in Figure 2 two vertices (1, and
10) have odd degrees. Thus, the Euler path should start festexv1 to finish at vertex 10, or
vice versa.

As more Euler paths may exist, we have to decide which edgeke next, when reaching
junctions. As our intention is to substitute the curve paithvgtraight line segments for curve
compression, the natural decision is to go on straight ala¢gdnctions. Thus, let us assume
that we arrive at an edge end poifi§ at a junction that has edge end poitdg F1, . .., Ex not

visited yet. We calculate the centroid of the junction by:

k
— 1

E can be rounded to have integer coordinates, or consideredraal valued vector, as well.
Let «; denote the angle’E,EFE; for i = 1,...,k. The curve traversal direction is chosen to

correspond to the edge end poifit for which:

k
1180° — | = mi{l{|180° — a4} 2)
‘7:

October 26, 2007 DRAFT

To extract a path betweeh, and £, we can use the Floodfill8 algorithm again. Now, we have
to start Floodfill8 fromE), to flood the vertex points of the junction with selecting tratpwith
minimal length. See Figure 3 for an example on how the datigomade to trace through a

junction based on the above discussion. The selected patiagth the junction containgy, F,

and E, and indicated byx marks in the figure.

£ A
hETE
] ;

=>

Fig. 3. Optimal curve tracing through a junction with finding the most straitifeiction and connecting corresponding edge

end points.

Using this junction traversal decision, we are able to ttheewhole curve along one of its
Euler paths. The traced curve is composed by concatendtengdges with the short segment
going through the vertices. For the complete tracing seerEig¢, where beside the start and
end point of the Euler path, arrow heads show the optimalctaes at the curve junctions.

Borrowing the vertex numbering from Figure 2, the Euler path i
{1,4,5,2,4,8,13,11,7,5,2,3,6,7,9,13,12,6,3,12,11,9,8,10}.

During the extraction of an Euler path, we have to note thatane not always free in
choosing the most straight direction at junctions. Fleurglgorithm [12] guarantees to find
an Euler path, and we have to combine our junction traversghod with the classic graph
theoretical recommendations (see e.g. [12], [13]), whiehlaiefly:

e Always leave one edge available to get back to the startingxe@r to the other odd vertex.
e Do not use an edge to go to a vertex unless there is anotherasddable to leave it.
Note that the graph theoretical recommendations have higherity than optimal traversal

selection to guarantee the proper Euler path.

October 26, 2007 DRAFT

Start

End

Fig. 4. Tracing the whole curve by choosing optimal directions at junctions

IV. CURVE COMPRESSION BY AN ALPHABET OF LINE SEGMENTS

We can choose from a vast number of techniques to partitionreecinto digital straight
line segments [2]. These techniques can be classifiemffiage (the curve is examined globally
to find an optimal partitioning), oonline (the curve is decomposed into line segments during
its traversal). Though our proposed approach is suitablddoh tasks, we discuss an online
coding possibility here. To partition the curve into digisraight segments we use a linear
online method presented in [14].

To obtain a coding scheme from the straight line decommusitive replace all the produced
linear curve segments by elements of an alphabet of line eetgn\We create a finite alphabet
whose letters are digital line segments of all possiblentaions having length at mo$t pixels.
As an obvious consequence, we have to stop processing tiie winen the maximal segment
length 7" is reached and we have to look for the next segment, even itdded one would
continue straight. Moreover, to keep the cardinality /ofsmall, we consider unique straight
line segments to connect two points. For this purpose, weidenthe Bresenham line drawing
algorithm [15] to create the letters df. Note that this way we allow some information loss,
since the Bresenham segments may slightly differ from thes angracted during the online
curve segmentation process. On the other hand, theseediffes are really minor perceptually,

since digital straightness is our essential requiremerns. ¢asy to prove that the cardinality of

October 26, 2007 DRAFT

A, and the number of bits needed for coding a letter can be lesédclias:
Al =4T(T — 1), and log, |A] < 2(log, T+ 1), 3)

respectively. As an example for such an alphabet see Figtoe B = 6 with the letters shown
only for the domaind < y < z. Thus, the alphabet also contains the letters obtained fhem
shown set by rotations af°, +90°, 180°, and by mirrorings to the lines =0, y =0, y = z,

andy = —x, respectively.

