
Piecewise Linear Neural Networks and Deep
Learning#
Qinghua Tao1,*, Li Li2,*, Xiaolin Huang3,*, Xiangming Xi4, Shuning Wang2, and
Johan A.K. Suykens1

1STADIUS, ESAT, KU Leuven, Heverlee, 3001, Belgium
2Department of Automation, Tsinghua University, Beijing, 100084, China
3Department of Automation,Shanghai Jiao Tong Univeristy, Shanghai, 200240, China
4Zhejiang Lab, Hangzhou, 311121, China
*corresponding.author: qinghua.tao@esat.kuleuven.be, li-li@mail.tsinghua.edu.cn, xiaolinhuang@sjtu.edu.cn

This work has been published in Nature Reviews Methods Primers. For citations, please cite “Tao, Q., Li, L.,
Huang, X. et al. Piecewise linear neural networks and deep learning. Nature Reviews Methods Primers 2, 42
(2022). https://doi.org/10.1038/s43586-022-00125-7”.
For the published version, please access https://rdcu.be/cPIGw for online-reading, download the manuscript
from https://www.nature.com/articles/s43586-022-00125-7#citeas, and check the supplementary
information via https://www.nature.com/articles/s43586-022-00125-7#Sec38.

ABSTRACT

As a powerful modelling method, PieceWise Linear Neural Networks (PWLNNs) have proven successful in various fields, most
recently in deep learning. To apply PWLNN methods, both the representation and the learning have long been studied. In 1977,
the canonical representation pioneered the works of shallow PWLNNs learned by incremental designs, but the applications to
large-scale data were prohibited. In 2010, the Rectified Linear Unit (ReLU) advocated the prevalence of PWLNNs in deep
learning. Ever since, PWLNNs have been successfully applied to extensive tasks and achieved advantageous performances.
In this Primer, we systematically introduce the methodology of PWLNNs by grouping the works into shallow and deep networks.
Firstly, different PWLNN representation models are constructed with elaborated examples. With PWLNNs, the evolution of
learning algorithms for data is presented and fundamental theoretical analysis follows up for in-depth understandings. Then,
representative applications are introduced together with discussions and outlooks.

1 Introduction
PieceWise Linear (PWL) Neural Networks (NN) have been
studied particularly since the 1970s, and are now a success-
ful mainstream method in deep learning. PWLNNs partition
the domain into numerous sub-regions, each of which has
localized linearity, whilst maintaining nonlinearity through-
out the whole domain with great modelling flexibility1. In
PWLNNs, the PWL nonlinearity is realized through network
architectures, which do not require explicit descriptions on
sub-regions of localized linearity. PWLNNs are explicit in ge-
ometrical interpretation and flexibile in approximation, such
as an induced conclusion by the Stone-Weierstrass approx-
imation theorem2[G]. Through PWLNN methods, complex
nonlinear systems can be modelled by a finite number of linear
functions localized over different sub-regions. This character-
istic naturally bridges linearity and nonlinearity, and is more
amenable to the modelling, learning, and analysis than other
nonlinear methods.

PWLNNs are neural network-structured versions of PWL
functions [G]. The conventional representation for PWL func-
tions is given by a region-by-region manner, which explicitly
lists each sub-region tessellating the domain and its localized

§The glossary items are marked with [G] and each of them is given with a
succinct explanation in Section 8.

linear function3. The conventional representation demands an
excessive number of parameters and is intractable in practical
applications involving numerous sub-regions and complex
domain configurations4. In contrast, PWLNNs efficiently rep-
resent PWL functions with compact expressions organized as
network architectures, through which versatile functionalities
can be facilitated. PWLNNs have now become a mainstream
method for utilizing PWL functions in data science. To real-
ize the power of PWLNNs in practice, two challenges need
to be resolved: how to construct proper models to represent
PWLNNs (representation) and how to effectively optimize the
PWLNNs to well model the data or systems (learning). To
this end, great efforts have been made by many researchers
from different fields. These works can be categorized into
two main groups: shallow (e.g., Canonical Piecewise Linear
Representation (CPLR)5 [G]) and deep (e.g., networks with
Rectified Linear Units (ReLU)6 [G]) PWLNNs. During the
evolution from shallow to deep, the representation, learning
and analysis of PWLNNs are closely related.

CPLR pioneered the compact expressions and analytical
studies for PWL functions7, 8. Hinging hyperplanes9 [G] is
another important representation model, constructed with ge-
ometrical explanations of hinges. These two compact repre-
sentations result in PWLNNs with one hidden layer, namely

ar
X

iv
:2

20
6.

09
14

9v
1

 [
cs

.L
G

]
 1

8
Ju

n
20

22

https://doi.org/10.1038/s43586-022-00125-7
https://rdcu.be/cPIGw
https://www.nature.com/articles/s43586-022-00125-7#citeas
https://www.nature.com/articles/s43586-022-00125-7#Sec38

shallow PWLNNs, where absolute-value operators and maxi-
mization operators are adopted to induce PWL nonlinearity,
as in ReLU for deep learning. Subsequent research has fo-
cused on variant representation models10–17, theoretical analy-
sis18–25, learning algorithms26–31, to name a few. Most of the
resulting PWLNNs were shallow-architectured, and yet their
performances were limited in high-dimensional and large-
scale problems. In 2010, ReLU successfully embedded PWL
nonlinearity in the mainstream Deep neural networks (PWL-
DNNs) and has achieved record-breaking performances in var-
ious benchmarks32–34. For example, given the same number
of neurons, PWL-DNNs have exponentially greater capacity
than that of their shallow counterparts35.

For learning algorithms, shallow PWLNNs commonly use
incremental designs, which iteratively grow wider networks.
PWL-DNNs inherit the regular learning of generic DNNs, in
which network structures are predefined and parameters are
optimized by the backpropagation strategy [G] and stochastic
gradient descent (SGD) [G] algorithm. With the support of
powerful graphical and tensor processing units and efficient
implementation platforms such as PyTorch36, the powerful
learning ability of PWL-DNNs is fundamentally realized to
tackle complex tasks, and PWL-DNNs have since become the
mainstream deep learning method after decades of rigorous
developments.

In this primer, the PWLNN method is systematically intro-
duced and versatile perspectives are provided, to give a more
insightful understanding towards representations, learning,
and analysis. Some preliminaries are given, and details of
how to construct representation models for PWLNNs (Experi-
mentation) followed by learning algorithms for data analysis
and their theoretical properties (Results). We introduce sev-
eral representative applications of PWLNNs (Applications)
and the use of PWLNNs for data under standard cases (Re-
producibility and data deposition). To conclude, the ongoing
issues (Limitations and optimizations) and some potential
future directions (Outlook) are discussed.

2 Experimentation
In this section, some preliminaries are firstly given, and then
the representations of PWLNNs are introduced in detail.

2.1 Preliminaries
2.1.1 PWL functions
Linear functions are basic mathematical models, but lack
flexibility in practical scenarios which commonly pertain non-
linear natures. PWL functions are powerful remedies bridging
linearity to nonlinearity for great model flexibility. PWL func-
tions are not necessarily continuous; in practice, continuity
pervasively and sometimes naturally exists. For the purpose
of this Primer, we will discuss continuous PWL functions.

In the conventional representation, PWL functions are given
by a region-by-region manner3. Let f (xxx) : Ω 7→ R be a func-
tion defined in domain Ω⊆ Rn. f (xxx) is a PWL function, if it
satisfies equations (1) and (2) (or (3)).

To be specific, the domain Ω is divided into a finite number
of polyhedral sub-regions Ωi with interior Ω̊i satisfying⋃

Ωi = Ω, Ω̊i1

⋂
Ω̊i2 = /0, ∀i1 6= i2, i1, i2 = 1, . . . ,d, (1)

by a finite set of boundaries B = {π j(xxx)}h
j=1, such that each

boundary is an (n−1)-dimensional hyperplane characterized
by π j(xxx) :=αααT

j xxx−β j = 0 with ααα j ∈ Rn, β j ∈ R, and cannot
be covered by any (n− 2)-dimensional hyperplane. There
exists a finite number of linear functions l1(xxx), . . . , ld(xxx) which
constitute the complete expression of f (xxx), such that

f (xxx) ∈ {l1(xxx), . . . , ld(xxx)}, ∀xxx ∈Ω, (2)

or equivalently

f (xxx) = li(xxx) = JJJT
i xxx+bi, ∀xxx ∈Ωi, i = 1, . . . ,d, (3)

where JJJi ∈ Rn is called the Jacobian vector of the sub-region
Ωi with the bias bi ∈ R.

For example, denoting f : R3 7→ R as a PWL function, by
the conventional representation, f (xxx) is expressed as

f (xxx) =
{

l1(xxx) = x1− x2 + x3 +1, π(xxx)≥ 0,
l2(xxx) =−x1 + x2− x3−1, π(xxx)< 0, (4)

where the biases are b1 = 1 and b2 = −1, the boundary set
H contains π(xxx) := x1− x2 + x3 +1 = 0, the sub-regions are
Ω1 = {xxx ∈ R3|x1− x2 + x3 +1 ≥ 0} and Ω2 = {xxx ∈ R3|x1−
x2 + x3 +1 < 0}, and the Jacobian vectors of Ω1 and Ω2 are
JJJ1 = [1,−1,1]T and JJJ2 = [−1,1,−1]T , respectively.

Note that with d = 1, the PWL function f (xxx) is reduced
to be linear, thus, we regard linear functions as a special
case of PWL functions throughout the Primer. Compared
to other nonlinear models, PWL functions possess explicit
geometric interpretation, and many practical systems can be
easily transformed into PWL nonlinear functions37, such as
PWL memristors [G]38, 39, specialized cost functions40–44, and
part mathematical programmings45–50. As powerful nonlinear
models, PWL functions are proven universal approximators51:
let Ω⊂ Rn be a compact domain, and p(xxx) : Ω 7→ R be a con-
tinuous function. When ∀ε > 0, there exists a PWL function
f (xxx) (depending upon ε), such that ∀xxx ∈Ω, | f (xxx)− p(xxx)|< ε .

2.1.2 PWLNNs
Before applying the PWL nonlinearity, it is important to con-
struct proper mathematical formulas to represent such PWL
functions. Neural networks have been widely recognized as
one of the most powerful nonlinear approximators in data sci-
ence. Neural networks refer to mathematical layered models
composed of artificial neurons and their connections52. Map-
ping through neurons introduces nonlinearity by activation
functions, leading to powerful flexible models. In neural net-
works, such mappings are realized via the mapping functions
of neurons. In PWLNNs, such nonlinear mapping functions
are specified as PWL functions, bringing PWL nonlinearity to
the network. Box 1 defines PWLNNs from the perspective of

2/23

Box 1| PieceWise Linear Neural Networks
(PWLNNs)

1x

2x

nx

1B

2B

()f x

 

1w

2w

#1 hidden layer

local linear functions

.

()f x

1,1
W b

.

.

. . .

. . .

. . .

, kk
W b

1w

2w

kmw

() 

1x

2x

nx

.

1x

2x

nx

() 

() 

() 

() 

() 

.

#1 hidden layer #k hidden layer

MB

Mw

…
…

…
…

#1 hidden layer

…
…

…
…

…
…

J,b

min

max

()f x

1x

2x

nx

1B

2B

()f x

 

1w

2w

#1 hidden layer

MB

Mw

…
…

…
…

1v


2v

3v

()f x
1x

2x

1x

2x

1v


2v

3v

()f x

max

1v


2v

3v

x

2v

3v

x

()f x

()f x

hidden layer(s)

nx

2x

1x

…
…

…
…

 …
…

…
…

…… ……

…
…

input layer output layer

v outputv 

:v

vz

inputv 

(examples)

An illustration of PWLNNs defined below.

Let ggg(xxx|N) be a PWLNN with the architecture N =
(V ,E), determined by a finite set of neurons, V , and
a finite set of edges, E , depicting the directed connec-
tions between paired neurons in V . Given an edge
e = (v′,v) ∈ E , it is an incoming edge for v and out-
going edge for v′. Neurons in V can be grouped into
non-overlapping and non-empty subsets consisting of
input neurons (I), output neurons (O), and hidden
neurons (H), such that V = I ∪O ∪H .
The architecture of such a network can be structured
into layers. Neurons in I constitute the input layer,
or the 0-th layer. Neurons in H can be organized
into hidden layers L (L ≥ 1) connected sequentially,
such that a neuron in the l-th (1 ≤ l ≤ L) layer only
has incoming edges from neurons in precedent layers
(including the input layer) and has outgoing edges to
neurons in subsequent layers (including the output
layer). The output layer is constructed by neurons in
O , and is also called the (L+1)-th layer.
For any neuron v ∈ V \I , there is either a linear or
PWL mapping function φv : Rnv → R, so that

zv = φv(zv1 , · · · ,zvnv ;θθθ v)

where zv is the neuron output, nv is the number of
incoming edges for v, which are directed from vi, i =
1, · · · ,nv in precedent layers to v, and θθθ v denotes the
learnable parameters related to neuron v. With L = 1,
it is a shallow PWLNN, when L≥ 2 it is a PWL-DNN.

network architectures. This definition has been generalised to
include the interconnection weight of an edge (v′,v) between
neuron v′ and neuron v, as generally used in neural networks,
into the PWL mapping function of the neuron v. This makes
PWLNNs more expressible for complex mapping functions in

neurons, such as those used in the Maxout neural networks51.
Furthermore, all the parameters ΘΘΘ = {θθθ v}v∈V \I constitute
the parameter space of the network, and correspond to the
commonly-used interconnection weights and bias terms in
other descriptions for neural networks.

