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[1] Finding an overall linear trend is a common method in
scientific studies. It is almost a requirement when one
intends to study variability. Nevertheless, when dealing with
long climate temporal series, fitting a straight line only
seldom has a relevant meaning. This paper proposes and
describes a new methodology for finding overall trends,
and, simultaneously, for computing a new set of climate
parameters: the breakpoints between periods with
significantly different trends. The proposed methodology
uses a least-squares approach to compute the best
continuous set of straight lines that fit a given time series,
subject to a number of constraints on the minimum distance
between breakpoints and on the minimum trend change at
each breakpoint. The method is tested with three climate
time series. INDEX TERMS: 1610 Global Change:

Atmosphere (0315, 0325); 3309 Meteorology and Atmospheric

Dynamics: Climatology (1620); 3299 Mathematical Geophysics:

General or miscellaneous. Citation: Tomé, A., and P. M. A.

Miranda (2004), Piecewise linear fitting and trend changing

points of climate parameters, Geophys. Res. Lett., 31, L02207,

doi:10.1029/2003GL019100.

1. Introduction

[2] During the last decade there have been a large number
of papers discussing long term linear tendencies of climate
parameters, such as precipitation, temperature and the NAO
index, to mention just a few [e.g., Groisman and Easterling,
1994; Hurrell, 1995; Easterling et al., 2000; Thompson et
al., 2000; Tuomenvirta et al., 2000; Tank et al., 2002;
Ostermeier et al., 2003]. Many of these studies were
motivated by the quest for anthropogenic climate changes
in the last century. Analyzing the global temperature time
series for the period 1880 till 1997, Karl et al. [2000]
pointed out that a linear trend is not adequate to describe its
low frequency behavior. Even an eye inspection revealed
that the mean warming obtained by fitting a straight line did
not occur in a persistent way, but in two sustained periods,
one beginning around 1910 and the other starting in the mid
1970s. In order to clearly separate the two periods of
warming, they devised two approaches: one based on Haar
Wavelets, which was able to identify three discontinuities in
the time series, and the second (the preferred one) consisting
of the minimization of the residual sum of squares of all
possible combinations of four line segments representing

time intervals of 15 years or more, and constrained to have
their end points intersecting at the year of change point.
Using this approach they were able to evaluate the partial
trends, a better overall trend, and most of all they identified
three breakpoint years: 1910, 1941 and 1975.
[3] The methodology proposed here is a development of

that second approach, where instead of arbitrarily fixing the
number of line segments, which in Karl et al. [2000]
resulted of an eye inspection of the time series, the number
and location of the breakpoints are simultaneously opti-
mized. The method computes the best combination of
continuous line segments that minimize the residual sum
of squares, subjected to a pair of conditions: (a) the interval
between breakpoints must equal or exceed a given value,
(b) two consecutive trends must obey one or more imposed
conditions.
[4] Applying this methodology to the time series used by

Karl et al. [2000], representing the mean world temperature,
with the conditions of a minimum 15 year interval between
breakpoints and of changing sign between two consecutive
trends, leads to the results they have obtained. The results
are still the same if instead of a minimum 15 year period
ones uses 10, 20 or even 30 years.

2. The Algorithm

[5] To describe the method of implementation let us
assume one wants to fit, to a given data series, a continuous
curve made of four straight-line segments. This kind of
problem is not standard in scientific and statistical program
packages, and in some way was what Karl et al. [2000]
needed to solve in their work. Essentially, having the time
series

y1; . . . ; ybp 2ð Þ; . . . ; ybp 3ð Þ; . . . ; ybp 4ð Þ; . . . ; ym
� �

where the bp(2), bp(3) and bp(4) are the breakpoint
positions in the series, the problem is then to fit, in the
least squares sense, the function

yi ¼ a1ti þ c1 i ¼ 1; . . . ; bp 2ð Þ

yi ¼ a2ti þ c2 i ¼ bp 2ð Þ þ 1; . . . ; bp 3ð Þ

yi ¼ a3ti þ c3 i ¼ bp 3ð Þ þ 1; . . . ; bp 4ð Þ

yi ¼ a4ti þ c4 i ¼ bp 4ð Þ þ 1; . . . ; m
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The continuity condition of the three line segments leads to

