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Abstract

We describe an exact dynamic programming update for
constrained partially observable Markov decision processes
(CPOMDPs). State-of-the-art exact solution of unconstrained
POMDPs relies on implicit enumeration of the vectors in the
piecewise linear value function, and pruning operations to ob-
tain a minimal representation of the updated value function.
In dynamic programming for CPOMDPs, each vector takes
two valuations, one with respect to the objective function and
another with respect to the constraint function. The dynamic
programming update consists of finding, for each belief state,
the vector that has the best objective function valuation while
still satisfying the constraint function. Whereas the pruning
operation in an unconstrained POMDP requires solution of a
linear program, the pruning operation for CPOMDPs requires
solution of a mixed integer linear program.

Background
The partially observable Markov decision process (POMDP)
is a model for decision-making under uncertainty with re-
spect both to the current state and to the future evolution
of the system. The model generalizes the fully observed
Markov decision process, which allows only for uncertainty
as to the future evolution of the system. The theory of solu-
tion of fully observed Markov decision processes with finite
or countable state space is well-established for both uncon-
strained (Puterman 2005) and constrained (Altman 1999)
problem formulations. Despite a recent burst of algorithmic
development for unconstrained POMDPs (Cassandra 1998;
Hansen 1998; Poupart 2005; Feng & Zilberstein 2004;
Spaan & Vlassis 2005), there has been relatively little devel-
opment of algorithmic approaches for the constrained prob-
lem.

A comprehensive treatment of countable state constrained
Markov decision processes is Altman’s monograph (Altman
1999). The central solution concept is a countably infinite
linear program, which has desirable theoretical properties
but obviously requires LP approximation or state trunca-
tion to be important practically. Complexity reduction is
addressed in (Meyn 2007) for network models. Approaches
include relaxation techniques and value function approxima-
tions based on a mean-flow model. Because the indefinite-
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horizon and infinite-horizon discounted POMDPs consid-
ered here are equivalent to Markov decision processes with
an uncountably infinite state space, the countable state re-
sults are not directly applicable.

The solution technique that we propose is related to an
approach developed by Piunovskiy and Mao (Piunovskiy
& Mao 2000). They considered an uncountably infinite-
state Markov decision process, and proposed augmenting
the state space with a state representing the expected value of
the constraint function, with a penalty function used to pro-
hibit solutions that violate the constraint. The technique of
Piunovskiy and Mao is independent of the representation of
the value function, and was illustrated with an example that
admitted an exact analytical solution. Our approach is simi-
lar in that it disallows at every step a solution that would vi-
olate the constraint. However, our method uses a piecewise
linear representation of the value function, building on tech-
niques developed for unconstrained POMDPs and allowing
for ε-exact numerical solutions. Our value function update
approach can be the basis for value iteration or for policy
iteration using Hansen’s policy improvement technique.

A constrained partially observable Markov decision pro-
cess is an 7-tuple

(S,A,Σ, p(s′|s, a), p(z|s), r(s, a), c(s, a)), (1)

where

• S, A and Σ are finite sets of states, actions, and observa-
tions,

• p(s′|s, a) is the state transition function, where p(s′|s, a)
is the probability that state s′ is reached from state s on
action a,

• p(z|s) is the observation function, where p(z|s) is the
probability that observation z ∈ Σ will be made in state
s,

• r(s, a) ≥ 0 is the cost incurred by taking action a in state
s, and

• c(s, a) ≥ 0 is a constraint function.

A deterministic stationary policy φ for a CPOMDP is a
map from all possible observation sequences to an action in
A, with the set of all policies given by

Φ = {φ : Σ∗ → A}. (2)
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We consider two problems on CPOMDPs. The indefinite-
horizon problem takes the form

minimize EΦ

[
T∑
t=1

r(at, st)

]
, (3)

subject to

EΦ

[
T∑
t=1

c(at, st)

]
≤ α, ∀s0, (4)

where T is the time that the system enters a set of one or
more terminal states, and s0 is the initial state. Conditions
that ensure that the dynamic programming operator for an
indefinite-horizon problem has a unique fixed point are de-
veloped in the literature (Hansen 2007; Patek 2001).