Two main aspects should be considered before applying
PWLNNs in practice. One is the determination of the network
structures of N , and the other is the determination of the
learnable parameters.

PWLNNs are the network-structured versions of PWL func-
tions. However, given a specific representation model of
PWLNNs, where N is specified to a certain class of network
structures, this representation model does not necessarily have
universal representation ability for arbitrary PWL functions
in Rn. This leads to the definition of universal representation
ability as follows: when F is the set of all PWL functions
as defined by the conventional representation, a PWLNN rep-
resentation model g(xxx|N) with a single output neuron in O
is said to have universal representation ability for F , if the
following condition is satisfied

∀ f ∈F , ∃N such that f (xxx) = g(xxx|N). (5)

Besides the determination of the network architecture of a
PWLNN, how to effectively identify model parameters is also
critical to attain good performance in practice. Figure 1 gives
the workflow when applying PWLNNs to specific tasks.

2.2 Shallow PWLNNs
In shallow PWLNNs, there are two main types of represen-
tations: the models consisting of basis functions and the Lat-
tice representation. An overall sketch on the chronicle of
all surveyed PWLNN representations can be found in the
supplementary information.

2.2.1 Representations based on basis functions – the
canonical family

The representation models consisting of basis functions are
formulated in the form of

f (xxx) =
M

∑
m=1

wmBm(xxx;θθθ vm), (6)

where Bm(xxx;θθθ vm) is the m-th basis function introducing PWL
nonlinearity, wm is the coefficient, and M is the number of ba-
sis functions. The general network architecture N resulting
from equation (6) is shown in Figure 2(a), where one hidden
layer is utilized. In such PWLNNs, the PWL mapping func-
tion φvm of each hidden neuron vm,m = 1, · · · ,M, corresponds
to each basis function Bm(xxx;θθθ vm), which can be with learnable
parameters θθθ vm , where the incoming edges of each hidden
neuron are from the n neurons in the input layer. The PWL
mapping function of the neuron voutput in the output layer
is the weighted sum of the values from its incoming edges,
where the weights correspond to θθθ voutput = {wm}m=1,··· ,M . In
this type of PWLNN representations, the canonical and the
hinge-based families are mainly involved.

3/23

Research

Tasks

Data

Preparation

Determination

of PWLNN

Representation

Learning of the

PWLNN

Result

Presentation

Benchmark

Datasets

Real-world

Data
Shallow

PWLNN

Deep

PWLNN Incremental

Design

SGD + BPAccuracy

Efficiency

Analysis

Figure 1. A general workflow of applying the PWLNN
method. Given a task of prediction or analysis, standard
procedures start from data preparation, where pre-processing
or data-augmentation techniques can be involved. Then, an
appropriate PWLNN representation is selected to perform the
modelling together with a learning algorithm for fitting the
data, where the selection can be determined by practitioners’
particular interest or through trail-and-error strategy. With the
learned PWLNN, prediction outputs of the given task can be
computed, where empirical and theoretical investigations can
both be conducted to present the final results.

CPLR was originally proposed in the univariate formula-
tion5 and has been extended to higher dimensions7 by

f (xxx) =ααα
T
0 xxx+β0 +

M

∑
m=1

ηm|αααT
mxxx+βm|, (7)

where xxx ∈ Rn is the input vector, ηm =±1, ααα0,αααm,∈ Rn and
β0,βm ∈ R are the parameters. Figure 3(a) gives the plot of a
simple PWLNN for an illustration on the CPLR representation.
For example, given a univariate PWL function f (x)

f (x) =

 x+2, x ∈ (−∞,−1],
−x, x ∈ (−1,1],
x−2, x ∈ (1,∞],

(8)

it can be represented by CPLR as follows

f (x) = x−|x+1|+ |x−1|, (9)

with three basis functions, each of which corresponds to the
PWL mapping function in each of the resulting hidden neu-
rons. As indicated in Figure 2(a), the output neuron voutput
has incoming edges from three hidden neurons in H =
{v1,v2,v3}, and the output neuron’s output is the weighted

1x

2x

nx

1B

2B

()f x

 

1w

2w

#1 hidden layer

.

J , b

local linear functions

min

min

max
()f x

min-max operator

1 ()l x

.

()dl x
.

()f x

1,1
W b

.

.

. . .

. . .

. . .

, kk
W b

1w

2w

kmw

() 

.

1x

2x

nx

.

1x

2x

nx

() 

() 

() 

() 

() 

.

#1 hidden layer #k hidden layer

MB

Mw

…
…

…
…

(a) a

1x

2x

nx

1B

2B

()f x

 

1w

2w

#1 hidden layer

local linear functions

.

()f x

1,1
W b

.

.

. . .

. . .

. . .

, kk
W b

1w

2w

kmw

() 

1x

2x

nx

.

1x

2x

nx

() 

() 

() 

() 

() 

.

#1 hidden layer #k hidden layer

MB

Mw

…
…

…
…

#1 hidden layer

…
…

…
…

…
…

J,b
min

min

max
()f x

1x

2x

nx

1B

2B

()f x

 

1w

2w

#1 hidden layer

MB

Mw

…
…

…
…

1v


2v

3v

()f x
1x

2x

1x

2x

1v


2v

3v

()f x

(b) b
.

.

.

.

1x

2x

nx

1B

2B

MB

()f x

 

1w

2w

PWL feature mapping on

(basis functions)

x

.

.

J,b

local linear functions

min

min

max
()f x

min-max operator

1()l x

.

.

()dl x

.

.

()f x

1,1
W b

.

.

.

.

. . .

. . .

. . .

. . .

. . .

. . .

, kk
W b

Mw

1w

2w

kmw

() 

.

.

1x

2x

nx

.

.

1x

2x

nx

() 

() 

() 

() 

() 

.

.

#1 hidden layer #k hidden layer

(c) c, d

Figure 2. An illustration on the topology of PieceWise
Linear Neural Network (PWLNN) representations, where the
outputs of squared nodes denote the PWL mappings. a)
Representation of basis functions in equation (6); b) Lattice
representation of equation (20); c) PWL-DNNs of equation
(22) with 1 hidden layer; d) PWL-DNNs of equation (22)
with k hidden layers.

sum of the hidden neurons’ outputs from its three incom-
ing edges, where the weights are θθθ voutput = {1,−1,1}. Based
on Box 1, the network structure of this PWLNN is thereby
built upon the neurons V = {vinput,v1,v2,v3,voutput} and the
edges E = {(vinput,v1), (vinput,v2), (vinput,v3), (v1,voutput),
(v2,voutput), (v3,voutput)}, as illustrated in Figure 3(c).

We can also remove v1 from H and build a PWLNN
with only two hidden neurons if we replace the edges with
(vinput,voutput) in a skip-layer manner (Figure 3(d)). It shows
that a PWL function can be formulated into varied PWLNNs
with different network structures.

However, a crucial problem exists: CPLR can represent
arbitrary PWL functions in R but this representation ability is
harmed in Rn(n≥ 2)4. For example14, given a PWL function

4/23

-3 -2 -1 0 1 2 3

x

-2

-1

0

1

2

y
(1, -1)

(-1, 1)

(a) a

0 0.2 0.4 0.6 0.8 1

x
1

0

0.2

0.4

0.6

0.8

1

x
2

8x
1
-5x

2
=1

1

3

-5x
1
+8x

2
=1

x
1
=x

2

2

(b) b

1x

2x

nx

1B

2B

()f x

 

1w

2w

#1 hidden layer

local linear functions

.

()f x

1,1
W b

.

.

. . .

. . .

. . .

, kk
W b

1w

2w

kmw

() 

1x

2x

nx

.

1x

2x

nx

() 

() 

() 

() 

() 

.

#1 hidden layer #k hidden layer

MB

Mw

…
…

…
…

#1 hidden layer

…
…

…
…

…
…

J,b

min

max

()f x

1x

2x

nx

1B

2B

()f x

 

1w

2w

#1 hidden layer

MB

Mw

…
…

…
…

1v


2v

3v

()f x
1x

2x

1x

2x

1v


2v

3v

()f x

max

1v


2v

3v

x

2v

3v

x

()f x

()f x

(c) c

1x

2x

nx

1B

2B

()f x

 

1w

2w

#1 hidden layer

local linear functions

.

()f x

1,1
W b

.

.

. . .

. . .

. . .

, kk
W b

1w

2w

kmw

() 

1x

2x

nx

.

1x

2x

nx

() 

() 

() 

() 

() 

.

#1 hidden layer #k hidden layer

MB

Mw

…
…

…
…

#1 hidden layer

…
…

…
…

…
…

J,b

min

max

()f x

1x

2x

nx

1B

2B

()f x

 

1w

2w

#1 hidden layer

MB

Mw

…
…

…
…

1v


2v

3v

()f x
1x

2x

1x

2x

1v


2v

3v

()f x

max

1v


2v

3v

x

2v

3v

x

()f x

()f x

(d) d

1x

2x

nx

1B

2B

()f x

 

1w

2w

#1 hidden layer

local linear functions

.

()f x

1,1
W b

.

.

. . .

. . .

. . .

, kk
W b

1w

2w

kmw

() 

1x

2x

nx

.

1x

2x

nx

() 

() 

() 

() 

() 

.

#1 hidden layer #k hidden layer

MB

Mw

…
…

…
…

#1 hidden layer

…
…

…
…

…
…

J,b
min

min

max
()f x

1x

2x

nx

1B

2B

()f x

 

1w

2w

#1 hidden layer

MB

Mw

…
…

…
…

1v


2v

3v

()f x
1x

2x

1x

2x

1v


2v

3v

()f x

(e) e

1x

2x

nx

1B

2B

()f x

 

1w

2w

#1 hidden layer

local linear functions

.

()f x

1,1
W b

.

.

. . .

. . .

. . .

, kk
W b

1w

2w

kmw

() 

1x

2x

nx

.

1x

2x

nx

() 

() 

() 

() 

() 

.

#1 hidden layer #k hidden layer

MB

Mw

…
…

…
…

#1 hidden layer

…
…

…
…

…
…

J,b
min

min

max
()f x

1x

2x

nx

1B

2B

()f x

 

1w

2w

#1 hidden layer

MB

Mw

…
…

…
…

1v


2v

3v

()f x
1x

2x

1x

2x

1v


2v

3v

()f x

(f) f

0
1

10

1

y

x
2

0.5

x
1

20

0.5
0 0

(g) g

0
1

10

1

y

x
2

0.5

x
1

20

0.5
0 0

(h) h

Figure 3. Simple illustrations to visulise the resulting PWLNNs in equations (9) and (12). a) Plot of equation (9) to illustrate
the canonical piecewise linear representation (CPLR) representation; b) Domain configuration of equation (12); c, d) shallow
PWLNNs for (9); e) a shallow PWLNN for equation (12); f) a two-hidden-layered PWLNN for equation (12); g) Plot of
equation (12); h) An exemplified function to approximate when considering using equation (12).

f : R2 7→ R with xxx = [x1,x2]
T as follows

f (xxx) =

 l1(xxx) = 80x1−50x2−10 xxx ∈Ω1,
l2(xxx) =−50x1 +80x2−10 xxx ∈Ω2,
l3(xxx) = 0 xxx ∈Ω3,

(10)

its boundaries contain the ridges x1 = x2,8x1−5x2 = 1 and
−5x1 + 8x2 = 1. However, these ridges vanish in the sub-
region Ω3 = {xxx| 3x1 ≤ 1,2x2 ≤ 1}, and such domain config-
urations cannot be realized by any CPLR. This incomplete
representation ability can essentially hurt the approximation
performance when applying PWLNNs to data in the CPLR
representation. For example, Figure 3(g) can be an approxi-
mator for the function in Figure 3(h), but it cannot be repre-

sented in the form of CPLR. Note that although the simple
PWL approximator in Figure 3(g) cannot be represented by
CPLR, there exist other PWLNNs in the form of CPLR that
can approximate Figure 3(h) to arbitrary accuracy, due to its
universal approximation ability4.