c2 ¼ c1 þ a1 � a2ð Þtbp 2ð Þ

c3 ¼ c1 þ a1 � a2ð Þtbp 2ð Þ þ a2 � a3ð Þtbp 3ð Þ

c4 ¼ c1 þ a1 � a2ð Þtbp 2ð Þ þ a2 � a3ð Þtbp 3ð Þ þ a3 � a4ð Þtbp 4ð Þ

If the breakpoint positions, bp(2), bp(3) and bp(4), are known,
or are imposed, it is quite easy to obtain a linear system of five
equations with five unknowns, a1, a2, a3, a4 and c1, equating
to zero the partial derivatives of the sum of the square
differences between the fit function and the observations. But
the equation system obtained that way could not be general-
ized to an arbitrary number of line segments, making it almost
impossible to devise a convenient and computational efficient
process to deal with an unknown number of breakpoints and
its positions. Instead of that, one can transform this problem
into a general case of an over-determined system of linear
equations of the type

min k y� As k ð1Þ

where s is the vector solution, s = {a1, a2, a3, a4, c1}, y is the
time series, y = { y1, . . .ym}, and A is a (m � 5) rectangular
matrix with the first bp(2) lines equal to {ti, 0, 0, 0, 1}. The
bp(2) + 1 to bp(3) lines will be equal to {tbp(2), ti � tbp(2), 0,
0, 1},the bp(3) + 1 to bp(4) lines will be equal to {tbp(2),
tbp(3) � tbp(2), ti � tbp(3), 0, 1} and the bp(4) to the m lines are
equal to {tbp(2), tbp(3)� tbp(2), tbp(4)� tbp(3), ti� tbp(4), 1}. This
formulation allows for the use of a standard solution for this
kind of over-determined problem.
[6] It is also easy to extend the method to an arbitrary

number of finite line segments to fit into the series, because
the creation of the corresponding A matrix can be easily
programmed. Let A be a rectangular matrix [m � (‘ + 1)]
where ‘ + 1 is the number of the continuous line segments
to fit in the y series of m elements, ‘ is the number of
breakpoints, that should be greater or equal to 1. Let bp and
b be two vectors of ‘ + 1 elements, The first element of bp is
set to 1 and the remaining ‘ elements are the position of the
breakpoints in the y series. The first element of b is set to
zero and the remaining elements are the time values of the
breakpoints b(i) = t(bp(i)). The A matrix can be computed
with the following algorithm (in pseudocode):

for k ¼ 1 to ‘
for i ¼ bp kð Þ to bp k þ 1ð Þ

for j ¼ 1 to k � 1

a i; jð Þ ¼ b jþ 1ð Þ � b jð Þ
endfor

a i; kð Þ ¼ x ið Þ � b kð Þ
for j ¼ k þ 1 to ‘

a i; jð Þ ¼ 0

endfor

a i; ‘þ 1ð Þ ¼ 1

endfor

endfor

With the creation of the A matrix completely automated, the
system of equation (1) can be consecutively solved for every
combination of possible solutions, that obeys the minimum
imposed distance between two consecutive breakpoints. One
starts with the case of one breakpoint, up to a maximum of

twelve breakpoints. For each of these cases one gets the best
fit, that satisfies the desired conditions between two
consecutive linear trends. At the end, the solution that
minimizes the residual sum of squares is chosen.
[7] This approach of solving several times a linear system

of equations changing the position and the number of break-
points, was found to be preferable to the approach of solving a
non-linear system of equations that arises when one considers
the breakpoint positions as unknowns, which results in a
larger number of computer operations needed by the con-
verging condition of the non-linear scheme. The chosen
approach also made it possible, and easy, to impose any kind
of condition between two consecutive trends.
[8] Furthermore, the adopted procedure obtains all the

partial solutions with less breakpoints and allows one to build
a series of the sum of the square residuals of the best fit with
one, two or three breakpoints, up to a maximum of twelve.
Probably this series could be used to study the significance of
solutions with several breakpoints by analyzing the relative
decrease of the square sum of residuals. This problem is
presently being addressed. Nevertheless, it must be pointed
out that the number of breakpoints is essentially determined
by the conditions imposed between two consecutive trends. It
is strongly recommended that, whenever the breakpoint
positions are separated by the minimum period allowed, an
eye inspection of the series best fit result is performed.
[9] To illustrate the method, it will now be applied to

three time series of climate parameters.

