
Piecewise linear digital curve representation

and compression using graph theory and a line

segment alphabet

András Hajdu*, and Ioannis Pitas,Senior Member, IEEE

Department of Informatics

Aristotle University of Thessaloniki

Box 451, 54124 Thessaloniki, Greece

Tel: +30-231-099-6361

Fax: +30-231-099-8453

e-mail: {hajdua, pitas@aiia.csd.auth.gr}

Abstract

The use of an alphabet of line segments to compose a curve is a possible approach for curve data

compression. Many approaches are developed with the drawback that they can process simple curves

only. Curves having more sophisticated topology with self-intersections can be handled by methods

considering recursive decomposition of the canvas containing the curve. In this paper, we propose a

graph theory based algorithm for tracing the curve directlyto eliminate the decomposition needs. This

approach obviously improves the compression performance,as longer line segments can be used. We

tune our method further by selecting optimal turns at junctions during tracing the curve. We assign a

polygon approximation to the curve which consists of letters coming from an alphabet of line segments.

We also discuss how other application fields can take advantage of the provided curve description

scheme.

Index Terms

curve compression, Euler graph, Chinese Postman problem, optimal curve tracing, curve partition-

ing.

EDICS Category: COD-LSYI, MOD-MRPH

October 26, 2007 DRAFT

1

Piecewise linear digital curve representation

and compression using graph theory and a line

segment alphabet

I. I NTRODUCTION

Digital planar curves are used in several fields of computer graphics, discrete geometry and

digital image analysis. Many results have been produced regarding their geometric behavior since

[1]. A special topic is digital curve compression. Besides simple techniques like chain coding, a

usual way is to partition the curve into straight line segments [2] for compression. These methods

usually focus on simple curves with no self-intersections,and assume the preliminary knowledge

on the sequential order of the curve points. The state-of-the-art approach JBEAM [3] considers

an alphabet of short line segments (called beamlets) to compose the curve. This method divides

the binary image containing the curve using quadtree decomposition till having asingle linear

curve segment in every quadtree cell that can be substitutedby a beamlet. The advantage of this

approach is that any curve can be handled by sufficiently fine quadtree decomposition. However,

a drawback is the obligation of decomposing subsequently, when a cell contains such segments

that already could be coded separately.

In this paper, we propose a graph theoretical approach to trace curves having arbitrary topology

to obtain better compression performance, when splitting the curve into straight line segments.

Because of the tracing step, the proposed method has better compression performance than

JBEAM [3]. The main improvement lies in the fact that we perform a complete tracing of the

curve instead of decomposing its storing canvas recursively, while only line segments remain in

the quadtree cells.

The structure of this paper is as follows. In section II we recall the graph theoretical background

that serves as a basis for our approach in tracing curves. We also explain how the suitable graph

representation of the digital curve is obtained. Section III describes how the tracing is optimized

regarding coding the curve with straight line segments. Themethod selected for compression is

presented in section IV. Section V contains our comparativeanalyses with other state-of-the-art

October 26, 2007 DRAFT

2

approaches. We explain some variants of the basic approach in section VI with highlighting

their advantages and drawbacks. Finally, some open issues and other possible applications are

discussed in section VII.

II. T RACING CURVES USING GRAPH THEORY

In this section we recall some notions and results of graph and curve theory that we apply to

trace a curve and also some techniques that were considered to obtain the corresponding graph

representation of the curve.

A. Graph theoretical background

A graph G is defined as a pair(V,E), whereV is a set ofvertices, and E ⊆ V × V =

{{u, v} | u, v ∈ V } is a set ofedgesbetween the vertices. As we use graph representations

of curves, we focus onundirectedgraphs, so∀u, v ∈ V : {u, v} = {v, u} holds. To cover a

wide class of curves, we allowloops (edges of type{u, u}) and multiple edges (more edges

between two vertices). Thedegreeof a vertex is the number of edges containing the vertex. A

path is a list of vertices{u1, u2, . . . , un} having edges between any two consecutive vertices:

{u1, u2}, {u2, u3}, . . . , {un−1, un}, with u1 = un in the case of aroute (closed path).G is

connected, if any two of its vertices have a path connecting them. A paththrough G which

includes every edge exactly once is called anEuler path(or anEuler routeif the start and end

vertices coincide) [4], [5]. Note that any Euler route is also an Euler path.G is anEuler graph,

if it contains an Euler path through all of its edges. AnEuler decompositionof G has the form