To overcome the incomplete representation ability of CPLR
in R2, the two-level nesting of CPLR is constructed53:

f (xxx) =ααα
T
0 xxx+β0+

M

∑
m=1

ηm|αααm,1
Txxx+βm,1+ |αααm,2

Txxx+βm,2||.

(11)

5/23

Then, equation (10) can be represented as

f (xxx) = 7.5(x1 + x2)−5−32.5|x1− x2|+
|32.5|x1− x2|−7.5(x1 + x2)+5|. (12)

Similar to equation (9), the resulting PWLNN of equa-
tion (12) has three hidden neurons with PWL mapping
functions corresponding to basis functions. The neu-
rons V = {vinput,1,vinput,2,v1,v2,v3,voutput} and the edges
E = {(vinput,1,v1), (vinput,2,v1), (vinput,1,v2), (vinput,2,v2),
(vinput,1,v3), (vinput,2,v3), (v1,voutput), (v2,voutput),
(v3,voutput)} are obtained, as shown in Figure 3(e).

It is worth mentioning that different network structures can
also be built for equation (12) and it is of particular interest
for v3 having a PWL mapping function based on the two-level
nesting of absolute-value operators. Figure 3(f) gives an illus-
tration of another PWLNN variant by reformulating v3 into
ṽ3. This means equation (12) can also be interpreted as a deep
architecture with two hidden layers, where the original PWL
mapping function |32.5|x1− x2|−7.5(x1 + x2)+5| is equiv-
alently formulated into a simplified form of |− zv2 − zv1 | by
transforming the incoming edges (vinput,1,v3) and (vinput,2,v3)
from input neurons into (v1, ṽ3) and (v2, ṽ3) from the 1st hid-
den layer. v1 can also be reformulated with skip-layer con-
nections to the output neuron as done in Figure 3(d), but the
details are not exhaustively presented here.

Nonetheless, in Rn (n > 2), the two-level nesting of CPLR
cannot cover all PWL functions53. Thus, more flexible rep-
resentations are needed. Similar to the two-level nesting,
Generalized CPLR (G-CPLR) can be used54. G-CPLR refers
to any finite number of nestings of CPLR (defined as K-level
CPLR with K ≥ 1), which takes the form

f (xxx) = f0(xxx)+C| f1(xxx)|, (13)

where both f0(xxx) and f1(xxx) are models of up to K−1 levels
of nested CPLR. Theoretically, G-CPLR can express all PWL
functions in n dimensions with at most n-level CPLR54.

With G-CPLR, the canonical formulations in equations
(7) and (11) can be regarded as the one-level CPLR and the
two-level CPLR, respectively. More generally than Figure
3(f), G-CPLR can be regarded as a trial for deep-architectured
PWLNNs. However, G-CPLR was mainly of theoretical sig-
nificance for universal representation ability, and an effective
learning algorithm has yet to be constructed.

2.2.2 Representations based on basis functions – the
hinge family

The hinge family refers to the PWLNN representations based
on hinge functions where two hyperplanes continuously join
together (Figure 4).

Given two hyperplanes h+ =αααT
+xxx+β+ and h−=αααT

−xxx+β−
joining together at {xxx|(ααα+−ααα−)

Txxx = 0}, their joint is de-
fined as the hinge for h+ and h− and is formulated as
max{h+,h−}. The model of hinging hyperplanes9 is given by
f (xxx) = ∑

M
m=1 wm max{αααT

m+
xxx+βm+ ,ααα

T
m−xxx+βm−}, commonly

hinge

hinging hyperplanes

hinging hyperplanes

hi
ng

e

(a) a

hinge

hinging hyperplanes

hinging hyperplanes

hi
ng

e

(b) b

Figure 4. An illustration on the hinge function and its
hinging hyperplanes. a) One-dimensional hinge; b)
Two-dimensional hinge.

used as

f (xxx) =ααα
T
0 xxx+β0 +

M

∑
m=1

wm max{αααT
mxxx+βm,0}. (14)

Here, the hinges have more distinguishable geometrical ex-
planations than that of CPLR, making it more amenable to
design effective learning algorithms55–59.

Similar to CPLR, the hinging hyperplanes still cannot rep-
resent all PWL functions in Rn(n≥ 2). To amend the incom-
plete representation ability, the Generalized hinging hyper-
planes (GHH)14 can be adopted by adding a sufficient number
of linear functions to the hinges, such that

f (xxx) =
M

∑
m=1

wm max{αααT
1 x+β1, . . . ,ααα

T
km+1x+βkm+1}. (15)

Given that km ≤ n, this is also referred to as the n-order Hing-
ing Hyperplanes (n-HH); any n-dimensional PWL function
can be represented by an n-HH14.

Similarly, equation (10) can be represented in the GHH
form:

f (xxx) = max{65(x1− x2),65(x2− x1),15(x1 + x2)−10}
−max{65(x1− x2),65(x2− x1)},

(16)

which results in two hidden neurons with the PWL mappings
based on 2-HH. The output neuron gives a weighted sum of
the neuron outputs from the hidden layer with weights 1 and
−1. In the form of GHH, equation (10) can be represented by
a PWLNN with only two hidden neurons, resulting in simpler
network structures but requiring more flexible PWL mapping
functions in the hidden layer.

2.2.3 Representations based on basis functions – others
There are other basis functions, which are designed with joint
considerations to flexibility and learnability. Based on sim-
plicial partitions and vertex interpolation, High-Level CPLR
(HL-CPLR)60 can be constructed with the basis functions as

BR
jk1 ,..., jkR

(xxx)=max{0,min{xk1− jk1d, . . . ,xkr− jkr d, . . . ,xkR− jkR d}},

6/23

(17)

where d is the partitioning interval, kr ∈ {1, . . . ,n} varies
with r = 1, . . . ,R, and jkr is selected from the {1, . . . ,mkr}
partitions on the axis. Similar ideas of vertex-based modelling
can also be found elsewhere61–64.

By utilizing recursive domain partitions, the Adaptive Hing-
ing Hyperplanes (AHH)16 is formulated as:

f (xxx) =
M

∑
m=1

wm min
j
{max{0,δ j,m(xv j,m −β j,m)}}, (18)

where xv j,m is the v j,m-th input variable, and β j,m is the split-
ting knot, j ∈ Jm, Jm ⊆ {1, . . . ,n} is the set containing the
indices of input variables involved in the m-th basis function,
and δ j,m = ±1. AHH can be regarded as a special case of
GHH, and HL-CPLR is a special case of AHH.

The Simplex Basis Function (SBF)17 model is given by

f (xxx) =
M

∑
m

wm max{0,1−
n

∑
i=1

γm,i|xi−ζm,i|}, (19)

where γm,i and ζm,i are the parameters controlling the shape
of the m-th basis function. For any SBF, equivalent transfor-
mations to HH and CPLR also exist.

2.2.4 Lattice Representations
The Lattice representation65 is constructed based on the Lat-
tice theory66, where simply the “max-min” composition of
linear functions is sufficient11. It is worth mentioning that
the “max-min” and the absolute-value operators for PWL
nonlinearity have been addressed in mathematical program-
ming and functional analysis. For example, major attention is
given to aspects of Lipschitz continuity, nondifferentiability,
nonsmoothness and their algorithmic aspects, rather than to
PWLNNs and data driven applications67–70.

Letting f (xxx) be an arbitrary PWLNN with d distinct linear
functions, the Lattice representation is formulated as

f (xxx) = max
i∈Z(M)

min
j∈Si
{JJJT

j xxx+b j}, (20)

where Z(M) = {1,2, . . . ,M}, [JJJ1, . . . ,JJJd] ∈ Rn×d ,
[b1, . . . ,bd]

T ∈ Rd and Si ⊆ Z(d). Equation (21) gives
a simple illustration of the Lattice representation model.
Given a PWL function f : [0,5] 7→ R

f (x) =


l1(x) = 0.5x+0.5, x ∈Ω1 = [0,1],
l2(x) = 2x−1 x ∈Ω2 = [1,1.8],
l3(x) = 2 x ∈Ω3 = [1.8,3.2],
l4(x) =−2x+9 x ∈Ω4 = [3.2,4],
l5(x) =−0.5x+3 x ∈Ω5 = [4,5],

(21)

its Lattice representation model is formulated as M = 5, S1 =
{1,3,4,5}, S2 = {2,3,4,5}, S3 = {2,3,4}, S4 = {1,2,3,4}
and S5 = {1,2,3,5}. The resulting PWLNN based on the Lat-
tice representation has 5 hidden neurons with PWL mapping
functions based on the “min” operators across a maximum of

5 linear functions (Figure 2(b)). The PWL mapping function
of the output neuron is simply the “max” operator across a
maximum of 5 outputs of hidden neurons (M). Although the
Lattice representation is formulated quite differently from
those based on basis functions, it plays a significant role in
the theoretical analysis of different PWLNN representations
to reveal their intrinsic relations and modelling evolution.

Given a PWL function, PWLNNs with different network
structures V and edges E can be constructed, when different
PWL mapping functions are chosen for neurons V \I . Such
PWL mapping functions are built upon either the “min”, the
“max”, the absolute-value operators, or their multi-level nest-
ings. Often, more flexible PWL mapping functions result in
less neurons and edges, while with simpler PWL mapping
functions the network can be possibly reorganized into more
layers, for example the cases shown in Figure 3.

2.3 PWL-DNNs
Mainstream DNNs are sequentially composed of an input
layer, multiple hidden layers and an output layer (Figure 2(c)).
Through the incoming edges, the outputs of neurons in the
previous layer are linearly weighted and summed. Upon
application of an activation function, nonlinearity is induced.
Generally, the outputs of neurons in the k-th (k ≥ 1) layer in
DNNs is computed as

fff k(xxx) = σ
k(Ξk(xxx)), (22)

where Ξk(xxx) = WWW k fff k−1(xxx) +bbbk denotes the weighted sum.
Commonly in deep learning, WWW k ∈ Rmk×mk−1 and bbbk ∈ Rmk

are the weight matrix and the bias term for this neuron, respec-
tively, where mk and mk−1 refer to the numbers of neurons in
the k-th and the (k− 1)-th layers, respectively. σ k(·) is the
nonlinear activation function, usually in a very simple form.
In DNNs, the idea is to introduce PWL activation functions
σ k(·) to neurons in the hidden layers, so that PWL feature
mappings are composited across layers for greater flexibil-
ity. Following notations in Box 1, the network architecture
N = (V ,E) of equation (22) confines neurons in a hidden
layer to only have incoming edges from those in the previous
layer, and the corresponding PWL mapping functions take
the form of φ(fff k−1;WWW k,bbbk) = σ k(WWW k fff k−1 +bbbk). They take
the parameters in WWW k as weights assigned to incoming edges
of neurons, and bbbk as a bias term to the weighted sum of the
outputs of neurons in the previous layer.

It is demonstrated that ReLU can significantly alleviate
the gradient vanishing problem [G] in DNNs71. The recent
prevalence of ReLU in deep learning32, 33 showcases the great
flexibility and power of PWL-DNNs in various complex tasks,
though the very first PWL neuron stemmed from the modified
threshold logic unit early in 1940s72 and multi-layer PWLNNs
were discussed in 1990s54, 73, 74. PWL activation functions,
such as ReLU, are now acknowledged as the first choice in
deep learning, owing to their advantageous performances such
as better generalization performance and faster computation75.
In order to enhance network flexibility and diversity, multi-
ple variants of PWL activations have been proposed in deep

7/23

learning, mostly by re-shaping the hinge of ReLU. In fact, the
resulting PWL mapping functions of the neurons deploying
variant activations resemble the basis functions in the shallow
PWLNN architectures. For instance, a shallow neural net-
work with ReLU in equation (22) is equivalent to the model
of hinging hyperplanes, or can be equivalently transformed
into CPLR and SBF. Another typical example is the neural
networks with Maxout51, which resemble GHH14. Table 1
summarizes the PWL activation functions in PWL-DNNs and
their shallow-architectured counterparts.

As indicated in Box 1, PWLNNs can be flexibly designed
in many ways. Firstly, with the edges in E , the connections
between neurons in V can be formulated in different ways
through the mappings (shallow PWLNN representations),
rather than simply the linearly weighted sum on the previous
layer (deep learning). Skip-layer connections are also natu-
rally allowed for any paired neurons. Skip-layer connections
have been widely applied to shallow PWLNN representation
models, such as the PWLNN in Figure 3(f) and the variant
of AHH85, which enables sparse and even decomposable net-
work structures with great interpretability. In recent years,
the flexible skip-layer connections have also received wide
attention in deep learning, such as the ResNet33 and its gener-
alization, the DenseNet34. Secondly, the mapping function φv
can be multi-dimensional, meaning that each incoming edge
of v can be assigned weights in vectors, such as the PWL-
DNNs with Maxout and shallow PWLNNs with GHH and
AHH. The activation functions in PWL-DNNs can also in-
clude learnable parameters for more flexible PWL mappings
for each neuron, such as in S-shaped ReLU81 and APL83,
where multiple breakpoints exist and can be made learnable.
Similar ideas were realised early in the 1990s86.