For the infinite-horizon constrained case, the constrained
problem takes the form

minimize EΦ

[ ∞∑
t=1

λtr(at, st)

]
(5)

subject to

EΦ

[ ∞∑
t=1

λtc(st, at)

]
≤ α, ∀s0, (6)

with discount factor 0 < λ < 1 and initial state s0. Dis-
counting ensures that the dynamic programming operator is
a contraction operator.

Motivating Problems
Below we discuss three examples that motivate development
of techniques for solution of CPOMDPs. Practical problems
that are naturally formulated as CPOMDPs are at least as
prevalent as those formulated as unconstrained problems.

Change Detection
A classic example of a constrained indefinite-horizon
POMDP is the problem of quickest change detection. The
problem is to minimize detection delay subject to a con-
straint on the probability of false alarm. This problem was
studied by Shiryaev (Shiryaev 1963), who elucidated the
form of the optimal policy but did not establish numerical
techniques for optimal parameterization of the solution. The
difficulty of finding the optimal parameterization for the pol-
icy, or even evaluating the probability of false alarm, has
been noted in the literature (Tartakovsky & Veeravalli 2004).

An indefinite-horizon constrained Bayes change detection
problem is a 5-tuple {Σ, α, f0, f1, T } with Σ a finite set of
observations, change time parameter 0 < ρ < 1, probability
of false alarm constraint 0 < α < 1, pre-change observa-
tion probability mass function f0 : Σ → [0, 1], post-change
observation probability mass function f1 : Σ → [0, 1], and
countable time set T . The change time ν is a geometric ran-
dom variable with parameter ρ, and η is an adapted estimate.

The problem statement is

minimize
φ∈Φ

E
φ(y1,...,yh)

[(η − ν − 1)+] (7)

f
0

f
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Figure 1: State transition diagram for the change detection
problem with geometric change time distribution. Arcs are
labeled with transition probabilities under the no-alarm /
alarm actions. Nodes are labeled with the distribution of
observations for the state.

subject to
p(η < ν) < α (8)

with
Φ = {φ : Σ∗ → [0, 1]}, (9)

where the distribution of random variables is given by

p(yt = a | ν < t) = f0(z), z ∈ Σ, (10)
p(yt = a | ν ≥ t) = f1(z), z ∈ Σ, (11)

p(η = t|η ≥ t) = φ(y1 . . . yt), (12)

p(ν = t) = ρ(1− ρ)t−1. (13)

The problem of quickest change detection can be modeled
as an indefinite-horizon POMDP with

S = {PreChange,PostChange,PostAlarm},
A = {Alarm,NoAlarm},
c(PreChange,Alarm) = 1,

r(PostChange,NoAlarm) = 1, (14)

and constraint functional

EΦ

[
T∑
t=1

c(at, st)

]
≤ α. (15)

State transition and observation probabilities are as shown
in Figure 1.

Structural Monitoring and Maintenance
Bridges, aircraft airframes, and other structural components
in engineered systems are subject to fatigue failures. Non-
destructive techniques for inspection of the damage state of
the component are imperfect, so the true structural dam-
age state of the component is imperfectly knowable. The
maintainer may take several actions in structural monitor-
ing, including inspection, repair, or replacement. Because
the consequences of structural failure are often severe, the
structural monitoring and maintenance problem is most nat-
urally formulated as an infinite-horizon discounted POMDP
in which the objective is to minimize lifecycle maintenance
and replacement costs subject to a constraint on the proba-
bility of failure, expressed at least qualitatively in terms like
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“no more than one in a million”. Because the service life of
the engineered system is usually uncertain, a discounted life
cycle cost objectives and occupation measure constraints are
appropriate (Puterman 2005, p. 125).

Opportunistic Spectrum Access
Limits on bandwidth for wireless services motivate dynamic
spectrum sharing strategies such as opportunistic spectrum
access (OSA), which is a strategy to allow secondary users
to exploit instantaneous spectrum opportunities while lim-
iting the level of interference for primary users. Zhao and
Swami proposed a CPOMDP decision-theoretic framework
for solution of the OSA problem (Zhao & Swami 2007). In
this framework, the state is determined by whether or not
the spectrum is in use by the primary user, the observations
consist of partial spectrum measurements, the reward func-
tion is the number of bits delivered by the secondary user,
and the constraint is on the probability of collision with a
primary user.