G =
n⋃

i=1

Gi such that all theGi’s are disjoint Euler graphs (in the sense that they cannot contain

the same edge). We recall some well-known facts on Euler graphs and their decomposition (see

e.g. [6], [7]):

i) Every Euler graph is connected.

ii) A connected graph contains an Euler route iff all of its vertices have even degree. The route can

start from any vertex.

iii) A connected graph contains an Euler path iff at most two of its vertices have odd degree. If

there are two vertices with odd degree, the path starts from either of them and ends in the other.

iv) Every connected graph has an Euler decomposition into disjoint Euler graphs.

October 26, 2007 DRAFT

3

B. Assignment of a graph to a digital curve

The definition of simple curves in the Euclidean space was given by P. Urysohn in 1923 and

K. Menger in 1932 independently (see [8] for a review). The curves were classified based on the

branching indeces of the curve points, where a branching index of a curve point is equal to the

number of curve segments meeting at the given point. The adequate mathematical formulation

for the Euclidean space can be found in [8], [9]. For the discrete domainZ2, this definition can

also be adapted using the well-known 8-neighboring relation. More precisely (see [8], [9]):

• a digital curveC has branching indexB(p) > 0 at its point p ∈ C iff exactly B(p)

8-neighbors ofp belong toC,

• p ∈ C is a regular point iffB(p) = 2,

• p ∈ C is a branch point iffB(p) ≥ 3,

• p ∈ C is an end point iffB(p) = 1,

• the 2D digital curveC is simple iff all of its points are regular.

To make graph theoretical algorithms be applicable to digital curves, we also need a precise

concept for a junction (see [8], [9]):

• an 8-connected region of branch points is called a junction.The branching index of a

junction J ⊆ C is the number of regular or end points ofC being 8-neighbors of any of

the branch points ofJ .

We mention here that this classic approach for defining the junctions of digital curves might

be restrictive in some applications, which issue will be discussed in section VII. Using all the

above definitions, we are ready to assign an abstract curve graph to a curve (see [9]):

• the abstract curve graphGC = (VC , EC) of the curveC is an undirected graph, where the

vertices inVC are either junctions or end points ofC. Two vertices are connected by an

edge iff the corresponding junctions or end points are 8-connected. Thus, the degree of a

vertex is just the branching index of the corresponding junction.

As for the technical details of the extraction of an abstractcurve graph, we consider 1 pixel

wide curves. If the input curve is not 1 pixel wide, we can apply a preliminary thinning step on

it. To determine the edge setEC , we locate the end points of the edges as regular points being

8-neighbors to junctions (if both of their 8-neighbors are branch points, the edge is degenerated

having length 1). Then, the edge end points are organized into pairs (edges) based on the condition

October 26, 2007 DRAFT

4

that an 8-connected path can be found between them whose elements are regular points. Figure

1a depicts the result of locating end points and junctions (shown framed, in light gray), while

1b take a closer look for the selection of edge end points (dark gray), and for the edges defined

by them. These figures also indicate the branching indices ofthe curve points.

(a) (b)

Fig. 1. Locating vertices and extracting the edges for the abstract curvegraphGC = (VC , EC). (a) Input test planar curveC

with its end points and junctions to composeVC are framed. (b) Extracting edges forEC via locating edge end points (dark

grey) and connecting them with 8-paths.

Note that loops and multiple edges are also handled by this approach without any difficulties.

To find the 8-paths between edge end points we can use the recursive Floodfill8 algorithm [10]

starting from the edge end points. The simplified abstract curve graph representation of the curve

in Figure 1a is shown in Figure 2. The vertex indices are assigned in the order of the vertex

scanning procedure in the figure.

Now we are ready to summarize our main approach in the following curve tracing (CT)

algorithm:

CT algorithm

1) Extract the abstract curve graphGC = (VC , EC) of the curveC.

2) Create an Euler decomposition
n⋃

i=1

Ci of C based onGC .

3) Trace all theCi’s separately through their Euler paths.

October 26, 2007 DRAFT

5

Fig. 2. The simplified abstract curve graph of the curve shown in Figure1a with vertices of odd degree framed.