Figure 2 compares the topology of PWLNNs. With limited
computational resources, shallow architectures are usually the
better choice for small-scale problems, owing to their flexi-
bility and the alleviation of overfitting and model redundancy
issues. For example, SBF is more efficient in its learning
scheme and shows to be more robust against noises, whilst
AHH and the Lattice have better interpretability. In particu-
lar, when the contributions of input variables or the effects
of variable connections need to be explored, AHH is a good
predictor. When local explicitness is required, the Lattice
is the preferred choice, as in the explicit Model Predictive
Control (MPC) problems. When tremendous data are given
and highly complicated tasks are involved, PWL-DNNs are
the superior choice, owing to their optimization techniques
and mature computational platforms. Though no single model
is capable of resolving all problems, there are a number of
well-designed techniques in PWLNNs available for different
demands. PWLNNs are natural embodiments of PWL func-
tions exerting network structures, so that the powerful learning
ability and other merits of (D)NNs can be implemented. At
the same time, the introduction of PWL nonlinearity helps
resolve some learning barriers in deep learning with signifi-
cant developments. PWLNNs and deep learning have boosted

each other, together bringing unprecedented success in the big
data era.

3 Results
Learning algorithms are the key to applying PWLNN models
to practical tasks. This includes how to effectively determine
the network parameters and structures to well resolve the tasks.
A chronicle overview on learning algorithms can be found in
the supplementary information. In this section, we look into
PWLNN models and their learning with theoretical analysis
to better understand the mechanism.

3.1 Learning shallow PWLNNs
Shallow PWLNNs are commonly learned incrementally. Com-
putational platforms and hardware were limited in the 1970s-
2000s, and so the incremental design was a good choice to
balance efficiency and accuracy. These incremental learn-
ing algorithms differ depending on the representations; they
can be categorized into the hinge finding algorithm, the tree
searching algorithm, the structured decision algorithm, and
others.

3.1.1 Hinge finding algorithm and Newton’s algorithm
To learn the hinging hyperplanes, new basis functions are
incrementally added in each (M-th) iteration by adopting the
hinge finding algorithm on y = f (xxx)−∑

M−1
m=1 wmB(xxx) and ad-

justing the sum ∑
M
m=1 wmB(xxx). The key step in hinge finding

is to perform the least squares method [G] to determine the
estimated parameters of the hyperplanes fitted to S− and S+;

αααm+ =
(

∑xxxi∈S+ xxxixxxiT
)−1

∑xxxi∈S+ xxxiyi,

αααm− =
(

∑xxxi∈S− xxxixxxiT
)−1

∑xxxi∈S− xxxiyi,
(23)

where S+ = {xxx : xxxT (αααm+ − αααm−) > 0} and S− = {xxx :
xxxT (αααm+ −αααm−)≤ 0}.

In this way, new basis functions are incrementally obtained
by locating the hinge functions over the training data. In
fact, the estimation in the hinge finding is a special case of
the Gauss-Newton algorithm [G]56. Similarly, the learning
of GHH can inherit such algorithm, where multiple linear
functions are involved in each hinge29. Simultaneously iden-
tifying all basis functions is also possible56, but whether the
sequential or simultaneous update of basis functions is the
better option, if the computational resources are adequate,
remains an open question.

3.1.2 Tree Searching Algorithm
AHH can be seen as a PWL analogy to the multivariate adap-
tive regression splines87 [G]. Similarly, the learning of AHH
is based on the recursive domain partitions by deploying the
tree searching algorithm; the learning process of AHH can
be interpreted as a generic tree with basis functions Bm(xxx) as
leaf nodes (Figure 5). Each basis function (neuron) Bm(xxx)
in Iterations 1-4 correspond to a sub-region Tm, giving the
resulting tree topology of learning AHH (Figure 5(e)). The

8/23

Table 1. Descriptions on the surveyed PWL activation functions in DNNs and their relations to shallow PWLNN
representations.

Activation Expression σ(·) Description Related Representations
ReLU6 max{x,0} retaining the positive part CPLR, HH, SBF
Leaky ReLU76 max{x,0}−λ max{−x,0} λ as a constant nonzero slope CPLR, HH, SBF
Parametric ReLU77 max{xc,0}−λc max{−xc,0} λc as trainable slopes in different channels xc CPLR, HH, SBF
Randomized ReLU78 max{x(n)c ,0}−λ

(n)
c max{−x(n)c ,0} λ (n) as randomized slopes of sample x(n) CPLR, HH, SBF

Biased ReLU79 max{0,xi−bi1}, · · · ,max{0,xi−biqi} several biases for each input variable xi AHH, HL-CPLR
Concatenated ReLU80 (max{x,0},max{−x,0}) concatenating both positive and negative parts CPLR, HH, SBF
S-shaped ReLU81 α0x+β0 +α1|x− t l|+α2|x− tr| 3 linear intervals with break points t l and tr CPLR, HH, SBF
Flexible ReLU82 max{x+a,0}+b a and b as trainable parameters CPLR, HH, SBF
APL83 max{x,0}+∑

S
s=1 as

i max{0,−x+bs
i } a sum of S hinge-shaped functions CPLR, HH, SBF

APRL84 λR max{x,0}−λL max{−x,0} λR and λL as trainable slopes CPLR, HH, SBF
Maxout51 maxi∈I{zi} maximal of multiple inputs GHH

tree searching algorithm does not require computed gradients,
and gives a novel interpretation of learning. In classic decision
trees, the concept of PWL approximation can be applied to
fit linear models on nodes88. However, these local linear re-
gressions bring substantially higher computational burden. A
novel PWL decision tree as a flexible and efficient alternative
has been previously constructed89, which can be regarded as
the extension of ReLU to the learning framework of decision
trees.

T1 T2 T3 T4

T5 T6 T7 T8

T0

8

AHH T 0 T T

1

() ()m m

m

f w w z
=

= +x x

T0

T0

T1

T2

T3

T4

T5

T6

T7

T8

8

EHH T 0 T T

1

() ()m m

m

f w w z
=

= +x x

T2

T1
T3 T4

T5 T6

T8

T7

.
. .

.
. .

.
. .

.
. .

Full skip-layer output

1#

2#

(K-1)#

K#

.
. . DAHHf

1,1w

,k sw

, KK nw

.
. .

Partial skip-layer output

1#

K#

.
. .

out

DAHH , ,

1

knK

k s k s

k s

f w z
= =

= 

out ,1Kw

, KK nw
#outK

DAHH , ,

1 1

knK

k s k s

k s

f w z
= =

=

DAHHf

,k sw

.
. .

.
. .

.
. .

T1 T2 T3 T4

T5 T6 T7 T8

T0T0

(a) a

T1 T2 T3 T4

T5 T6 T7 T8

T0

8

AHH T 0 T T

1

() ()m m

m

f w w z
=

= +x x

T0

T0

T1

T2

T3

T4

T5

T6

T7

T8

8

EHH T 0 T T

1

() ()m m

m

f w w z
=

= +x x

T2

T1
T3 T4

T5 T6

T8

T7

.
. .

.
. .

.
. .

.
. .

Full skip-layer output

1#

2#

(K-1)#

K#

.
. . DAHHf

1,1w

,k sw

, KK nw

.
. .

Partial skip-layer output

1#

K#

.
. .

out

DAHH , ,

1

knK

k s k s

k s

f w z
= =

= 

out ,1Kw

, KK nw
#outK

DAHH , ,

1 1

knK

k s k s

k s

f w z
= =

=

DAHHf

,k sw

.
. .

.
. .

.
. .

T1 T2 T3 T4

T5 T6 T7 T8

T0T0

(b) b

T1 T2 T3 T4

T5 T6 T7 T8

T0

8

AHH T 0 T T

1

() ()m m

m

f w w z
=

= +x x

T0

T0

T1

T2

T3

T4

T5

T6

T7

T8

8

EHH T 0 T T

1

() ()m m

m

f w w z
=

= +x x

T2

T1
T3 T4

T5 T6

T8

T7

.
. .

.
. .

.
. .

.
. .

Full skip-layer output

1#

2#

(K-1)#

K#

.
. . DAHHf

1,1w

,k sw

, KK nw

.
. .

Partial skip-layer output

1#

K#

.
. .

out

DAHH , ,

1

knK

k s k s

k s

f w z
= =

= 

out ,1Kw

, KK nw
#outK

DAHH , ,

1 1

knK

k s k s

k s

f w z
= =

=

DAHHf

,k sw

.
. .

.
. .

.
. .

T1 T2 T3 T4

T5 T6 T7 T8

T0T0

(c) c

T1 T2 T3 T4

T5 T6 T7 T8

T0

8

AHH T 0 T T

1

() ()m m

m

f w w z
=

= +x x

T0

T0

T1

T2

T3

T4

T5

T6

T7

T8

8

EHH T 0 T T

1

() ()m m

m

f w w z
=

= +x x

T2

T1
T3 T4

T5 T6

T8

T7

.
. .

.
. .

.
. .

.
. .

Full skip-layer output

1#

2#

(K-1)#

K#

.
. . DAHHf

1,1w

,k sw

, KK nw

.
. .

Partial skip-layer output

1#

K#

.
. .

out

DAHH , ,

1

knK

k s k s

k s

f w z
= =

= 

out ,1Kw

, KK nw
#outK

DAHH , ,

1 1

knK

k s k s

k s

f w z
= =

=

DAHHf

,k sw

.
. .

.
. .

.
. .

T1 T2 T3 T4

T5 T6 T7 T8

T0T0

(d) d

T1 T2 T3 T4

T5 T6 T7 T8

T0

8

AHH T 0 T T

1

() ()m m

m

f w w z
=

= +x x

T0

T0

T1

T2

T3

T4

T5

T6

T7

T8

8

EHH T 0 T T

1

() ()m m

m

f w w z
=

= +x x

T2

T1
T3 T4

T5 T6

T8

T7

.
. .

.
. .

.
. .

.
. .

Full skip-layer output

1#

2#

(K-1)#

K#
.

. . DAHHf

1,1w

,k sw

, KK nw

.
. .

Partial skip-layer output

1#

K#

.
. .

out

DAHH , ,

1

knK

k s k s

k s

f w z
= =

= 

out ,1Kw

, KK nw
#outK

DAHH , ,

1 1

knK

k s k s

k s

f w z
= =

=

DAHHf

,k sw

.
. .

.
. .

.
. .

T1 T2 T3 T4

T5 T6 T7 T8

T0T0

(e) e

Figure 5. A simple illustration on the geometrical
description and tree searching of learning an adaptive hinging
hyperplane (AHH). a) Iteration 1 where
B1(xxx) = max{0,x2−0.3}, B2(xxx) = max{0,0.3− x2}; b)
Iteration 2 where B3(xxx) = max{0,0.6− x1}; c) Iteration 3
where B4(xxx) = max{0,x1−0.6}, B5(xxx) = min{B1,B3},
B6(xxx) = min{B1,B4}; d) Iteration 4 where
B7(xxx) = min{B1,B3}, and B8(xxx) = min{B2,B3}; e) the
resulting generic tree topology.

3.1.3 Structured Decision Algorithm
The basis functions in SBF are simplices and their shapes are
controlled by γm,i and ζm,i (Figure 6).

SBF takes the structures of basis functions as decision vari-
ables to design the learning algorithm rather than directly

1

1

0

0

(a) a

1

1

0

0

(b) b

Figure 6. An illustration on the basis functions of simplex
basis function (SBF) representation. a) One-dimensional
SBF; b) Two-dimensional SBF.

taking the coefficient wm as decision variables. In each itera-
tion, the current highest peak point is selected as the center ζi.
It then seeks the optimal structure of the simplices to minimize
the overall approximation error17.

3.1.4 Other Algorithms
PWLNNs can be learned by interpolating the vertices over
simplices and performing local linear approximation. Follow-
ing this idea, HL-CPLR can be adopted. Without specifying
domain configurations, linear approximation in sub-regions
has been successfully applied in other learning algorithms for
PWLNNs. For example, bi-level algorithms can be used, but
they are only suitable in low dimensions with a few sampling
data90, 91. For the Lattice, the structure could be identified
by repeatedly updating the parameters by local fitting, where
neither numerical simulations nor practical implementations
were given28.