Fig. 5. An example alphabet for T = 6 (line segments of length at most 6). Only the letters belonging to the domain

0 <y < x are depicted.

To check the compression efficiency of our method in comparisith other state-of-the-art
methods, we considered a dataset of typical test curvesrsiowigure 6a-d. To demonstrate
the extendability of our method to such curves that canndtdversed with a simple Euler path,
we consider another example shown in Figure 6e.

Note that the graph representation of Figure 6e containe Wettices having odd parities.
Consequently, it should be decomposed at least into two Epaltrs. In our example, starting
from any of the odd vertices and judging by the linearityenid at the junctions, we decompose
the original curve into the two segments shown in Figure Gf &igure 6g, respectively. To

compress the original curve, we compress these Euler pafizsately.

V. COMPARATIVE ANALYSES
A. Comparing with JBEAM
To test and compare the compression efficiency of our methedjxed the following setup.

We used!’ = 32 as a threshold for the maximum line segment length for alktéise curves, and

October 26, 2007 DRAFT

B X = U

@) (b) (© (d)

(e) ® (@
Fig. 6. Test curves of different types. (a) General. (b) LinesSmjng. (d) Script. (€) Non-Euler. (f)-(g) Euler paths to compose

the Non-Euler curve.

considered the default lossy JBEAM parametrization [3]. &perimental results are shown in
Table 1.

Proposed method (CT)
Test curve| # of pixels | JBEAM (# of bits) -
of bits # of segments|
General 2127 1586 744 62
Lines 2745 1398 468 39
Spring 4113 2308 1224 102
Script 2511 1419 828 69
Non-Euler 1242 834 2 x 240 = 480 2 x 20 =40
TABLE |

COMPARATIVE QUANTITATIVE RESULTS AGAINST JBEAM.

We can conclude that the proposed method has/aifprovement on average in compression
against JBEAM. Figure 7 depicts the coding results for ouramurves. We marked the end
points of the line segments found by our coding method. Ferdhke of completeness, we

mention that the coordinates of the starting point of evameEpath should be stored, as well.

October 26, 2007 DRAFT

10

However, we ignored this issue in our calculations, sinqgeaduces only insignificant increase

in the number of bits of the compressed curve.

& 25 B G

@) (b) (© (d) (e)

Fig. 7. The patrtitioning of the test curves into line segments. (a) Genbjalirfes. (c) Spring. (d) Script. (e) Non-Euler.

B. MPEG-4 contour-based shape coding

Within MPEG-4, a vertex-based shape approximation wasldpegd to code the outline of
shapes [16]. For image/video transmission, the usual tasto itransmit region-like shapes,
thus, their boundaries can be represented by simple closegss In MPEG-4, the boundary
of the shape is approximated by a polygon for lossy shapengodior lossless shape coding,
the polygon approximation degenerates to chain coding. [Ifi¢ polygon is found through a
recursive splitting process that starts with the longest éiameter) of the shape as an initial
polygon V,V;. A polygon segment/, V.., is associated with the curve paft, composed by
the pointsc;; with 0 <17 < I. The approximation error at’;, is defined as:

dmax(/f) = 0H<1?<X1 d(VkaHy Ck,z’) (4)

using the Euclidean distande Now, if dmax(k) > dmax for a fixed thresholdlf,gx thency ; is

selected as a new polygon vertex, Whe(®), V.1, ¢ ;) = nax d(ViViey1, cxs). In other words,

we recursively split those polygon segments which argfnfﬁtciﬂntly close to the curve. The
boundary point having largest distance from the polygonrssy is selected as a new vertex.
For better coding performance, we shift the polygon vestittere-index them so that the first
and last vertices have largest difference between theizdwtal or vertical coordinates. After

storing the position of/,, each remaining vertex position is encoded by a differemmtor from

October 26, 2007 DRAFT

11

] # of segments # of hits # of bits with Huffmann coding
Test curve| # of pixels
MPEG-4 | Proposed| MPEG-4 | Proposed| MPEG-4 Proposed
Running 238 41 36 492 408 239 207
Hungary 593 88 86 1056 1032 439 435
Walking 753 81 72 972 864 410 378
TABLE |

COMPARATIVE RESULTS WITHMPEG-4CODING.

its predecessor in the fori; = V,, — V1. Finally, the components of the difference vectors
are coded further by variable-length (e.g. Huffmann [1H1gliag tables.