Exact Dynamic Programming Update for
CPOMDP

Having defined a CPOMDP and provided some motivating
problems, we now describe how to extend dynamic pro-
gramming techniques for POMDPs to solve CPOMDPs.

A POMDP can be transformed into an infinite-state fully
observed Markov decision process by defining a new belief
state, which is a vector b ∈ [0, 1]|S|,

∑
b(s) = 1, repre-

senting the posterior probability that the system is in each
state s ∈ S, given the starting state, observation history, and
action history. The belief state is a sufficient statistic and
can be recursively updated via Bayes rule. If observation z
is made and action a taken, and if the previous belief state
vector was b(s), the new belief state vector b′(s′) is given by

b′(s′) =
p(z|s′)

∑
s p(s

′|a, s)b(s)∑
s,s′′ p(z|s′′)p(s′′|a, s)b(s)

. (16)

The dynamic programming update for a POMDP is

vn+1(b) = min
a∈A

[
r(b, a) + λ

∑
z∈Σ

p(z|b, a)vn(b′(b, a, z))

]
.

Exact methods for efficiently performing the dynamic pro-
gramming update for POMDPs include incremental pruning
(Cassandra 1998) and restricted region incremental prun-
ing (Feng & Zilberstein 2004). A key technique for both
of these methods is representation of the value function as
a piecewise-linear function over the belief simplex. This
representation allows for a finite representation of the value
function as a set of value function vectors, the elements of
which represent the intersection of a hyperplane with a given
axis of the belief simplex. Stationary nonrandomized poli-
cies resulting from a stationary value function are sufficient
for constrained discounted (Piunovskiy & Mao 2000) and
indefinite-horizon (Feinberg & Piunovskiy 2000) Markov
decision processes problems with continuous state space.

Exact techniques for the POMDP dynamic programming
update implicitly enumerate all value function vectors for

the updated value function, and use a pruning operation to
maintain a minimal representation. An explicitly enumera-
tive dynamic programming update to convert a set of value
function vectors V to a new set V ′ is

V ′ = ∪a∈A ⊕z∈Σ {va,z,i|vi ∈ V} (17)

with

va,z,i(s) =
r(s, a)
|Σ|

+λ
∑
s′∈S

p(z|s, a)p(s′, s, a)vi(s′), (18)

and λ = 1 for the indefinite-horizon problem or 0 < λ < 1
for the infinite-horizon discounted problem. Typically, many
of the value function vectors in V ′ are dominated and super-
fluous to a minimal value function representation. Pruning is
the process of identifying vectors that are not part of the min-
imal value function representation. At the heart of the prun-
ing operation is solution of a linear program to determine if
there is a point where a given value function vector w is bet-
ter (lower cost) than all other value function vectors ui ∈ U .
The linear program takes the form

variables: h ≥ 0, b(s) ≥ 0 ∀s ∈ S
maximize: h
subject to the constraints:
b · (u− w) ≥ h,∀u ∈ U∑
s∈S b(s) = 1.

If the linear program is feasible, thenw is a candidate for the
minimal value function representation. Incremental prun-
ing interleaves pruning with vector generation, to reduce
the computational cost associated with pruning for each dy-
namic programming update. With PR representing the prun-
ing operation, the dynamic programming update is given by

V ′ = PR(∪a∈AVa),

Va = PR(Va,z1 ⊕ PR(Va,z2 ...PR(Va,zk−1 ⊕ Va,zk )...)),

Va,z = PR({va,z,i|vi ∈ V}). (19)

This dynamic programming technique can be extended
to the constrained problem by generating two sets of value
function vectors with a one-to-one correspondence among
the vectors in the set. One set is valued with respect to the
cost function r, and the other is valued with respect to the
constraint function c. We write (vir, v

i
c) for the vectors cor-

responding to each other in the two sets, and V for the col-
lection of pairs. Let

va,z,jr (s) =
r(s, a)
|Σ|

+λ
∑
s′∈S

p(z|s, a)p(s′, s, a)vjr(s
′) (20)

and

va,z,jc (s) =
c(s, a)
|Σ|

+ λ
∑
s′∈S

p(z|s, a)p(s′, s, a)vjc(s
′).