3.2 Learning PWL-DNNs
In PWL-DNNs, the optimization problem is highly noncon-
vex and complicated, particularly for high-dimensional and
large-scale data. Fortunately, the stacking network topology
has enabled the optimization problem to be well resolved by
successful applications of backpropagation and SGD.

9/23

3.2.1 Optimization of Network Parameters
With backpropagation, the chain rule can be applied to com-
pute the gradients of learnable parameters, and then gradient-
based algorithms can be applied. Specifically, denoting the
weighted input of the k-th layer as zzzk and the output of the k-th
layer as the activation σσσ k for k = 1, . . . ,K, see equation (22).
The activation σσσ k and the derivatives evaluated at zzzk in each
layer are computed to be cached and then used to complete
the backward propagation of gradients by the chain rule. In
terms of matrix multiplication, the derivative of the loss with
respect to the inputs is given by

∂L (g(xxx|N))

∂σσσK
· ∂σσσK

∂zzzK
· ∂zzzK

∂σσσK−1
· · · · ∂σσσ1

∂zzz1
· ∂zzz1

∂xxx
, (24)

where L (·) is a general loss and g(xxx|N) is the PWL-DNN.
In such learning schemes to compute the gradients in PWL-

DNNs, powerful graphical or tensor processing unit hardware
can be equipped to greatly accelerate the computation in the
learning process. The massive amounts of data and consid-
erably deep architectures make the optimization problems
much more complicated, hence the computational efficiency
of gradient descent algorithms is limited. For this reason, the
stochastic version, namely SGD92, is the mainstream algo-
rithm in deep learning, in which the batch-wise optimization
accelerates the computation and improves the generalization
ability. It also helps escape from the saddle points efficiently93.
After the success of SGD, numerous variants were developed
with more sophisticated techniques to further enhance the per-
formance in deep learning, such as adaptive learning rates94,
gradients with momentum95, preconditioned gradients96, and
second-order methods97.

In DNNs, the gradient vanishing problem is devastating,
when the computation of gradients is propagated over lay-
ers. Fortunately, this problem is greatly alleviated by using
ReLU71, allowing PWL-DNNs to be designed fairly deep
(more than hundreds of layers)32. Beside the gradient-based
algorithms for parameters, a robust initialization method is
constructed by giving specified considerations to PWL non-
linearity, which enables to train extremely deep networks
from scratch77. Other useful techniques for generic DNNs
can be utilized to improve the learning performance of PWL-
DNNs, such as dropout98, batch normalization99, data aug-
mentation100, and pre-training101.

Concerning the PWL nonlinearity in deep learning, spe-
cialized algorithms have also been studied by utilizing the
different local linear expressions of activated neurons to de-
sign novel algorithms. An adaptation of path-SGD is proposed
to learn plain recurrent neural networks with ReLU, capturing
long-term dependency structure and significantly improving
the learnability102. By defining a transformation space of the
positive scaling operators from ReLU, a modified SGD can be
constructed in such a space, outperforming the conventional
SGD103. By assuming linearly separable data and utilizing
local linearity of ReLU, a novel SGD is also constructed104.
Further, by partitioning node inputs of PWL-DNNs, the con-

vex hull over the partitions can be obtained, and thus mixed-
integer and even convex optimization can be performed105, 106.
However, these algorithms currently require stringent assump-
tions and simple network structures with only a few layers,
and yet are inapplicable to the learning of generic PWL-DNNs.
Nevertheless, they innovate to exploit the benefits and utilize
the special characteristics of PWL nonlinearity, promoting
more in-depth understandings in learning deep architectures.

3.2.2 Optimization of Network Structures

Currently, the regular learning of PWL-DNNs is inherited
from generic DNNs, where network structures are predefined
through trial and error procedures, based on the researchers’
prior knowledge and experience. The learnable parameters
of interconnection weights and bias terms are then optimized
with the aforementioned algorithms. In contrast, the learning
algorithms in shallow PWLNNs involve simultaneous deter-
mination of both network structures and parameters, and they
are model dependant by incorporating specific characteristics
in each representation.

The greater flexibility of DNNs results in substantial re-
dundancy in the network structures, leading to increasing
efforts to optimize network structures in recent years. There
have been numerous studies on compressing DNNs while
guaranteeing similar or even better accuracy, such as spar-
sity regularization107, neuron connections pruning108 and low
rank approximation109. Recently, the lottery ticket hypothesis
shows that randomly-initialized DNNs contain sub-networks
(winning tickets) which are capable of reaching similar accu-
racy when being trained in isolation110. Rather than extracting
a more compressed model from an existing DNN, Neural Ar-
chitecture Search (NAS)111 is proposed to gradually generate
DNNs by searching the optimal building block candidates
from a predefined search space via well-designed evaluation
strategies. Although these algorithms are not limited to PWL-
DNNs, they commonly adopt ReLU to introduce nonlinearity.

In fact, algorithms for the optimized network structures can
also be found in the learning of different shallow PWLNNs,
such as the l1 norm sparsity regularization112 and the back-
ward pruning16. NAS is an incremental design, but seeks
for both width and depth in network architectures, instead of
merely growing the width in shallow architectures. In NAS,
the candidate building blocks are network cells, which are
commonly chosen as PWL sub-networks and are much more
complicated, compared to those simple formulations of PWL
basis functions. Though shallow PWLNNs are limited in em-
pirical performances and problem scales, their learnings are
also strongly related to current deep learning.

The success of effective learning techniques in deep learn-
ing now fundamentally realizes the pervasive applications of
PWLNNs. In turn, the PWL-DNN itself also boosts thriving
developments to generic DNNs, leading to a win-win situation
between deep learning and PWLNN methods.

10/23

Table 2. Comparison on the universal approximation and
representation abilities of different PWLNN representations.

Representation Model Approximation Representation
Conventional Representation3 X X
CPLR5 X only for xxx ∈ R
G-CPLR54 X X
HL-CPLR60 X %

HH9 X only for xxx ∈ R
GHH14 X X
AHH16 X %

SBF17 X only for xxx ∈ R
Lattice11 X X

3.3 Analysis on Shallow PWLNNs
In shallow PWLNNs, the ability to approximate arbitrary
continuous functions (approximation ability) and the ability
to represent arbitrary PWL functions (representation ability)
have been the main focus in theoretical analysis.

3.3.1 Universal Approximation and Representation Abil-
ities

The approximation and representation abilities are two differ-
ent but important aspects in reflecting the properties of a class
of PWLNNs in the form of a specific representation model.
Table 2 summarizes these two properties.

Compared to the universal approximation, representation
ability is more difficult to attain for a shallow PWLNN repre-
sentation. It has been proven that the aforementioned represen-
tation models of shallow PWLNNs have universal approxima-
tion ability for continuous functions, but not necessarily have
universal representation ability for continuous PWL functions,
such as the counter example in equation (10). More specif-
ically, given a continuous function and a specific PWLNN
representation model having universal approximation abil-
ity, there always exist proper PWLNNs that can approximate
this continuous function to arbitrary accuracy, while given
a certain PWLNN as an approximator for this continuous
function, such PWLNN might not be expressed in the form
of this specific representation model. Hence, it is of great
significance to select a representation model when approxi-
mating a nonlinear system with sampled data, since different
selected representation models can lead to different PWLNNs
with varied properties and difficulties in implementing the
approximation19.

3.3.2 Model Properties and Their Connections
As the pioneering compact representation, the existence con-
ditions of CPLR are as follows. A PWL function f (xxx) has a
CPLR representation of equation (7) if and only if it satisfies
the consistent variation property4 [G]. A PWL function f (xxx)
possesses the consistent variation property if and only if f (xxx)
is partitioned by a finite set of hyperplanes Hk = {xxx ∈ Rn :
πk(xxx) := αT

k xxx−βk = 0}, for k = 1, . . . ,h; ∀k = 1, . . . ,h parti-
tioning hyperplane Hk = {xxx ∈ Rn : πk(xxx) := αT

k xxx−βk = 0},
the dyadic product of any two local linear functions inter-
secting at the common boundary Hk, meaning that4JJJ(i, j) .

=

JJJi−JJJ j = c(i, j)ααα and4b(i, j) .
= bi−bi = c(i, j)β , c(i, j) ∈ R re-

mains consistent. For every pair of neighboring sub-regions
separated by a common boundary, the intersection between
such two local linear functions must be a subset of an (n−1)-
dimensional hyperplane and cannot be covered by any hyper-
plane of lower dimensions.

When constructing PWLNNs using the Lattice represen-
tation, some interesting and fundamental properties are ob-
tained. Firstly, the Lattice representation (any PWL function)
can be transformed into the difference of two convex PWL
functions19. For example, for any positive integers n and d,
nonempty index sets Si ⊆ Z(M), i ∈ Z(M) and real vectors
θθθ(j) ∈ Rn+1, j ∈ Z(d), there always exist n+1-dimensional
real vectors θθθ+(k), k ∈ Z(m+) and θθθ−(k), k ∈ Z(m−) such
that

min
i∈Z(M)

max
j∈Si
{l(xxx|θθθ(j))}

= max
k∈Z(m+)

l(xxx|θθθ+(k))}− max
k∈Z(m−)

l(xxx|θθθ−(k))}, ∀xxx ∈ Rn,

(25)

with l(xxx|θθθ) = JJJTxxx+b.
The above property indicates that any PWL function can

be expressed as a difference of two convex PWL functions,
each of which is formulated as the maximum of multiple
linear functions19. On this basis, the proposal of GHH is
promoted14, where the basis functions resemble the convex
items (equation (25)). Moreover, in the analysis of GHH, the
upper bound on the nesting number of G-CPLR for describing
all PWL functions is significantly tightened.

The presented analysis reveals how these shallow PWLNN
representations develop, how they are correlated and different
to each other, and what important properties they possess, in
terms of theoretical significance.

3.4 Analysis on PWL-DNNs
In PWL-DNNs, the approximation ability is reconsidered
under the framework of deep learning and novel bounds are
derived concerning both network width and depth. Rather than
the representation ability for shallow PWLNNs, theoretical
analysis for PWL-DNNs are mainly cast towards the learning
process.

3.4.1 Approximation Ability Concerning Width and
Depth

In early studies on approximation, neural networks con-
taining one hidden layer with sigmoidal activations were
favored113; this universal approximation ability also holds
for PWLNNs9, 74. Universal approximation ability has been
proven for two-hidden-layered neural networks114, and an
estimation of hidden neurons was determined, rather than as-
suming an unbounded number of neurons113, 115. With success
of ReLU, such approximation ability was further elucidated
and specified for PWL-DNNs116. The fully connected PWL-
DNNs with ReLU are universal approximators117, and one
variant of ResNets has also been proven as a universal approx-
imator when the depth of the network approaches infinity118.

11/23

It is also of great importance to investigate the relationship
between the approximation behavior and their architectures,
including width and depth. In early studies, the relationship
between the approximation error and the number of neurons
in the single hidden layer with sigmoid activations was inves-
tigated119. Specific Convolutional DNNs (namely ConvNet,
ConvNet with ReLU and max pooling) are universal approxi-
mators, where the lower bound of the number of hidden chan-
nels is also provided120. Further, by jointly considering depth
and width of layers, the bounds on the number of layers and
the number of neurons in hidden layers can be derived simul-
taneously35. From the perspective of input space partitions,
fully connected PWL-DNNs with ReLU can be equivalently
transformed into two-layer fully connected DNNs, and the
bounds on the width of the network to ensure the universal
approximation ability can be determined121. These aforemen-
tioned works utilize the properties of PWL nonlinearity which
allows outcomes such as partitioned linear sub-regions, acti-
vated linear outputs over layers, PWL finite element spaces,
to name a few.

Current analysis on the approximation analysis in deep
learning sheds more light on PWL-DNNs mostly with ReLU.
They are heavily used in numerical settings, and more
amenable to analysis, providing novel perspectives to broaden
the existing theoretical understandings on the empirical learn-
ing process of DNNs. More rigorous discussions on the
approximation analysis for PWLNNs are presented else-
where122.

3.4.2 Expressive Capacity Given with Samples

The expressive capacity of DNNs commonly refers to the
design of networks being able to realize arbitrary functions
over a finite subset of the input space. In early studies, the
expressive capacity of neural networks with one hidden layer
and the sign activation were investigated123, where the focus
was on the injective functions124. A two-hidden-layer neural
network with sigmoid was proven to be capable of learning
any N samples with arbitrary accuracy only if there are at
least 2

√
(p+2)N neurons in the hidden layers, where p is

the output dimension125. For PWL-DNNs, relevant analysis
is also conducted. In PWL-DNNs with ReLU, the expressive
capacity can be guaranteed with the depth k, width O(N/k),
and O(N + n) weights on a sample of size N in n dimen-
sions126. For arbitrary N samples, any pair of which has a
specified minimum Euclidean distance, there exists a multi-
layer ResNet that can express the samples accurately with
only convolutional layers and ReLU activation functions127.
The expressive capability of the multi-layer ConvNet128 and
fully connected PWL-DNNs with ReLU129 is also known.
Though the above informative analysis helps to understand
PWL-DNNs and even generic DNNs, the existing results still
require tremendous neurons, particularly when large amounts
of data are involved.