Though our main intention in the paper is to code non-simpieves, our scheme can be
naturally applied to simple closed contours, as well. Tewdlly, the obvious way is to break
the connection between any two points of the curve, whicklde® an abstract curve graph
representation having a single edge. Since straightnetbe immain condition for the proposed
method, we have to find a corresponding MPEG-4 thresigldy. From [2] we know that a
finite arc is a digital straight segment, if and only if, itsimis are between or on a pair of
parallel lines having a main diagonal distance of at mg8t Thus, dinax < ‘/75 should hold
to make the approximated curve partitions be straight legeents, as well. However, in our
experiments we found that the above MPEG-4 approach leadstse performance than the
proposed technique with respect to the number of polygomeats withdfgx = ‘/75 The main
reason is that the selection of new vertices is ambiguounsgesinore curve points can reside
at the largest distance from the approximating polygon. Wed that approximately the same
performance can be achieved by haviffgax = 1. Though withdmax = 1 we slightly hurt
the criterion of straightness, the subjective perceptealopmance is reported to be acceptable
for a human observer up tdnax = 1.4 [16]. For a comparative analysis, we consider some
simple closed curves (shape boundaries) shown in Figurd@&.pdlygon vertices found by the
MPEG-4 method withijgx = 1 are also marked with large dots in the figure.

Table 1l contains the corresponding quantitative resulte® also present data to see the
additional coding improvement we can gain by applying a eqonent Huffmann coding.

There are some more recommendations to achieve minor irprents using the MPEG-4

October 26, 2007 DRAFT

12

(@)
(b)

Fig. 8. Closed curves for a comparative study with MPEG-4 technighe.VErtices of the approximating MPEG-4 polygons

()

are also indicated. (a) Running. (b) Hungary. (c) Walking.

coder which would be adaptable to the proposed scheme, &sQmebne hand, for lossy shape
coding, the selection of the vertices on the object boundaght not be optimal. Therefore, the
vertices can be shifted by 1 pixel within a neighborhood @&s$i x 3. On the other hand, the
maximal length of the alphabet elements can be fixed dyndimiaa the length of the longest
polygon segment found. Note that, in this case, this lengtbrimation should be transmitted,

as well.

VI. ALTERNATIVE COMPRESSION APPROACHES

We can apply slightly different approaches for the compoessf the curves regarding the
ones presented in the previous section. In all the cases msdaw the same alphabatof line
segments introduced previously, and the same online medthgartition the curves into line

segments.

October 26, 2007 DRAFT

13

A. Compressing edges separately

The process presented in Section II-B is suitable to extitaetedges of an abstract curve
graph, where the edges are actually curve segments. We asghliell execute our compression
approach at edge level without the intention to perform aaging of the curve. Though this
simple approach avoids the oversegmentation of the queadels considered by JBEAM [3],
it has several drawbacks. In this case, curve segmentsqedge compressed separately, so we
have to store the coordinates of the start pixel of each csegenent for appropriate geometric
positioning. Moreover, since no junction point informatics stored, we have to connect the
consecutive curve segments during the decoding procegsu&ng the Bresenham algorithm
[15]), which may lead to curve distortion at junctions.

The compression rate can be calculated easily, as now we tbasammarize simply the
number of line segments that are needed to compress theasemarrve segments. Also for
further use, we introduce the corresponding weight fumctio: £~ — N for the edges. Let

u,v € Ge. Then the weight (cost) of the edde, v} is defined as:
w({u,v}) = # of line segments needed to comprdssv}. (5)

Thus, the curve can be stored using:
> w{u,v}) 6)
{u,v}er
letters fromA. For an example, see Figure 9, where thaveights are shown for the General
test curve.
Moreover, check Table Ill to have a comparison for all out @sves. From the table we
can see that besides covering junctions, the CT method pesesém Section IV has better

compression performance.

B. Curve compression without partitioning

As we discussed in section 1V, our basic approach considerSuder decomposition of the
curve to avoid redundancy in coding edges. However, we cgnthis step by finding a path
that may contain some edges more then once. This sort of ghaoinetical problem is known
as the Chinese Postman Problem (CPP for short) [18], [19].