(21)
Equation 17 is applied separately to {va,z,jr (s)} and
{va,z,jc (s)}, and vectors (vir, v

i
c) in the resulting sets corre-

spond if they were generated from the same action and the
same predecessor vector index for each observation.

To develop a pruning operation for the value function vec-
tors, note that for a vector v to belong to the minimal set, it
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must have a lower cost vr · b at b than any another vector
uir ∈ U that satisfies the constraint uic · b < α for a pair
(ur, uc). This concept is illustrated in Figure 2. If a vec-
tor ui that does not satisfy the constraint uic · b < α at b,
the test vector w need not have a lower cost. Thus there are
conditional constraints. A standard trick for incorporating
conditional constraints into linear programs is to add a dis-
crete variable di ∈ {0, 1}, resulting in a mixed integer linear
program. Applying this technique to the problem at hand
produces the mixed integer linear program

variables:
h ≥ 0, b(s) > 0 ∀s ∈ S,
di ∈ {0, 1} ∀i ∈ {1, . . . , |U|}

maximize: h
subject to the constraints:
b · vc ≤ α,
b · (uir − vr)− h ≥ −diM,
uic · b ≥ diα, ∀(uic, uir) ∈ U ,∑
s∈S b(s) = 1,

with M a large positive number. If di = 1, then uis violates
the constraint at b, and a candidate vector vr need not have a
lower cost than uir at b. On the other hand, if di = 0, then uis
satisfies the constraint at b, and a candidate vector vr must
have a lower cost than uir at b. If the program is feasible, then
vr is a candidate for the lowest cost, minimal value function
representation satisfying the constraint. The entire pruning
operation for a CPOMDP is presented in Table 1.

The CPOMDP pruning operation can be used to perform
value iteration using incremental pruning dynamic program-
ming updates using Equation 19. After a dynamic program-
ming update producing a minimal set of vectors V , the value
function is given by v(b) = min(b·vr : b·vc ≤ α, (vr, vc) ∈
V). The value function converges to the optimal value func-
tion with each successive dynamic programming update.

As an alternative to value iteration, the exact dynamic pro-
gramming update can be used to perform policy iteration us-
ings Hansen’s algorithm (Hansen 1998), which uses a deter-
ministic finite-state controller (Q, qo,Σ, δ,A, α) for a policy
representation, where

• Q is a finite set of controller states,one for each vector
v ∈ V ,

• q0 ∈ Q is the start state,

• Σ is a finite input alphabet,

• δ is a function from Q × Σ into Q, called the transition
function,

• A is a finite output alphabet,

• α is an output function from Q intoA, with α(i) as short-
hand for α(qi).

Because the combination of the system with the controller
yields a Markov chain, any policy can be evaluated via so-
lution of a linear system with coefficient matrix (I − λA)
with I an identity matrix, A the system/controller transi-
tion matrix, and λ = 1 for the indefinite-horizon problem
or 0 < λ < 1 for the infinite-horizon problem. The system
state index i and the controller state index j are mapped to
a new index k via a one-to-one mapping (i, j)↔ k, and the
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Figure 2: The top plot shows value functions vectors with
objective function valuation vr, while the bottom plot shows
value function vectors with constraint valuation vc. Vectors
in the top plot are highlighted in the region of the belief
space where the vector is the best (lowest cost) vector sat-
isfying the constraint α = 0.20.

coefficients of the controller/system transition matrix A are
given by

A ((i, j), (i′, j′))⇐∑
z∈Σ

p(i′|i, α(j))p(z|j, α(j))1{δ(j, z) = j′}. (22)

The linear system for finding the objective value function
of a policy is (I − λA)r = x, where r(i,j) = r(i, α(j))
and x(i,j) is the value function intercept for the ith belief
state vertex for the jth value function vector vjr . The linear
system for finding the constraint value function of a policy
is (I − λA)c = x, where c(i,j) = c(i, α(j)) and x(i,j) is the
value function intercept for the ith belief state vertex for the
jth value function vector vjc .