3.4.3 Analysis Specified with Localized Linearity over
Domain Configurations

In PWL-DNNs, the unique property of localized nonlinearity
makes it possible to quantitatively analyze the capacity of
DNNs regarding domain configurations; a larger number of
linear sub-regions indicates greater flexibility. The network
expressive capacity can be evaluated by estimating the maxi-
mum number of linear sub-regions of fully connected PWL-
DNNs with ReLU130. The basic idea is to use the Zaslavsky’s
Theorem of hyperplanes arrangement131 [G], which estimates
the maximal number of regions in Rn with an arrangement of
m hyperplanes. In PWL-DNNs, where the retained positive
neuron output of the linear function in ReLU corresponds to
these hyperplanes, this result can then be applied by recur-
sively reusing the PWL fractures from the previous layers. By
identifying distinct linear sub-regions, bounds for the maxi-
mal number of sub-regions can be derived. Various theoretical
results and empirical studies on estimating the number of
linear sub-regions can be obtained. For example, specific
neuron allocation in each layer with the lower bound35 or up-
per bound132 can be derived analogously. These bounds can
be further improved with mild assumptions, and give more
accurate evaluation in exploring the capacity of DNNs in this
regard133, 134. In deep architectures, fully connected PWL-
DNNs can be extended to ConvNet135, where ConvNet with
ReLU brings more linear sub-regions than that of fully con-
nected PWL-DNNs with asymptotically the same number of
parameters, input dimension, and number of layers135. Such
analyses consider the particular measurement of counting lin-
ear sub-regions in PWL-DNNs, and cannot be performed in
DNNs with other types of nonlinearity, demonstrating the
unique merit of PWL nonlinearity and providing a novel quan-
titative measurement of showing the power of going deep.

Although DNNs exhibit great flexibility, they have been
found to be vulnerable to adversarial samples, meaning that
human-imperceptible perturbation imposed on an image can
fool the DNN to make a wrong prediction136. Recent work
on robustness certification focuses on whether the prediction
of any input xxx is verifiably constant within a neighboring set
of xxx137–139. Most robustness certification is conducted with
ReLU and heavily relies on the PWL nonlinearity for analysis
and algorithm designs, such as the mix-integer linear program-
ming140, 141 and the convex outer approximation technique142,
where the local information of linear boundaries and vertices
is utilized. Hence, PWL nonlinearity also plays an essential
role to advocate the robustness analysis in deep learning.

4 Applications
In this section, representative applications in different fields
are introduced to exemplify the practical values of PWLNNs.

4.1 Circuits analysis
The pioneering work of shallow PWLNNs, particularly the
canonical family, stems from the field of circuit analysis. It
was first proposed to use vertices of simplices for the inter-

12/23

polation analysis of nonlinear resistive networks in 1956143.
The PWL technique has since attracted more attention and
found successful applications in nonlinear circuit analysis
involving uncoupled and monotonically increasing PWL re-
sistors144. This work has further been extended with rigor-
ous improvements in circuit analysis, including more general
solutions of equilibrium points145–150, variously character-
ized electronic devices86, 151–153 and circuits with complex
dynamics154–158. In recent years, efforts have been made
to apply PWL techniques to the circuit systems containing
memristors. PWL window functions are very flexible and
have been applied to model different types of ideal memris-
tors159–161. The input-output data are also adopted to construct
complex memristor systems from the perspective of approx-
imation, in which PWLNNs in the form of SBF have been
successfully applied with promising performance162. Many
circuit components, such as resistors and memristors, are
PWL-characterized, meaning that PWLNN relating methods
can be naturally applied and good performance can commonly
be expected.

4.2 Control
One of the most successful achievements of PWLNNs is their
application in control systems, particularly in dynamic system
identification and MPC. General PWLNN models naturally
and widely exist in control systems, where hybrid phenomena
can be handled163–166. The systems here are not necessarily
continuous, albeit they are PWL-characterized, the discontin-
uous cases are not discussed in this Primer.

System identification consists of building a proper mathe-
matical model to describe the coherent relationship based on
the given input-output data from a dynamic control system.
Note that the basic idea in system identification is similar
to that of general approximation problems and supervised
learning. Here, we mainly discuss the PWLNNs applied in
typical problems concerning control community, where the
dynamic system is in relatively lower dimensions and the
dynamics of control systems are addressed. PWLNNs have
shown great potentials in various dynamic systems27–29. In
fact, many learning algorithms specified for shallow PWLNNs
initially originated from resolving the system identification
problems in control16, 17, 31, 167, 168. Recently, a novel PWLNN
for dynamic system identification was developed to provide
an interpretable predictor facilitating variable selection and
analysis85, and has been applied to traffic flow prediction169.

MPC has long been addressed as an important topic for com-
plex constrained multi-variable control problems, particularly
in industrial processes170. The controller design in MPC is an
open-loop optimization problem. The intensive online compu-
tation of the repetitive solutions to the optimization problem
is a major obstacle hindering its wider use. Explicit solutions
to linear MPC have been proposed, in which the controller is
formulated as a PWL function of state variables171–173. It has
become more prevalent to use PWL-characterized predictive
models in MPC, where different PWLNNs have been applied.

In one example, the power of PWLNNs in MPC was prelimi-
narily verified by using hinging hyperplanes, but this method
neither fully considered the superiority of PWLNN nor ex-
erted a good combination with MPC174. The Lattice represen-
tation was then utilized to achieve analytical expression of
the explicit MPC solution175. AHH was also successfully ap-
plied to determine the necessary and sufficient conditions for
local optimality16. Further, the minimal conjunctive normal
expression based on the Lattice was achieved for MPC with
the smallest number of parameters25. It has also been shown
that using convex projections of the Lattice representation can
be another potential technique for solving explicit MPC176.
Compared to other methods, PWLNNs have relatively simpler
identification process and also show advantageous accuracy
with efficiency. It inspires us that a good utilization of specific
geometrical properties of PWLNNs and a proper combina-
tion with practical settings fundamentally help approach more
extensive applications.

4.3 Image processing
Nowadays, PWL-DNNs can be designed over hundreds of
layers to extract informative features for the learning of com-
plicated tasks33. PWL-DNNs have become one of the most
popular choices in deep learning, where the state-of-the-art
performance of many popular image datasets, such as Ima-
geNet, has been constantly refreshed along with the proposal
of various PWL activations or related techniques51, 76. In ad-
dition to image processing, acoustic and video processing can
be improved based on PWL-DNNs177, 178.

In 2012, a PWL-DNN with ReLU was applied to greatly im-
prove the classification accuracy on approximately 1.2 million
images into 1000 classes32. By introducing ReLU to DNNs,
the gradient vanishing could be greatly relieved with boosted
performances, resulting in faster learning compared to Tanh
units and others32. In fact, faster learning has a great influence
on the performance of large models trained on large-scale data.
PWL-DNNs have long been dominating the image processing
tasks and constantly improving accuracy in various bench-
marks77, 179. Practical real-world applications have received
great benefits from the commercial aspects of hardware and
algorithmic implementations75, 180. PWL-DNNs have made
and will continue making remarkable contributions to image
processing and far beyond.

5 Reproducibility and data deposition
To apply PWLNNs in data science, reproducibility and data de-
position is an important element. For a specific task with given
data, a general workflow to sequentially apply a PWLNN con-
sists of selecting a PWLNN representation model, feeding
data into the PWLNN, conducting the learning, evaluating the
performance and tuning until the desired conditions are sat-
isfied (Figure 1). In such a workflow, there are many factors
affecting the reproducibility, which can be categorized into
data influence and algorithmic influence.

13/23

5.1 Data influence
When a new algorithm or model is proposed and needs to be
verified, the baselines of data sources are required. Thus, vari-
ous carefully designed benchmark datasets are collected from
natural environments and have been widely used for applying
PWLNNs (including other methods for data) to validate their
effectiveness with fair comparisons. When using benchmark
datasets, reproducibility can be guaranteed. In practical sce-
narios, particularly involving industrial processes, data can
be corrupted with noise, due to environmental influences or
measurement errors. Thus, sometimes in the evaluation, the
performances against noises need to be considered. In such
cases, to ensure reproducibility, manually-corrupted noises
by computer programming can be made identical by fixing
the computer seed for generating noise in the programming
of each run. In this way, benchmark datasets together with
identical noises can be evaluated by computer runs. In deep
learning, there are numerous benchmark datasets, such as
UCI repository181, MNIST182, SVHN183, NORB184, CIFAR
10/100185, COCO186, and ImageNet187, Visual Genome188

meaning that solid experiments of empirical evaluations can
be conducted with guaranteed reproducibility.

Algorithmic influence
Learning algorithms are also significant for reproducibility
since different sets of parameters can result in a completely
different performance even with the same PWLNN struc-
ture and identical dataset. Random initialization can lead
to different results in learning algorithms, as parameters get
iteratively updated to different values. Therefore, the same
random seed should be fixed for the initialization of learning
algorithms. In particular, the learning algorithms for PWL-
DNNs are based on gradients, the computation of which can
differ in concrete implementations, because the gradients are
usually computed numerically due to the nondifferentiable
PWL nonlinearity. Various computational platforms are con-
structed, where PWL-DNNs can be easily applied and well
learned. Each platform has its own standards; popular plat-
forms include Tensorflow189, PyTorch36, Keras190, Caffe191,
MXNet192, Theano193. Once a certain platform is selected,
reproducibility can be guaranteed. Data decomposition can
also be implemented identically if all randomness has been
eliminated by the previously mentioned strategies.

6 Limitations and optimizations
Despite the developments of PWLNNs achieved so far, there
are still many challenges worthy to be addressed. In shallow
PWLNNs, there are different ways of introducing PWL non-
linearity. For example, each PWLNN representation based
on basis functions has distinctively different motivations and
explanations for the varied PWL feature mapings. In contrast,
the PWL nonlinearity in PWL-DNNs is achieved by directly
adopting some simple PWL functions as activations. In exist-
ing PWL-DNNs, the basic building blocks of the network and
connections between neurons, both within and across layers,

are inherited from generic DNNs. They lack specifications
by combining PWL nonlinearity on constructing novel deep
architectures N . The potential of extending PWLNNs in
the form of AHH towards novel deep network architectures
has been explored194, but it still remains difficult to tackle
complex tasks involving really deep architectures.

To apply PWLNNs in data science, various learning al-
gorithms have been proposed. It should be noted that al-
though shallow PWLNNs are only applicable to a limited
range of problems in low dimensions and with small scales,
each PWLNN representation model has its own learning algo-
rithm, which is constructed by fully considering the specific
characteristics of the model. When it comes to PWL-DNNs,
we admit that the combination of SGD and backpropagation
in deep learning has truly realized the powerful flexibility of
PWL-DNNs and promoted the applications, but the regular
learning algorithms for PWL-DNNs hold no difference from
other generic DNNs. In fact, when it involves an optimiza-
tion problem with PWL nonlinearity, local information of
vertices and linearity have not been utilized, and yet it shows
to be quite useful and promising in solving the related opti-
mization problems of shallow PWLNNs for attaining higher
accuracy, efficient computation, and explicitness of learning
process. We can rethink developing novel learning algorithms
for PWL-DNNs with specifications on different PWL activa-
tion functions or specific network architectures, in which full
information from PWL nonlinearity should be utilized and
more potentials are promising to be further explored.

In the existing literature, theoretical analysis concerning
shallow PWLNN representations has been discussed vigor-
ously, such as representation ability, existence conditions, and
domain configurations. As pointed out in this Primer, strong
relations exist between the shallow and deep PWLNNs. How-
ever, only a few of the theoretical conclusions for the existing
PWLNN representations have been used in deep learning. For
example, the universal representation ability of GHH in ana-
lyzing shallow PWLNNs has been employed to understand
PWL-DNNs with ReLU35. PWL-DNNs shall be further in-
vestigated by recalling vigorous theories in the previously
existing PWLNNs to facilitate further understanding of PWL-
DNNs and even generic DNNs.