October 26, 2007 DRAFT

14

Fig. 9. Weighting the abstract curve graph-. The weights of the edges (curve segments) correspond to the narnlies

segments needed to code the edges, respectively.

Test curve Compressing edges separately
of edges| # of bits | # of segments
General 23 948 79
Lines 21 600 50
Spring 15 1236 103
Script 8 864 -
Non-Euler 10 672 56
TABLE Il

EXPERIMENTAL RESULTS OF SEPARATECURVE PART) EDGE COMPRESSION

In this case, we consider the abstract curve gréphas a weighted one, where as a natural
choice we can use the weight function defined in (5). In génam can solve a CPP problem
through the following steps:

1) Calculate the shortest length of a path between every twaes with odd parities using

the Floyd algorithm [20].

2) Perform a perfect maximum matching [11] for the set ofiged with odd parities. That

is, organize these vertices into pairs in such a way thatuhe &f the corresponding path

lengths is minimal.

October 26, 2007 DRAFT

15

3) Find the shortest paths using Dijkstra’s algorithm [12]},] between the vertex pairs found
in step 2), and add these paths as artificial edges to the .graph
4) Now the graph becomes an Euler one, so an Euler path coulduipe, as discussed in
section lll.
Let us consider the example in Figure 10a which actuallydem@ slightly different variant of

the General test curve.

@ (b)

Fig. 10. An example for the CPP algorithm. (a) Non-Euler variant of tle@esal curve. (b) Adding new edges (dashed) to

have an Euler abstract curve graph.

Now, as can be seen from its simplified graph representatidfigure 10b, this curve is not
an Euler one, as it has six odd degree vertices (1,2,3,1Z16After calculating edge weights
according to (5), we can organize these vertices into thenappairs (1,12), (2,3), (16,17). The
respective distance of these pairs are 10, 3, 6 (with summthagedge weights in the shortest
path between them). Thus step 3) of the CPP algorithm will ipeo¥he (redundant) artificial
edges{2,3} and {16, 17} to be added to the graph. These edges are shown with daslesd lin
in Figure 10b. Note that, this way, the graph becomes an Euler having vertices 1 and 12
of odd degree. Finally, using the approach discussed inoselit, the following Euler path is

found in our example:

{1,6,7,4,6,10,15,13,9,7,4,3,2,3,5,8,9, 11, 15, 16, 17, 16, 14,8, 5, 14, 13, 11, 10, 12}

October 26, 2007 DRAFT

16

This path is also shown in Figure 11 using bidirectional ws,owhere the path traverses edges
{2,3} and{16,17} twice.

Start

End

Fig. 11. Tracing a non-Euler curve using the CPP algorithm (bidirectiarralvs correspond edges to be taken twice).

The compression performance obviously drops using the CipRPagh in comparison with
the CT one, as some curves segments are stored more than onaxample, while the CT
algorithm need$2+6-+3 = 71 line segments to code the curve in Figure 10a, the CPP approach
needs62 + 2 x 6+ 2 x 3 = 80 ones. Note that, according to Table I, the CT algorithm ned&fed
line segments without edgg®, 3} and {16, 17} for the compression. Besides its simple idea,
the advantage of the CPP method lies in the fact that the clnwmald not be broken into Euler

parts, and thus only the coordinates of the start pixel shbel stored.

VIlI. CONCLUSION AND DISCUSSION

In this paper, we propose curve compression techniquesibasgraph theory and the use
of a line segment alphabet. We use the abstract curve grgpbasentation of the curve to be
compressed by locating junctions and considering curves pargraph edges. The abstract curve
graph can be decomposed into Euler subgraphs, which camtedtseparately. To replace the
curve parts with linear segments, we fix an alphabet of boditide segments. We also discuss
some variants of the proposed approach. Experimentaltsesid presented in comparison with

state-of-the-art curve compression approaches, as well.

October 26, 2007 DRAFT

17

We must mention that JBEAM [3] also realizes a progressiveaggh in curve compression.
That is, when only a part of bits has been received, the dligiteve can be recovered approx-
imately. Our method does not have a direct support for pssive encoding, however, some
kind of progressivity could be reached by re-ordering tlasmitted Bresenham segments. For
example, to have an impression about the shape of the cueveaw send the segments having
indices equidistantly sampled along the graph route. Agrotpproach may relate to the case,
when junctions are more important. Then we can transmitetlsegments first which contain or
touch branch points. In all these cases, additionally deganeeded to be transmitted, since the
segments are no longer consequent ones. The necessanaexiumt of such data is an open
issue.