Under Hansen’s policy iteration algorithm, an initial pol-
icy is evaluated with respect to both the objective and con-
straint functions, and then a dynamic programming update is
performed using Equation 19 and the pruning operation de-
scribed in Table 1. Each vector in the updated value function
represents a new candidate state for the finite state controller.
Once new states have been added, the policy is evaluated
to produce a new value function, and the algorithm repeats.
Each iteration yields an improved finite state controller that
satisfies the problem constraints.
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Table 1: Algorithm for pruning value function vectors for a
CPOMDP
Procedure: MIP-DOMINATE((wr, wc),U)

1: solve the following mixed integer linear program:
2: variables:
3: h ≥ 0, b(s) > 0 ∀s ∈ S,
4: di ∈ {0, 1} ∀i ∈ {1, . . . , |U|}
5: maximize: h
6: subject to the constraints:
7: b · wc ≤ α,
8: b · (uir − wr)− h ≥ −diM,
9: uic · b ≥ diα, ∀(uir, uic) ∈ U

10:
∑
s∈S b(s) = 1.

11: if h ≥ 0 then
12: return b
13: else
14: return nil
15: end if
Procedure: BEST(b,U)

1: min←∞
2: for all (ur, uc) ∈ U do
3: if b · uc < α then
4: if (b · ur < min) or ((b · ur = min) and (ur <lex

wr)) then
5: (wr, wc)← (ur, uc)
6: min← b · u
7: end if
8: end if
9: end for

10: return (wr, wc)
Procedure: PR(W)

1: D ← ∅
2: while W 6= ∅ do
3: (wr, wc)← any element inW
4: b←MIP-DOMINATE((wr, wc),D)
5: if b = nil then
6: W ←W − {(wr, wc)}
7: else
8: (wr, wc)← BEST(b,W)
9: D ← D ∪ {(wr, wc)}

10: W ←W − {(wr, wc)}
11: end if
12: end while
13: return D

Example
The solution technique is illustrated with an example.

Consider the indefinite-horizon change detection problem
with geometric change time parameter ρ = 0.01, observa-
tion alphabet size |Σ| = 3, pre-change observation distribu-
tion

f0(z1) = 0.6,
f0(z2) = 0.3,
f0(z3) = 0.1,

and post-change observation distribution

f0(z1) = 0.2,
f0(z2) = 0.4,
f0(z3) = 0.4.

The problem statement is

minimize
φ∈Φ

v = E[(τ − η − 1)+] (23)

subject to
p(τ < η) ≤ α. (24)

with false alarm probability constraint α = 0.20.
Starting with initial value function vectors vr = [10 0 0]

and vc = [0 0 0], we perform four dynamic programming
updates. The results are shown in Figure 3. The policy cor-
responding to the value function consists of producing an
alarm when the probability that the system is in the post-
change state exceeds 0.40, with an expected detection delay
of approximately 4. Tartakovsky and Veeravalli noted that
a conservative policy for the problem of quickest detection
consists of producing an alarm when the posterior proba-
bility of change exceeds 1 − α (Tartakovsky & Veeravalli
2004). Note that this policy is much less conservative (and
therefore better-valued) than the conservative policy of pro-
ducing an alarm when the posterior probability of change
exceeds 1− α = 0.80.

Conclusion
This paper presents an exact dynamic update for CPOMDPs
using a piecewise linear representation of the value func-
tion. The key concept is modification of the standard prun-
ing algorithm, with a mixed integer linear program replacing
a linear program. The dynamic programming update can
be used to perform value iteration or policy iteration. The
method should be useful for finding solutions to modestly-
sized sequential decision problems that include uncertainty
and constraints.

The scaling behavior of the proposed CPOMDP dynamic
programming update is expected to be similar to that of ex-
act dynamic programming updates for POMDPs, which ex-
hibit PSPACE complexity for many problems. Although this
scaling behavior makes the proposed technique unsuitable
for large-scale problems, we hope that the insight provided
by an exact numerical technique will spur development of
approximate methods for solution of CPOMDPs.
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Figure 3: A minimal representation of the value function
for the change detection example after four exact dynamic
programming updates. Each vector is presented with its ob-
jective valuation vr and constraint valuation vc, with b(s2)
the posterior probability that the system is in the post-change
state. An approximation of the optimal value function v(b)
is shown as dots on the top plot.
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