III. O PTIMIZED TRACING FOR COMPRESSION

The first step to trace an Euler curve is to locate a starting vertex according to statementiii)

in section II-A. We check the vertices and select one having odd degree. If all the degrees are

even, we can choose an arbitrary vertex to start from. Then wetake an edge from the starting

vertex to initialize the tracer. For example, in the graph shown in Figure 2 two vertices (1, and

10) have odd degrees. Thus, the Euler path should start from vertex 1 to finish at vertex 10, or

vice versa.

As more Euler paths may exist, we have to decide which edge to take next, when reaching

junctions. As our intention is to substitute the curve part with straight line segments for curve

compression, the natural decision is to go on straight aheadat junctions. Thus, let us assume

that we arrive at an edge end pointE0 at a junction that has edge end pointsE0, E1, . . . , Ek not

visited yet. We calculate the centroid of the junction by:

E =
1

k + 1

k∑

j=0

Ej. (1)

E can be rounded to have integer coordinates, or considered asa real valued vector, as well.

Let αi denote the angle∠E0EEi for i = 1, . . . , k. The curve traversal direction is chosen to

correspond to the edge end pointEl for which:

|180◦ − αl| =
k

min
j=1

{|180◦ − αj|}. (2)

October 26, 2007 DRAFT

6

To extract a path betweenE0 andEl we can use the Floodfill8 algorithm again. Now, we have

to start Floodfill8 fromE0 to flood the vertex points of the junction with selecting the path with

minimal length. See Figure 3 for an example on how the decision is made to trace through a

junction based on the above discussion. The selected path through the junction containsE0, E,

andE2 and indicated by× marks in the figure.

Fig. 3. Optimal curve tracing through a junction with finding the most straightdirection and connecting corresponding edge

end points.

Using this junction traversal decision, we are able to tracethe whole curve along one of its

Euler paths. The traced curve is composed by concatenating the edges with the short segment

going through the vertices. For the complete tracing see Figure 4, where beside the start and

end point of the Euler path, arrow heads show the optimal directions at the curve junctions.

Borrowing the vertex numbering from Figure 2, the Euler path is:

{1, 4, 5, 2, 4, 8, 13, 11, 7, 5, 2, 3, 6, 7, 9, 13, 12, 6, 3, 12, 11, 9, 8, 10}.

During the extraction of an Euler path, we have to note that weare not always free in

choosing the most straight direction at junctions. Fleury’s algorithm [12] guarantees to find

an Euler path, and we have to combine our junction traversal method with the classic graph

theoretical recommendations (see e.g. [12], [13]), which are briefly:

• Always leave one edge available to get back to the starting vertex or to the other odd vertex.

• Do not use an edge to go to a vertex unless there is another edgeavailable to leave it.

Note that the graph theoretical recommendations have higher priority than optimal traversal

selection to guarantee the proper Euler path.

October 26, 2007 DRAFT

7

Fig. 4. Tracing the whole curve by choosing optimal directions at junctions.

IV. CURVE COMPRESSION BY AN ALPHABET OF LINE SEGMENTS

We can choose from a vast number of techniques to partition a curve into digital straight

line segments [2]. These techniques can be classified asoffline (the curve is examined globally

to find an optimal partitioning), oronline (the curve is decomposed into line segments during

its traversal). Though our proposed approach is suitable for both tasks, we discuss an online

coding possibility here. To partition the curve into digital straight segments we use a linear

online method presented in [14].

To obtain a coding scheme from the straight line decomposition, we replace all the produced

linear curve segments by elements of an alphabet of line segments. We create a finite alphabetΛ

whose letters are digital line segments of all possible orientations having length at mostT pixels.

As an obvious consequence, we have to stop processing the curve when the maximal segment

length T is reached and we have to look for the next segment, even if thecoded one would

continue straight. Moreover, to keep the cardinality ofΛ small, we consider unique straight

line segments to connect two points. For this purpose, we consider the Bresenham line drawing

algorithm [15] to create the letters ofΛ. Note that this way we allow some information loss,

since the Bresenham segments may slightly differ from the ones extracted during the online

curve segmentation process. On the other hand, these differences are really minor perceptually,

since digital straightness is our essential requirement. It is easy to prove that the cardinality of

October 26, 2007 DRAFT

8

Λ, and the number of bits needed for coding a letter can be calculated as:

|Λ| = 4T (T − 1), and log2 |Λ| ≤ 2(log2 T + 1), (3)

respectively. As an example for such an alphabet see Figure 5for T = 6 with the letters shown

only for the domain0 ≤ y ≤ x. Thus, the alphabet also contains the letters obtained fromthe

shown set by rotations of0◦, ±90◦, 180◦, and by mirrorings to the linesx = 0, y = 0, y = x,

andy = −x, respectively.