3. Azores December Maximum Temperature

[10] The mean maximum December temperature at Angra
do Heroismo (Azores) is an interesting test case, because it
illustrates the biased conclusions one can make by simply
evaluating the linear trend. Results obtained with the pro-
posed methodology, subjected to a minimum of 15 years
between breakpoints and different signs between consecutive
trends, are presented in Figure 1. In the same figure, the best
linear fit (dashed line) has also been plotted. The method
identifies two breakpoints, in 1935 and 1960, separating a
period of warming (1901–1935) at a rate of 0.14�C/decade,
followed be a period of stronger cooling (1935–1960, with
cooling rate of �0.51�C/decade) and by a later period of
warming (1965–2002, at 0.22�C/decade). These three linear
trends lead to a positive overall mean trend of 0.01�C per
decade for the period 1901–2002. For the same data, the
linear trend given by the dashed line is negative, and equal to
�0.07�C/decade.
[11] Looking only at the linear trend one could errone-

ously conclude that the maximum December temperature at
Angra do Heroismo has been gradually decreasing in the
20th century, when what really happened was a strong
cooling in the 25 year period starting in 1935 and ending
in 1960. Even if the warming periods did not fully com-
pensate for that cooling period, the simple statement of a
linear decrease in temperature would be misleading.

4. NAO Index

[12] The North Atlantic Oscillation (NAO) is one of the
major features of the Northern Hemisphere climate system.
It was first acknowledged by Walker [1924] but only in the
last quarter of the 20th century was it extensively studied. It
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has many times been pointed out that in recent decades the
NAO index has exhibited a positive trend.
[13] However, due to the high irregularity of its time series

many authors have reported periods of increase and decrease
of the NAO index. Invariably, the location of the start and
ending moments of those periods resulted of an eye inspec-
tion of the series plot. The results of applying the proposed
methodology to the NAO index, imposing different values
(between 10 and 35 years) for the minimum time distance
between breakpoints, and the condition of sign change be-
tween two consecutive trends, is presented in Figure 2.
[14] Figure 2 illustrates an objective way of testing the

robustness of piecewise linear trends, in highly variable
time series, where a visual inspection may be misleading.
When the computed trend lines have durations equal to the
imposed minimum, as is the case of most lines in the two
lowest solutions shown in Figure 2, the corresponding
trends are an artifact of the constraints and do not represent
the low frequency variability of the series. This is particu-
larly clear in the lowest curve. On the other hand, the
increasing trend of the NAO index computed for the period
1965–1990 seems a very robust result, the first year being a
breakpoint present in all solutions. Ostermeier and Wallace
[2003] devised a comparable, but slightly more intricate
way of analyzing the tendency of the 20th century NAO
index, which led to similar conclusions. The persistence of a
positive trend in the NAO index for almost 3 decades, even
when one considers a 10 year minimum period, is a
remarkable feature, unprecedented in the series history.
One may conclude that the reported high values of the
NAO index in the last decades are essentially due to the
existence of that persistent positive trend, which may have
ended in the last few years.
[15] An analysis of the set of solutions presented in

Figure 2 shows that the first and last breakpoints in each
solution are highly constrained by the boundary condition,
i.e., the need to satisfy the minimum length imposed
between the breakpoints and the series limit. The 20 and
25 year cases lead to a good visual fit of the series, as shown
in Figure 3, where the original data is also included.
[16] From Figure 3 we may conclude that the low

frequency behavior of the NAO index, for the 25 year case,
presents a positive trend till 1909, followed by a negative
trend till 1964, and then again a positive trend. The net trend is

positive, 0.20/decade, and much stronger than the one
obtained by fitting a single line (0.04/decade). The boundary
conditions do not allow for the 25 year solution to pick up the
downward trend of the NAO index in the last decade. As a
consequence the upward trend after 1965 is somewhat
reduced in that solution. The best fit to the 1965–1990 trend
is the one given by the 10 year solution, since it is the least
constrained, and it suggests a much faster evolution of the
index at a rate of 1.6/decade. Prior to 1960 the behavior of
both solutions presented in Figure 3 are qualitatively similar.
The 20 year solution still keeps the last downward trend but
starting at 1986 due to the boundary condition. For the 10 year
solution the corresponding breakpoint is in 1992 (Figure 2).
[17] The results presented in Figures 2 and 3 explain the

distribution of partial trends (partial trend values, plotted as
the domain beginning year trend versus end year trend)
reported by Ostermeier and Wallace [2003]. Negative
trends prevail prior to the 1960s, while strong positive

Figure 1. Maximum December temperature at Angra do
Heroismo (Azores), breakpoints (1935 and 1960), partial
tendencies, in �C/decade, and the linear trend (dashed line).