In our approach, it is a key consideration to keep linearityewreplacing curve segments with
Bresenham ones. Minor deficiencies may occur from the fattvikause different methodology
for judging on linearity and replacing with fixed linear lisegments. In other words, if we fix
two endpoints, more curve segments between them can bedugyénear but replaced with
the same Bresenham one. This approach naturally leads to kiocheof distortion, however
the linear behavior is preserved perceptually. For a givaas@&tham segment, the expected rate
of the distortion is related to the possible number of segm@mged as linear between its
endpoints. Consequently, longer segments could cause @igjertion on average, however, we
need smaller number of longer segments to code the cuneg #ie number of the curve points
is fixed. Accordingly, though it might be a future topic to rifa the precise relation between
the maximal length of the Bresenham alphabet and the dstonive do not expect remarkable
differences.

In several applications, we can encounter with such intéses where the local tangents of
the intersecting curve segments almost coincide. For elm@ can think of an intersection
of nearly horizontal lines. In the Euclidean case, we wouwld lmve any difficulties, but in the
digital domain the intersection consists of more than omelpOne possibility to overcome this
difficulty is to revise the definition of a junction, and to d&pja distance threshol@. Then we
can collect branch points closer thdh and merge into a junction the regular points between
them. In other words, we decide upon the allowed closenegsedbngents. The threshold value
7 can be adjusted according to the expected behavior of theesum the application.

The steps we considered in our approach can have individyaritance in other application

October 26, 2007 DRAFT

18

fields, as well. Our intention to “untie” curves can have itpan curve watermarking [22],
[23], where the capability to provide the input data in terofsfew large blocks is highly
welcome. The ability of tracing complex curves looks febesiim reconstructing hand-written
text or figures, similarly e.g. to [24]. The compression noeltltan also be used to efficiently

store the boundaries of shapes, e.g. the templates of a hsithanette database.

ACKNOWLEDGEMENT

This work was partially supported by the project SHARE: Melilupport for Rescue Forces,
Integrating Multiple Modes of Interaction, EU FP6 Infornuet Society Technologies, Contract
Number FP6-004218. The authors are also grateful to thewevs for their thorough work to

improve the content of the paper.

REFERENCES

[1] A. Rosenfeld, “Arcs and Curves in Digital Picturesdurnal of ACM, vol. 20, no. 1, pp. 81-87, 1973.

[2] R. Klette, and A. Rosenfeld, “Digital straightness - a revielisc. Appl. Math., vol. 139, no. 1-3, pp. 197-230, 2004.

[3] X. Huo, and J. Chen, “JBEAM: multiscale curve coding via beanildSEE Transactions on Image Processing, vol. 14,
no. 11, pp. 1665-1677, 2005.

[4] N.L. Biggs, E.K. Lloyd, and R.J. WilsorGraph Theory. Calendon Press, Oxford, 1998.

[5] L. Euler, “Solutio problematis ad geometrian situs pertinen@immentarii academiae scientarum Petropolitanae, vol. 8,
pp. 128-140, 1736.

[6] H. Fleischner, “Eulerian Graphs and Related Topics. Part 1. \olvdume 45 of Annals of Discrete Mathematics, North-
Holland Publishing Co., Amsterdam, 1990.

[7]1 H. Fleischner, “Eulerian Graphs and Related Topics. Part 1. \olv@ume 50 of Annals of Discrete Mathematics, North-
Holland Publishing Co., Amsterdam, 1991.

[8] R. Klette, and A. Rosenfeld)igital Geometry - Geometric Methods for Picture Analysis. Morgan Kaufmann, San Francisco,
2004.

[9] G. Klette, “Branch Voxels and Junctions in 3D skeletons.’Pioc. Int. Conf. 10th IWCIA 2006, Berlin, GermanylLecture
Notes in Computer Science, vol. 4040, Springer, Berlin, pp. 34-44, 2006.

[10] T. Pavlidis,Algorithms for Graphics and Image Processing. Computer Science Press, Rockville, MD, 1982.

[11] T.H. Cormen, C.E. Leiserson, R.L. Rivest, and C. Stémroduction to Algorithms. Second Edition. MIT Press and
McGraw-Hill, 2001.