Fig. 5. An example alphabetΛ for T = 6 (line segments of length at most 6). Only the letters belonging to the domain

0 ≤ y ≤ x are depicted.

To check the compression efficiency of our method in comparison with other state-of-the-art

methods, we considered a dataset of typical test curves shown in Figure 6a-d. To demonstrate

the extendability of our method to such curves that cannot betraversed with a simple Euler path,

we consider another example shown in Figure 6e.

Note that the graph representation of Figure 6e contains four vertices having odd parities.

Consequently, it should be decomposed at least into two Eulerpaths. In our example, starting

from any of the odd vertices and judging by the linearity criteria at the junctions, we decompose

the original curve into the two segments shown in Figure 6f and Figure 6g, respectively. To

compress the original curve, we compress these Euler paths separately.

V. COMPARATIVE ANALYSES

A. Comparing with JBEAM

To test and compare the compression efficiency of our method,we fixed the following setup.

We usedT = 32 as a threshold for the maximum line segment length for all thetest curves, and

October 26, 2007 DRAFT

9

(a) (b) (c) (d)

(e) (f) (g)

Fig. 6. Test curves of different types. (a) General. (b) Lines. (c)Spring. (d) Script. (e) Non-Euler. (f)-(g) Euler paths to compose

the Non-Euler curve.

considered the default lossy JBEAM parametrization [3]. Ourexperimental results are shown in

Table I.

Test curve # of pixels JBEAM (# of bits)
Proposed method (CT)

of bits # of segments

General 2127 1586 744 62

Lines 2745 1398 468 39

Spring 4113 2308 1224 102

Script 2511 1419 828 69

Non-Euler 1242 834 2 × 240 = 480 2 × 20 = 40

TABLE I

COMPARATIVE QUANTITATIVE RESULTS AGAINST JBEAM.

We can conclude that the proposed method has a 50% improvement on average in compression

against JBEAM. Figure 7 depicts the coding results for our sample curves. We marked the end

points of the line segments found by our coding method. For the sake of completeness, we

mention that the coordinates of the starting point of every Euler path should be stored, as well.

October 26, 2007 DRAFT

10

However, we ignored this issue in our calculations, since itproduces only insignificant increase

in the number of bits of the compressed curve.

(a) (b) (c) (d) (e)

Fig. 7. The partitioning of the test curves into line segments. (a) General. (b) Lines. (c) Spring. (d) Script. (e) Non-Euler.

B. MPEG-4 contour-based shape coding

Within MPEG-4, a vertex-based shape approximation was developed to code the outline of

shapes [16]. For image/video transmission, the usual task is to transmit region-like shapes,

thus, their boundaries can be represented by simple closed curves. In MPEG-4, the boundary

of the shape is approximated by a polygon for lossy shape coding. For lossless shape coding,

the polygon approximation degenerates to chain coding [17]. The polygon is found through a

recursive splitting process that starts with the longest axis (diameter) of the shape as an initial

polygon V0V1. A polygon segmentVkVk+1 is associated with the curve partCk composed by

the pointsck,i with 0 ≤ i ≤ I. The approximation error atCk is defined as:

dmax(k) = max
0≤i≤I

d(VkVk+1, ck,i) (4)

using the Euclidean distanced. Now, if dmax(k) > d∗
max for a fixed thresholdd∗

max, thenck,j is

selected as a new polygon vertex, whered(VkVk+1, ck,j) = max
0≤i≤I

d(VkVk+1, ck,i). In other words,

we recursively split those polygon segments which are not sufficiently close to the curve. The

boundary point having largest distance from the polygon segment is selected as a new vertex.

For better coding performance, we shift the polygon vertices to re-index them so that the first

and last vertices have largest difference between their horizontal or vertical coordinates. After

storing the position ofV0, each remaining vertex position is encoded by a difference vector from

October 26, 2007 DRAFT

11

Test curve # of pixels
of segments # of bits # of bits with Huffmann coding

MPEG-4 Proposed MPEG-4 Proposed MPEG-4 Proposed

Running 238 41 36 492 408 239 207

Hungary 593 88 86 1056 1032 439 435

Walking 753 81 72 972 864 410 378

TABLE II

COMPARATIVE RESULTS WITHMPEG-4CODING.

its predecessor in the formVd = Vk − Vk+1. Finally, the components of the difference vectors

are coded further by variable-length (e.g. Huffmann [11]) coding tables.