7 Outlook
An implicit and practical requirement for conventional PWL
functions is to be compact and interpretable with regards to do-
main partitions and locally linear expressions, since complex
partitions and expressions might result in PWL functions that
are hard to be understood with unpredictable behaviors. As
a result, shallow PWLNNs usually assume locally-dominant
features among sub-regions and aim to achieve sufficiently
sparse model structures. In contrast, PWL-DNNs abandon
such an assumption and directly adopt simple PWL mapping
functions to connect neurons in a certain way. This results
in much more complicated domain partitions and locally lin-
ear expressions. Although numerical results demonstrate the

14/23

superior performance of PWL-DNNs, there are still many
open problems in this field. In order to understand the funda-
mentals of DNNs and further improve practical applications,
certain questions need to be answered. For example, given the
data, is there a PWLNN that simultaneously pertains simple
partitions and/or locally-dominant features with considerably
good performances? Can we find such a PWLNN by explic-
itly seeking a shallow PWLNN or implicitly regularizing the
learning of a PWL-DNN? What are the differences and rela-
tions between PWLNNs and other kinds of NNs that address
locally-dominant features195?

Despite the superior performance of PWL-DNNs, the shal-
low architectures discussed in this Primer show their own
merits, including simpler structures, better interpretability,
and the alleviated overfitting, particularly in lower dimensions
with smaller-scale problems. Novel formulations of shallow-
architecture PWLNNs are still worth being explored. For
example, inserting more linear functions into the hinges for
flexibility using GHH and utilizing max-min composites of
univariate hinges for interpretability with AHH. The Lattice
representation has not yet been extended to deep architectures,
and can be a promising alternative to develop novel network
architectures in deep learning. The Lattice representation can
be transformed with strong relations to GHH, which has been
extended to PWL-DNNs with Maxout. Though the boolean
theory was discussed to formulate a multi-level Lattice net-
work196, the transformation is neither unique nor irredundant,
and its composite of PWL mappings lacks flexibility, leaving
potential for further improvement, such as large-scale explicit
MPC and its efficient hardware implementation.

PWL nonlinearity has significantly contributed to the de-
sign of deeper architectures. Although there is an emerging
line of empirical and theoretical works on PWL-DNNs, cur-
rent theoretical analysis of PWL-DNNs is still far from suf-
ficient, particularly for different variants of PWL mapping
functions, compared to the existing theoretical understand-
ing of their shallow counterparts, where specific analysis is
cast for each PWLNN representation. In fact, there are many
informative conclusions in shallow PWLNN representations
that are very helpful for deep learning35, 51. More rigorous
theoretical analysis can further benefit the understanding of
PWL-DNNs and generic DNNs. Novel network architectures
in deep learning are also promising to be inspired, when re-
thinking the existing systematical theories and experiences
for general PWLNNs.

The learning of shallow PWLNNs is specified in each repre-
sentation, while PWL-DNNs directly inherit the regular learn-
ing from generic DNNs, where PWL-specified techniques are
missing. Thus, when developing novel PWL-DNNs, learn-
ing algorithms for PWL-DNNs should be taken into account
by fully utilizing PWL characteristics specified on different
types of PWL mapping functions, so that novel architectures
and effective learning algorithms can be mutually developed
and boosted. In the learning of DNNs, another challenge is
to study how the parameter learning can converge to a local

or global optimum in such highly nonconvex optimization
problems. Optimality conditions have been proven for linear
DNNs197, 198, and nonlinear DNNs mostly with differentiable
activations199, 200. Current analytical results rely on simple
DNNs restricted to multiple assumptions. Considering the su-
perior performances of nondifferentiable PWL-DNNs, related
analysis of their optimization is worthy of further attention. It
is necessary to analyze these optimality conditions specified
on different types of (PWL) activations and more complex
network structures for specific objectives.

In this Primer, we comprehensively introduced PWLNNs
and their developments since 1970s, from tracing to the pio-
neering PWLNNs in the form of canonical representations,
subsequent studies on shallow architectures, and the recent
developments in deep ones. In the upcoming years, PWLNNs
are sure to be of great significance, and vigorous develop-
ments should be expected, particularly in such an era with
massive information in-and-out, which keeps benefiting our
society.

8 Glossary
An induced conclusion by the Stone-Weierstrass approx-
imation theorem: any continuous function can be approxi-
mated by a PWL function to arbitrary accuracy.

PWL function: it is a function that appears to be linear in
sub-regions of the domain but is by essence nonlinear in the
whole domain.

Canonical piecewise Linear Representation: it is the pi-
oneering compact expression by which a PWL function is
constructed through a linear combination of multiple absolute-
value basis functions.

Rectified linear units: it is one of the most popular activa-
tion functions in neural networks and is defined as the positive
part of its arguments by max{0,x}.

Hinging hyperplanes: a hinge function consists of two hy-
perplanes, namely hinging hyperplanes, continuously joining
at the so-called hinge, and has greatly contributed to construct
flexible representation models for continuous PWL functions.

Backpropagation strategy: it is widely used to train feed-
forward neural networks and works by computing the gra-
dients of weights of each layer in the network and iterating
backward layerwisely for efficient calculation.

Stochastic gradient descent: it is an iterative optimiza-
tion algorithm, where the actual gradient is approximated or
estimated commonly by a randomly selected subset of data.

PWL memristors: other than the resistor, the inductor,
and the capacitor, it is considered as the fourth fundamental
two-terminal circuit element including a memory of past volt-
ages or currents; those memristors pertain PWL-characterized
dynamics are called PWL memristors.

Gradient vanishing problem: in the iterative updates of
training DNNs with gradient-based algorithms, the multiply-
ing of small values of gradients by backpropogation can lead
to a very small value (approaching zero) in computing the

15/23

gradients of early layers, which makes the network hard to
proceed the training.

Least squares method: it is an approach to approximate
the solutions of an unknown system given with a set of input-
output data points by minimizing the sum of the squares of
the residuals between the observed output data and network’s
output.

Gauss-Newton algorithm: it is a modified Newton’s
method, which computes the second-order derivatives, to min-
imize a sum of squared loss in solving non-linear least squares
problems.

Multivariate adaptive regression splines: it is a flexi-
ble regression model, consisting of weighted basis functions,
which are expressed in terms of the product of truncated power
splines [±(xi−β)]q+, and its training procedures can be in-
terpreted as a generalized tree searching based on recursive
domain partitions.

Consistent variation property: given a continuous PWL
function, it is the necessary and sufficient condition on
whether such a function can be expressed by a CPLR model,
where the properties of domain partitions and intersections
between partitioned sub-regions are discussed; its detailed
descriptions are given in the subsequent context.

Zaslavsky’s Theorem of hyperplanes arrangement: the
maximal number of regions in Rd with an arrangement of m
hyperplanes is estimated by ∑

n
j=0
(m

j

)
.

9 Acknowledgements
This work is jointly supported by ERC Advanced Grant E-
DUALITY (787960), KU Leuven Grant CoE PFV/10/002,
and Grant FWO G0A4917N, EU H2020 ICT-48 Network
TAILOR (Foundations of Trustworthy AI - Integrating Rea-
soning, Learning and Optimization), Leuven.AI Institute, Na-
tional Key Research and Development Program under Grant
2021YFB2501200, and Shanghai Municipal Science and
Technology Major Project (2021SHZDZX0102).

References
1. Leenaerts, D. & Van Bokhoven, W. M. Piecewise linear

modeling and analysis (Springer Science & Business
Media, 2013).

2. Folland, G. B. Real Analysis: Modern Techniques and
Their Applications (Wiley Interscience, 1999).

3. Chien, M.-J. & Kuh, E. Solving nonlinear resistive
networks using piecewise-linear analysis and simplicial
subdivision. IEEE Transactions on Circuits Syst. 24,
305–317 (1977).

4. Chua, L. O. & Deng, A. Canonical piecewise-linear
representation. IEEE Transactions on Circuits Syst. 35,
101–111 (1988). The systematical analysis on CPLR
is given in the paper, including some crucial proper-
ties of PWLNNs.

5. Chua, L. O. & Kang, S. Section-wise piecewise-linear
functions: Canonical representation, properties, and ap-
plications. Proc. IEEE 65, 915–929 (1977). The pi-
oneering compact expression for PWL functions is
proposed and formally introduced in this paper for
circuit systems, and then the analytical analysis for
PWL functions since becomes viable.

6. Nair, V. & Hinton, G. Rectified linear units improve
restricted boltzmann machines. In Proceedings of the
International Conference on International Conference
on Machine Learning, 807–814 (2010). PWL-DNNs
start being prevalent and showing state-of-the-art
performance since this paper, where the most pop-
ular ReLU is established.

7. Kang, S. & Chua, L. O. A global representation of
multidimensional piecewise-linear functions with linear
partitions. IEEE Transactions on Circuits Syst. 25, 938–
940 (1978).

8. Lin, J. N. & Unbehauen, R. Canonical representation:
from piecewise-linear function to piecewise-smooth
functions. IEEE Transactions on Circuits Syst. I: Fun-
damental Theory Appl. 40, 461–468 (1993).

9. Breiman, L. Hinging hyperplanes for regression, classifi-
cation, and function approximation. IEEE Transactions
on Inf. Theory 39, 999–1013 (1993). HH representa-
tion model and its hinge-finding learning algorithm
are introduced in this paper. The connection with
ReLU in PWL-DNNs can be referred.

10. Lin, J. N. & Unbehauen, R. Explicit piecewise-linear
models. IEEE Transactions on Circuits Syst. I: Funda-
mental Theory Appl. 41, 931–933 (1995).

11. Tarela, J. & Martı́nez, M. Region configurations for real-
izability of lattice piecewise-linear models. Math. Com-
put. Model. 30, 17–27 (1999). Formal proofs on the
universal representation ability of the Lattice repre-
sentation are given and different locally linear sub-
region realizations are summarized.

12. Julián, P. The complete canonical piecewise-linear rep-
resentation: Functional form for minimal degenerate
intersections. IEEE Transactions on Circuits Syst. I:
Fundamental Theory Appl. 50, 387–396 (2003).

13. Wen, C., Wang, S., Li, F. & Khan, M. J. A compact
f-f model of high-dimensional piecewise-linear function
over a degenerate intersection. IEEE Transactions on
Circuits Syst. I: Regul. Pap. 52, 815–821 (2005).

14. Wang, S. & Sun, X. Generalization of hinging hyper-
planes. IEEE Transactions on Inf. Theory 51, 4425–
4431 (2005). The idea of inserting multiple linear
functions to the hinge is given in this paper, where
formal proofs are given. The connection with Max-
out in PWL-DNNs can be referred.

16/23

15. Sun, X. & Wang, S. A special kind of neural networks:
Continuous piecewise linear functions. Lect. Notes Com-
put. Sci. 3496, 375–379 (2005).

16. Xu, J., Huang, X. & Wang, S. Adaptive hinging hyper-
planes and its applications in dynamic system identifica-
tion. Automatica 45, 2325–2332 (2009).

17. Yu, J., Wang, S. & Li, L. Incremental design of simplex
basis function model for dynamic system identification.
IEEE Transactions on Neural Networks Learn. Syst. 29,
4758–4768 (2017).

18. Chua, O., L. & Deng, A. C. Canonical piecewise-linear
analysis - Part II: Tracing driving-point and transfer
characteristics. IEEE Transactions on Circuits Syst. 32,
417–444 (1985).

19. Wang, S. General constructive representations for con-
tinuous piecewise-linear functions. IEEE Transactions
on Circuits Syst. I: Regul. Pap. 51, 1889–1896 (2004).
A general constructive method for representing an
arbitrary PWL function is considered, in which sig-
nificant differences and connections between differ-
ent representation models are vigorously discussed.
Many theoretical analysis on PWL-DNNs adopts the
Theorems and Lemmas proposed in this paper.

20. Wang, S., Huang, X. & Yam, Y. A neural network of
smooth hinge functions. IEEE Transactions on Neural
Networks 21, 1381–1395 (2010).

21. Xu, J., Huang, X. & Wang, S. Stability analysis of planar
continuous piecewise linear systems. In Proceedings of
the American Control Conference, 2505–2510 (2010).

22. Mu, X., Huang, X. & Wang, S. Dynamic behavior of
piecewise-linear approximations. J. Tsinghua Univ. 51,
879–883 (2011).

23. Huang, X., Xu, J. & Wang, S. Exact penalty and opti-
mality condition for nonseparable continuous piecewise
linear programming. J. Optim. Theory Appl. 155, 145–
164 (2012).

24. Xu, J., Boom, T., Schutter, B. & Wang, S. Irredundant
lattice representations of continuous piecewise affine
functions. Automatica 70, 109–120 (2016).

25. Xu, J., Boom, T., Schutter, B. & Luo, X. Minimal
conjunctive normal expression of continuous piecewise
affine functions. IEEE Transactions on Autom. Control.
61, 1340–1345 (2016).

26. Pucar, P. & Millnert, M. Smooth hinging hyperplanes -
an alternative to neural nets. In Proceedings of the 3rd
European Control Conference, 1173–1178 (1995).

27. Hush, D. & Horne, B. Efficient algorithms for func-
tion approximation with piecewise linear sigmoidal net-
works. IEEE Transactions on Neural Networks 9, 1129–
1141 (1998).