[12] Fleury, “Deux problemes de geometrie de situatidlotirnal de mathematiques elementaires, pp. 257-261, 1883.

[13] S. Skiena,Implementing Discrete Mathematics: Combinatorics and Graph Theory with Mathematica. Reading, MA:
Addison-Wesley, 1990.

[14] I. Debled-Rennesson, and J. Resill“A linear algorithm for segmentation of digital curvestit. Journ. Patt. Recogn.
and Artif. Intell., vol. 9, pp. 635-662, 1995.

[15] J.E. Bresenham, “Algorithm for computer control of a digital plottéBM Systems Journal, pp. 25-30, 1965.

October 26, 2007 DRAFT

19

[16] A.K. Katsaggelos, L.P. Kondi, F.W. Meier, J. Ostermann, anifl.GSchuster, “MPEG-4 and rate-distortion-based shape-
coding techniques.Proceedings of the |EEE, vol. 86, no. 6, pp. 1126-1154, 1998.

[17] J. Ostermann, “Methodologies used for evaluation of video toalsadgorithms in MPEG-4."Signal Process., vol. 9, pp.
343-365, 1997.

[18] Mei-Ko Kwan, “Graphic programming using odd or even pointStiinese Math., vol. 1, pp. 273-277, 1962.

[19] M.G. Guan, “A survey on the Chinese postman probleinMath. Res. Exposition, vol. 4, no. 1, pp. 113-119, 1984.

[20] R.W. Floyd, “Algorithm 97: Shortest PathCommunications of the ACM, vol. 5, no. 6, pp. 345, 1962.

[21] E.W. Dijkstra, “A note on two problems in connexion with graphdtimerische Mathematik, vol. 1, pp. 269—-271, 1959.

[22] H. Gou, and M. Wu, “Fingerprinting curvesl’ecture Notes on Computer Science, vol. 3304, pp. 13-28, 2004.

[23] V. Solachidis, and I.Pitas, “Watermarking polygonal lines usingirles descriptors.”IEEE Computer Graphics and
Applications, vol. 24, no. 3, pp. 44-51, 2004.

[24] E. Saund, “Finding perceptually closed paths in sketches andirdyaiv |EEE Transactions on Pattern Analysis and
Machine Intelligence, vol. 25, no. 4, pp. 475-491, 2003.

Andr as Hajdu received his MSc degree in Mathematics from the Lajos Kossuth Uitigeirkingary, in
1996. He obtained his PhD degree in Mathematics and Computer Scientée University of Debrecen,
Hungary, in 2003. He worked as a Post Doc researcher for the Aatifitelligence Information Analysis
Laboratory, Dept. of Informatics, Aristotle University of ThessalomikR005-2006. From 2001 he served
as Assistant Lecturer and since 2003 he has been an AssistantsBrafethe University of Debrecen. He

is a member of the Janos Bolyai Mathematical Society, John von Neu@amputer Society (Hungary),
Public Body of the Hungarian Academy of Sciences, and the Hungasandfation for Image Analysis and Pattern Recognition.
He has authored or co-authored 17 journal papers and 43 coodéepapers. His main interest lies in discrete mathematics with
applications in digital image processing.

October 26, 2007 DRAFT

20

loannis Pitas received the Diploma of Electrical Engineering in 1980 and the PhD degré&lectrical

Engineering in 1985 both from the Aristotle University of Thessaloniki,g8ee Since 1994, he has been
a Professor at the Department of Informatics, Aristotle University liésBaloniki. From 1980 to 1993 he
served as Scientific Assistant, Lecturer, Assistant Professor, asatiage Professor in the Department of

Electrical and Computer Engineering at the same University. He sas/advisiting Research Associate or

ﬁ Visiting Assistant Professor at several Universities. He has publisd&dournal papers, 360 conference
paperé and contributed in 18 books in his areas of interest and editegtanrtivored another 5. He has also been an invited
speaker and/or member of the program committee of several sciemtifferences and workshops. In the past he served as
Associate Editor or co-Editor of four international journals and Genardlechnical Chair of three international conferences.
His current interests are in the areas of digital image and video progessth analysis, multidimensional signal processing,

watermarking and computer vision.

October 26, 2007 DRAFT