Though our main intention in the paper is to code non-simple curves, our scheme can be

naturally applied to simple closed contours, as well. Technically, the obvious way is to break

the connection between any two points of the curve, which leads to an abstract curve graph

representation having a single edge. Since straightness isthe main condition for the proposed

method, we have to find a corresponding MPEG-4 thresholdd∗
max. From [2] we know that a

finite arc is a digital straight segment, if and only if, its points are between or on a pair of

parallel lines having a main diagonal distance of at most
√

2. Thus,d∗
max ≤

√
2

2
should hold

to make the approximated curve partitions be straight line segments, as well. However, in our

experiments we found that the above MPEG-4 approach leads toworse performance than the

proposed technique with respect to the number of polygon segments withd∗
max =

√
2

2
. The main

reason is that the selection of new vertices is ambiguous, since more curve points can reside

at the largest distance from the approximating polygon. We found that approximately the same

performance can be achieved by havingd∗
max = 1. Though withd∗

max = 1 we slightly hurt

the criterion of straightness, the subjective perceptual performance is reported to be acceptable

for a human observer up tod∗
max = 1.4 [16]. For a comparative analysis, we consider some

simple closed curves (shape boundaries) shown in Figure 8. The polygon vertices found by the

MPEG-4 method withd∗
max = 1 are also marked with large dots in the figure.

Table II contains the corresponding quantitative results.We also present data to see the

additional coding improvement we can gain by applying a consequent Huffmann coding.

There are some more recommendations to achieve minor improvements using the MPEG-4

October 26, 2007 DRAFT

12

(a)

(b) (c)

Fig. 8. Closed curves for a comparative study with MPEG-4 technique. The vertices of the approximating MPEG-4 polygons

are also indicated. (a) Running. (b) Hungary. (c) Walking.

coder which would be adaptable to the proposed scheme, as well. On one hand, for lossy shape

coding, the selection of the vertices on the object boundarymight not be optimal. Therefore, the

vertices can be shifted by 1 pixel within a neighborhood of size 3 × 3. On the other hand, the

maximal length of the alphabet elements can be fixed dynamically as the length of the longest

polygon segment found. Note that, in this case, this length information should be transmitted,

as well.

VI. A LTERNATIVE COMPRESSION APPROACHES

We can apply slightly different approaches for the compression of the curves regarding the

ones presented in the previous section. In all the cases we consider the same alphabetΛ of line

segments introduced previously, and the same online methodto partition the curves into line

segments.

October 26, 2007 DRAFT

13

A. Compressing edges separately

The process presented in Section II-B is suitable to extractthe edges of an abstract curve

graph, where the edges are actually curve segments. We mightas well execute our compression

approach at edge level without the intention to perform any tracing of the curve. Though this

simple approach avoids the oversegmentation of the quadtree cells considered by JBEAM [3],

it has several drawbacks. In this case, curve segments (edges) are compressed separately, so we

have to store the coordinates of the start pixel of each curvesegment for appropriate geometric

positioning. Moreover, since no junction point information is stored, we have to connect the

consecutive curve segments during the decoding process (e.g. using the Bresenham algorithm

[15]), which may lead to curve distortion at junctions.

The compression rate can be calculated easily, as now we haveto summarize simply the

number of line segments that are needed to compress the separate curve segments. Also for

further use, we introduce the corresponding weight function w : EC → N for the edges. Let

u, v ∈ GC . Then the weight (cost) of the edge{u, v} is defined as:

w({u, v}) = # of line segments needed to compress{u, v}. (5)

Thus, the curve can be stored using:

∑

{u,v}∈E

w({u, v}) (6)

letters fromΛ. For an example, see Figure 9, where thew weights are shown for the General

test curve.

Moreover, check Table III to have a comparison for all our test curves. From the table we

can see that besides covering junctions, the CT method presented in Section IV has better

compression performance.

B. Curve compression without partitioning

As we discussed in section IV, our basic approach considers an Euler decomposition of the

curve to avoid redundancy in coding edges. However, we can skip this step by finding a path

that may contain some edges more then once. This sort of graphtheoretical problem is known

as the Chinese Postman Problem (CPP for short) [18], [19].