Figure 2. Dependency of the location of breakpoints in the
NAO index, between 1880 and 2003, on the minimum
duration of the time intervals between breakpoints. NAO
index computed by J. Hurrel, as the difference of normalized
sea level pressure between Lisbon, Portugal, and Stykkishol-
mur/Reykjavik, Iceland, updating the series of Hurrell
[1995]. The different trend lines have been vertically
displaced to avoid superposition, keeping the same scale.

Figure 3. Piecewise linear fitting of the NAO index for a
minimum period between two breakpoints of 20 years
(dashed line) and 25 years (full line), for the condition of
signal change between consecutive trends.
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partial trends dominate for periods beginning in the 1960s
and 1970s and ending prior to the early 1990s.

5. Lisbon Winter Precipitation

[18] The Lisbon precipitation time series has often been
pointed out as a climate parameter strongly dependent of the
NAO index values, and the two series are known to be
negatively correlated [Hurrell, 1995; Trigo et al., 2004].
The remaining question is to know if they present the same
low frequency behavior.
[19] Figure 4 presents the breakpoint locations obtained for

different imposed minimum periods between them. The
original series with the best fit for the 20 years and 25 year
cases is also presented, in the upper panel of the figure. Two
breakpoints, in the early 1930s and early 1960s are present in
all solutions.
[20] When comparing Figures 2 and 4, one sees that,

although the position of the breakpoints does not exactly
match, the winter NAO index and the Lisbon winter
precipitation show the same low frequency behavior. For
the 10 year solutions the positions of the breakpoints almost
coincide and the partial trends present opposite signs, as
expected. As happens with the NAO index, the winter
precipitation of Lisbon, when allowed to change trend signs
every 10 years, chooses not to do it, and between the early
1960s and the early 1990s presents a persistent negative
trend, which is a remarkable fact in the series history.
[21] In the NAO index and in the Lisbon precipitation the

breakpoint in the early 1960s is very robust, making it a
very important turning year in these climate series.

6. Concluding Remarks

[22] Although frequently used, the linear trend can be
deceptive. It is possible to obtain an improved ‘‘trend’’

through the weighted average of partial trends, that better
describes the low frequency behavior of the times series. At
the same time one gets a set new climate parameters (break-
points) that can provide a new insight into global and local
climate studies. After the work of Karl et al. [2000] some
studies used the years of 1945 and 1975 as turning points of
the climate series of the 20th century [e.g., Tank et al., 2002],
not considering the fact they were obtained for the global
surface temperature and have no special meaning for other
climate series. These years may be completely inadequate for
many climate time series, namely for precipitation, for the
NAO index, as shown in this paper, and probably for many
other climate time series.
[23] We believe that a systematic study of the distribution

of climate breakpoints in space and time may provide new
insights into the spatial patterns of climate change and its
relation with the global circulation. The proposed method
allows for an objective and rather simple way of computing
those breakpoints from large numbers of climate time series,
without important a priori decisions.
[24] The algorithm was implemented in a FORTRAN 90

program, using LAPACK routines for solving over-deter-
mined linear equation systems. The source code can be
freely obtained by requesting it by mail to the first author.
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A. Gocheva, M. Mileta, S. Pashiardis, L. Heejkrlik, C. Kern-Hansen,
R. Heino, P. Bessemoulin, G. Müller-Westmeier, M. Tzanakou, S. Szalai,
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Figure 4. Dependency of the location of breakpoints in the
winter (December through March) Lisbon precipitation,
between 1900 and 2002, on the minimum duration of time
intervals between breakpoints. The precipitation time series
is plotted together with the 20 years (dashed line) and
25 years case (full line) in the upper panel.
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