October 26, 2007 DRAFT

14

Fig. 9. Weighting the abstract curve graphGC . The weights of the edges (curve segments) correspond to the numberof line

segments needed to code the edges, respectively.

Test curve
Compressing edges separately

of edges # of bits # of segments

General 23 948 79

Lines 21 600 50

Spring 15 1236 103

Script 8 864 72

Non-Euler 10 672 56

TABLE III

EXPERIMENTAL RESULTS OF SEPARATE(CURVE PART) EDGE COMPRESSION.

In this case, we consider the abstract curve graphGC as a weighted one, where as a natural

choice we can use the weight function defined in (5). In general, we can solve a CPP problem

through the following steps:

1) Calculate the shortest length of a path between every two vertices with odd parities using

the Floyd algorithm [20].

2) Perform a perfect maximum matching [11] for the set of vertices with odd parities. That

is, organize these vertices into pairs in such a way that the sum of the corresponding path

lengths is minimal.

October 26, 2007 DRAFT

15

3) Find the shortest paths using Dijkstra’s algorithm [11],[21] between the vertex pairs found

in step 2), and add these paths as artificial edges to the graph.

4) Now the graph becomes an Euler one, so an Euler path could befound, as discussed in

section III.

Let us consider the example in Figure 10a which actually depicts a slightly different variant of

the General test curve.

(a) (b)

Fig. 10. An example for the CPP algorithm. (a) Non-Euler variant of the General curve. (b) Adding new edges (dashed) to

have an Euler abstract curve graph.

Now, as can be seen from its simplified graph representation in Figure 10b, this curve is not

an Euler one, as it has six odd degree vertices (1,2,3,12,16,17). After calculating edge weights

according to (5), we can organize these vertices into the optimal pairs (1,12), (2,3), (16,17). The

respective distance of these pairs are 10, 3, 6 (with summingthe edge weights in the shortest

path between them). Thus step 3) of the CPP algorithm will provide the (redundant) artificial

edges{2, 3} and {16, 17} to be added to the graph. These edges are shown with dashed lines

in Figure 10b. Note that, this way, the graph becomes an Eulerone, having vertices 1 and 12

of odd degree. Finally, using the approach discussed in section III, the following Euler path is

found in our example:

{1, 6, 7, 4, 6, 10, 15, 13, 9, 7, 4, 3, 2, 3, 5, 8, 9, 11, 15, 16, 17, 16, 14, 8, 5, 14, 13, 11, 10, 12}.

October 26, 2007 DRAFT

16

This path is also shown in Figure 11 using bidirectional arrows, where the path traverses edges

{2, 3} and{16, 17} twice.

Fig. 11. Tracing a non-Euler curve using the CPP algorithm (bidirectionalarrows correspond edges to be taken twice).

The compression performance obviously drops using the CPP approach in comparison with

the CT one, as some curves segments are stored more than once. For example, while the CT

algorithm needs62+6+3 = 71 line segments to code the curve in Figure 10a, the CPP approach

needs62+2×6+2×3 = 80 ones. Note that, according to Table I, the CT algorithm needed62

line segments without edges{2, 3} and {16, 17} for the compression. Besides its simple idea,

the advantage of the CPP method lies in the fact that the curve should not be broken into Euler

parts, and thus only the coordinates of the start pixel should be stored.

VII. C ONCLUSION AND DISCUSSION

In this paper, we propose curve compression techniques based on graph theory and the use

of a line segment alphabet. We use the abstract curve graph representation of the curve to be

compressed by locating junctions and considering curve parts as graph edges. The abstract curve

graph can be decomposed into Euler subgraphs, which can be traced separately. To replace the

curve parts with linear segments, we fix an alphabet of bounded line segments. We also discuss

some variants of the proposed approach. Experimental results are presented in comparison with

state-of-the-art curve compression approaches, as well.

October 26, 2007 DRAFT

17

We must mention that JBEAM [3] also realizes a progressive approach in curve compression.

That is, when only a part of bits has been received, the digital curve can be recovered approx-

imately. Our method does not have a direct support for progressive encoding, however, some

kind of progressivity could be reached by re-ordering the transmitted Bresenham segments. For

example, to have an impression about the shape of the curve, we can send the segments having

indices equidistantly sampled along the graph route. Another approach may relate to the case,

when junctions are more important. Then we can transmit those segments first which contain or

touch branch points. In all these cases, additionally data are needed to be transmitted, since the

segments are no longer consequent ones. The necessary extraamount of such data is an open

issue.

In our approach, it is a key consideration to keep linearity when replacing curve segments with

Bresenham ones. Minor deficiencies may occur from the fact that we use different methodology

for judging on linearity and replacing with fixed linear linesegments. In other words, if we fix

two endpoints, more curve segments between them can be judged as linear but replaced with

the same Bresenham one. This approach naturally leads to somekind of distortion, however

the linear behavior is preserved perceptually. For a given Bresenham segment, the expected rate

of the distortion is related to the possible number of segments judged as linear between its

endpoints. Consequently, longer segments could cause larger distortion on average, however, we

need smaller number of longer segments to code the curve, since the number of the curve points

is fixed. Accordingly, though it might be a future topic to clarify the precise relation between

the maximal length of the Bresenham alphabet and the distortion, we do not expect remarkable

differences.

In several applications, we can encounter with such intersections where the local tangents of

the intersecting curve segments almost coincide. For example, we can think of an intersection

of nearly horizontal lines. In the Euclidean case, we would not have any difficulties, but in the

digital domain the intersection consists of more than one pixel. One possibility to overcome this

difficulty is to revise the definition of a junction, and to apply a distance thresholdT . Then we

can collect branch points closer thanT , and merge into a junction the regular points between

them. In other words, we decide upon the allowed closeness ofthe tangents. The threshold value

T can be adjusted according to the expected behavior of the curves in the application.

The steps we considered in our approach can have individual importance in other application

October 26, 2007 DRAFT

18

fields, as well. Our intention to “untie” curves can have impact in curve watermarking [22],

[23], where the capability to provide the input data in termsof few large blocks is highly

welcome. The ability of tracing complex curves looks feasible in reconstructing hand-written

text or figures, similarly e.g. to [24]. The compression method can also be used to efficiently

store the boundaries of shapes, e.g. the templates of a humansilhouette database.

ACKNOWLEDGEMENT

This work was partially supported by the project SHARE: Mobile Support for Rescue Forces,

Integrating Multiple Modes of Interaction, EU FP6 Information Society Technologies, Contract

Number FP6-004218. The authors are also grateful to the reviewers for their thorough work to

improve the content of the paper.

REFERENCES

[1] A. Rosenfeld, “Arcs and Curves in Digital Pictures.”Journal of ACM, vol. 20, no. 1, pp. 81–87, 1973.

[2] R. Klette, and A. Rosenfeld, “Digital straightness - a review.”Disc. Appl. Math., vol. 139, no. 1-3, pp. 197–230, 2004.

[3] X. Huo, and J. Chen, “JBEAM: multiscale curve coding via beamlets.” IEEE Transactions on Image Processing, vol. 14,

no. 11, pp. 1665–1677, 2005.

[4] N.L. Biggs, E.K. Lloyd, and R.J. Wilson,Graph Theory. Calendon Press, Oxford, 1998.

[5] L. Euler, “Solutio problematis ad geometrian situs pertinentis.”Commentarii academiae scientarum Petropolitanae, vol. 8,

pp. 128–140, 1736.

[6] H. Fleischner, “Eulerian Graphs and Related Topics. Part 1. Vol. 1.” volume 45 of Annals of Discrete Mathematics, North-

Holland Publishing Co., Amsterdam, 1990.

[7] H. Fleischner, “Eulerian Graphs and Related Topics. Part 1. Vol. 2.” volume 50 of Annals of Discrete Mathematics, North-

Holland Publishing Co., Amsterdam, 1991.

[8] R. Klette, and A. Rosenfeld,Digital Geometry - Geometric Methods for Picture Analysis. Morgan Kaufmann, San Francisco,

2004.

[9] G. Klette, “Branch Voxels and Junctions in 3D skeletons.” inProc. Int. Conf. 10th IWCIA 2006, Berlin, Germany,Lecture

Notes in Computer Science, vol. 4040, Springer, Berlin, pp. 34–44, 2006.

[10] T. Pavlidis,Algorithms for Graphics and Image Processing. Computer Science Press, Rockville, MD, 1982.

[11] T.H. Cormen, C.E. Leiserson, R.L. Rivest, and C. Stein,Introduction to Algorithms. Second Edition. MIT Press and

McGraw-Hill, 2001.

[12] Fleury, “Deux problemes de geometrie de situation.”Journal de mathematiques elementaires, pp. 257–261, 1883.

[13] S. Skiena,Implementing Discrete Mathematics: Combinatorics and Graph Theory with Mathematica. Reading, MA:

Addison-Wesley, 1990.

[14] I. Debled-Rennesson, and J. Reveillés, “A linear algorithm for segmentation of digital curves.”Int. Journ. Patt. Recogn.

and Artif. Intell., vol. 9, pp. 635–662, 1995.

[15] J.E. Bresenham, “Algorithm for computer control of a digital plotter.” IBM Systems Journal, pp. 25–30, 1965.

October 26, 2007 DRAFT

19

[16] A.K. Katsaggelos, L.P. Kondi, F.W. Meier, J. Ostermann, and G.M. Schuster, “MPEG-4 and rate-distortion-based shape-

coding techniques.”Proceedings of the IEEE, vol. 86, no. 6, pp. 1126–1154, 1998.

[17] J. Ostermann, “Methodologies used for evaluation of video tools and algorithms in MPEG-4.”Signal Process., vol. 9, pp.

343–365, 1997.

[18] Mei-Ko Kwan, “Graphic programming using odd or even points.”Chinese Math., vol. 1, pp. 273–277, 1962.

[19] M.G. Guan, “A survey on the Chinese postman problem.”J. Math. Res. Exposition, vol. 4, no. 1, pp. 113–119, 1984.

[20] R.W. Floyd, “Algorithm 97: Shortest Path.”Communications of the ACM, vol. 5, no. 6, pp. 345, 1962.

[21] E.W. Dijkstra, “A note on two problems in connexion with graphs.”Numerische Mathematik, vol. 1, pp. 269–271, 1959.

[22] H. Gou, and M. Wu, “Fingerprinting curves.”Lecture Notes on Computer Science, vol. 3304, pp. 13–28, 2004.

[23] V. Solachidis, and I.Pitas, “Watermarking polygonal lines using Fourier descriptors.”IEEE Computer Graphics and

Applications, vol. 24, no. 3, pp. 44–51, 2004.

[24] E. Saund, “Finding perceptually closed paths in sketches and drawings.” IEEE Transactions on Pattern Analysis and

Machine Intelligence, vol. 25, no. 4, pp. 475–491, 2003.

Andr ás Hajdu received his MSc degree in Mathematics from the Lajos Kossuth University, Hungary, in

1996. He obtained his PhD degree in Mathematics and Computer Science from the University of Debrecen,

Hungary, in 2003. He worked as a Post Doc researcher for the Artificial Intelligence Information Analysis

Laboratory, Dept. of Informatics, Aristotle University of Thessalonikiin 2005-2006. From 2001 he served

as Assistant Lecturer and since 2003 he has been an Assistant Professor at the University of Debrecen. He

is a member of the Janos Bolyai Mathematical Society, John von NeumannComputer Society (Hungary),

Public Body of the Hungarian Academy of Sciences, and the Hungarian Association for Image Analysis and Pattern Recognition.

He has authored or co-authored 17 journal papers and 43 conference papers. His main interest lies in discrete mathematics with

applications in digital image processing.

October 26, 2007 DRAFT

20

Ioannis Pitas received the Diploma of Electrical Engineering in 1980 and the PhD degree in Electrical

Engineering in 1985 both from the Aristotle University of Thessaloniki, Greece. Since 1994, he has been

a Professor at the Department of Informatics, Aristotle University of Thessaloniki. From 1980 to 1993 he

served as Scientific Assistant, Lecturer, Assistant Professor, and Associate Professor in the Department of

Electrical and Computer Engineering at the same University. He servedas a Visiting Research Associate or

Visiting Assistant Professor at several Universities. He has published145 journal papers, 360 conference

papers and contributed in 18 books in his areas of interest and edited or co-authored another 5. He has also been an invited

speaker and/or member of the program committee of several scientific conferences and workshops. In the past he served as

Associate Editor or co-Editor of four international journals and Generalor Technical Chair of three international conferences.

His current interests are in the areas of digital image and video processing and analysis, multidimensional signal processing,

watermarking and computer vision.

October 26, 2007 DRAFT