28. Wang, S. & Narendra, K. S. Nonlinear system identi-
fication with lattice piecewise-linear functions. In Pro-
ceedings of the American Control Conference, 388–393
(2002).

29. Wen, C., Wang, S., Jin, X. & Ma, X. Identification of
dynamic systems using piecewise-affine basis function
models. Automatica 43, 1824–1831 (2007).

30. Wang, S., Huang, X. & Khan Junaid, K. M. Configu-
ration of continuous piecewise-linear neural networks.
IEEE Transactions on Neural Networks 19, 1431–45
(2008).

31. Huang, X., Xu, J. & Wang, S. Identification algorithm
for standard continuous piecewise linear neural network.
In Proceedings of the American Control Conference,
4431–4936 (2010). A gradient descent learning algo-
rithm is proposed for PWLNNs, where domain par-
titions and parameter optimizations are both eluci-
dated.

32. Krizhevsky, A., Sutskever, I. & Hinton, G. E. Imagenet
classification with deep convolutional neural networks.
In Advances in Neural Information Processing Systems,
1097–1105 (2012).

33. He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learn-
ing for image recognition. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recogni-
tion, 770–778 (2016).

34. Huang, G., Liu, Z., van der Maaten, L. & Weinberger,
K. Q. Densely connected convolutional networks. In
Proceedings of the IEEE Conference on Computer Vi-
sion and Pattern Recognition, 2261–2269 (2017).

35. Arora, R., Basu, A., Mianjy, P. & Mukherjee, A. Un-
derstanding deep neural networks with rectified linear
units. In Proceedings of the International Conference
on Learning Representations (2018).

36. Paszke, A. et al. Pytorch: An imperative style, high-
performance deep learning library. In Advances in Neu-
ral Information Processing Systems, 8024–8035 (2019).

37. Julián, P. A high level canonical piecewise linear repre-
sentation: theory and applications. Ph.D. thesis, Univer-
sidad Nacional del Sur (Argentina) (1999). This disser-
tation gives a very good view on the PWL functions
and their applications mainly in circuits systems de-
veloped before the 2000s.

38. Ohnishi, M. & Inaba, N. A singular bifurcation into
instant chaos in a piecewise-linear circuit. IEEE Trans-
actions on Circuits Syst. I: Fundamental Theory Appl.
41, 433–442 (1994).

39. Itoh, M. & Chua, L. O. Memristor oscillators. Int. J.
Bifurc. Chaos 18, 3183–3206 (2008).

40. Bradley, P. S., Mangasarian, O. L. & Street, W. N. Clus-
tering via concave minimization. In Advances in Neural
Information Processing Systems, 368–374 (1996).

17/23

41. Kim, D. & Pardalos, P. M. A dynamic domain contrac-
tion algorithm for nonconvex piecewise linear network
flow problems. J. Glob. Optim. 17, 225–234 (2000).

42. Balakrishnan, A. & Graves, S. C. A composite algorithm
for a concave-cost network flow problem. Networks 19,
175–202 (2010).

43. Liu, K., Xu, Z., Xi, X. & Wang, S. Sparse signal re-
construction via concave continuous piecewise linear
programming. Digit. Signal Process. 54, 12–26 (2016).

44. Liu, K., Xi, X., Xu, Z. & Wang, S. A piecewise linear
programming algorithm for sparse signal reconstruction.
Tsinghua Sci. Technol. 22, 29–41 (2017).

45. Zhang, H. & Wang, S. Global optimization of separable
objective functions on convex polyhedra via piecewise-
linear approximation. J. Comput. Appl. Math. 197, 212–
217 (2006).

46. Zhang, H. & Wang, S. Linearly constrained global opti-
mization via piecewise-linear approximation. J. Comput.
Appl. Math. 214, 111–120 (2008).

47. Guisewite, G. M. & Pardalos, P. M. Minimum concave-
cost network flow problems: Applications, complexity,
and algorithms. Annals Oper. Res. 25, 75–99 (1991).

48. Burkard, R. E., Dollani, H. & Thach, P. T. Linear ap-
proximations in a dynamic programming approach for
the uncapacitated single-source minimum concave cost
network flow problem in acyclic networks. J. Glob.
Optim. 19, 121–139 (2001).

49. Xi, X., Huang, X., Suykens, J. A. K. & Wang, S. Coor-
dinate descent algorithm for ramp loss linear program-
ming support vector machines. Neural Process. Lett. 43,
887–903 (2016).

50. Xu, Z., Liu, K., Xi, X. & Wang, S. Method of hill tunnel-
ing via simplex centroid for continuous piecewise linear
programming. In Proceedings of the IEEE Conference
on Decision and Control, 6609–6616 (2015).

51. Goodfellow, I., Warde-Farley, D., Mirza, M., Courville,
A. & Bengio, Y. Maxout networks. In Proceedings
of the International Conference on Machine Learning,
1319–1327 (2013). A flexible PWL activation func-
tion is proposed for PWL-DNNs, and ReLU can be
regarded as its special case, where analysis on the
universal approximation ability and the relations to
the shallow-architectured PWLNNs are given.

52. Hopfield, J. J. Neural networks and physical systems
with emergent collective computational abilities. Proc.
national academy sciences 79, 2554–2558 (1982).

53. Kahlert, C. & Chua, L. O. A generalized canonical
piecewise-linear representation. IEEE Transactions on
Circuits Syst. 37, 373–383 (1990).

54. Lin, J., Xu, H.-Q. & Unbehauen, R. A generalization
of canonical piecewise-linear functions. IEEE Transac-

tions on Circuits Syst. I: Fundamental Theory Appl. 41,
345–347 (1994).

55. Ernst, S. Hinging hyperplane trees for approximation
and identification. In Proceedings of the IEEE Con-
ference on Decision and Control, vol. 2, 1266–1271
(1998).

56. Pucar, P. & Sjöberg, J. On the hinge-finding algorithm
for hinging hyperplanes. IEEE Transactions on Inf.
Theory 44, 3310–3319 (1998).

57. Ramirez, D. R., Camacho, E. F. & Arahal, M. R. Imple-
mentation of min-max MPC using hinging hyperplanes.
application to a heat exchanger. Control. Eng. Pract. 12,
1197–1205 (2004).

58. Huang, X., Matijaš, M. & Suykens, J. A. Hinging hyper-
planes for time-series segmentation. IEEE Transactions
on Neural Networks Learn. Syst. 24, 1279–1291 (2013).

59. Huang, X., Xu, J. & Wang, S. Operation optimization
for centrifugal chiller plants using continuous piecewise
linear programming. In Proceedings of the IEEE Inter-
national Conference on Systems, Man and Cybernetics,
1121–1126 (2010).

60. Julián, P., Desages, A. & Agamennoni, O. High-level
canonical piecewise linear representation using a sim-
plicial partition. IEEE Transactions on Circuits Syst. I:
Fundamental Theory Appl. 46, 463–480 (1999).

61. Padberg, M. Approximating separable nonlinear func-
tions via mixed zero-one programs. Oper. Res. Lett. 27,
1–5 (2000).

62. Croxton, K. L., Gendron, B. & Magnanti, T. L. A
comparison of mixed-integer programming models for
nonconvex piecewise linear cost minimization problems.
Manag. Sci. 49, 1268–1273 (2003).

63. Keha, A. B., de Farias, I. R. & Nemhauser, G. L. A
branch-and-cut algorithm without binary variables for
nonconvex piecewise linear optimization. Oper. Res. 54,
847–858 (2006).

64. Vielma, J. P., Ahmed, S. & Nemhauser, G. Mixed-
integer models for nonseparable piecewise-linear opti-
mization: Unifying framework and extensions. Oper.
research 58, 303–315 (2010).

65. Wilkinson, R. A method of generating functions of
several variables using analog diode logic. IEEE Trans-
actions on Electron. Comput. 12, 112–129 (1963).

66. Birkhoff & Garrett. Lattice theory. Bull. Am. Math. Soc.
64, 50–57 (1958).

67. Streubel, T., Griewank, A., Radons, M. & Bernt, J.-U.
Representation and analysis of piecewise linear func-
tions in abs-normal form. In Proceedings of IFIP Con-
ference on System Modeling and Optimization, 327–336
(2013).

18/23

68. Griewank, A. On stable piecewise linearization and
generalized algorithmic differentiation. Optim. Methods
Softw. 28, 1139–1178 (2013).

69. Fiege, S., Walther, A. & Griewank, A. An algorithm
for nonsmooth optimization by successive piecewise
linearization. Math. Program. 177, 343–370 (2019).

70. Griewank, A. & Walther, A. Polyhedral DC decomposi-
tion and DCA optimization of piecewise linear functions.
Algorithms 13, 166 (2020).

71. Glorot, X., Bordes, A. & Bengio, Y. Deep sparse rectifier
neural networks. In Proceedings of the International
Conference on Artificial Intelligence and Statistics, 315–
323 (2011).

72. McCulloch, W. S. & Pitts, W. A logical calculus of
the ideas immanent in nervous activity. The bulletin
mathematical biophysics 5, 115–133 (1943).

73. Batruni, R. A multilayer neural network with piecewise-
linear structure and back-propagation learning. IEEE
Transactions on Neural Networks 2, 395–403 (1991).

74. Lin, J. N. & Unbehauen, R. Canonical piecewise-linear
networks. IEEE Transactions on Neural Networks 6, 43–
50 (1995). The network topology for G-CPLR is de-
picted, and the idea of introducing general PWL ac-
tivation functions for PWL-DNNs is also discussed
in this paper, yet without numerical evaluations.

75. Rawat, W. & Wang, Z. Deep convolutional neural net-
works for image classification: A comprehensive review.
Neural Comput. 29, 2352–2449 (2017).

76. Maas, A., Hannun, A. Y. & Ng., A. Y. Rectifier non-
linearities improve neural network acoustic models. In
Proceedings of the International Conference Machine
Learning, 1–8 (2013).

77. He, K., Zhang, X., Ren, S. & Sun, J. Delving deep
into rectifiers: Surpassing human-level performance on
imagenet classification. In Proceedings of the IEEE In-
ternational Conference on Computer Vision, 1026–1034
(2015). Modifications of optimization strategies on
the PWL-DNNs and a novel PWL activation func-
tion are given in this paper, where PWL-DNNs can
be delved into fairly deep.

78. Xu, B., Wang, N., Chen, T. & Li, M. Empirical evalu-
ation of rectified activations in convolutional network.
Preprint at https://arxiv.org/abs/1505.00853 (2015).

79. Liang, X. & Xu, J. Biased ReLU neural networks. Neu-
rocomputing 423, 71–79 (2021).

80. Shang, W., Sohn, K., Almeida, D. & Lee, H. Under-
standing and improving convolutional neural networks
via concatenated rectified linear units. In Proceedings
of the International Conference on Machine Learning,
vol. 48, 2217–2225 (2016).

81. Jin, X. et al. Deep learning with s-shaped rectified linear
activation units. In Proceedings of the AAAI Conference
on Artificial Intelligence, 1737–1743 (2016).

82. Qiu, S., Xu, X. & Cai, B. FReLU: Flexible rectified lin-
ear units for improving convolutional neural networks.
In Proceedings of the International Conference on Pat-
tern Recognition, 1223–1228 (2018).

83. Agostinelli, F., Hoffman, M. D., Sadowski, P. J. & Baldi,
P. Learning activation functions to improve deep neu-
ral networks. In Workshop Track Proceedings of the
International Conference on Learning Representations
(2015).

84. Bodyanskiy, Y., Deineko, A., Pliss, I. & Slepanska, V.
Formal neuron based on adaptive parametric rectified
linear activation function and its learning. In Proceed-
ings of the International Workshop on Digital Content
& Smart Multimedia, vol. 2533, 14–22 (2019).

85. Xu, J. et al. Efficient hinging hyperplanes neural net-
work and its application in nonlinear system identifica-
tion. Automatica 116, 108906 (2020).

86. Suykens, J. A., Huang, A. & Chua, L. O. A family of n-
scroll attractors from a generalized chua’s circuit. Arch.
fur Elektronik und Ubertragungstechnik (International
J. Electron. Commun. 51, 131–137 (1997).

87. Friedman, J. H. et al. Multivariate adaptive regression
splines. The Annals Stat. 19, 1–67 (1991).

88. Wang, Y. & Witten, I. H. Induction of model trees for
predicting continuous classes. In Poster papers of the
9th European Conference on Machine Learning (1997).

89. Tao, Q. et al. Learning with continuous piecewise linear
decision trees. Expert. Syst. with Appl. 168, 114–214
(2020).

90. Ferrari-Trecate, G., Muselli, M., Liberati, D. & Morari,
M. A clustering technique for the identification of piece-
wise affine systems. Automatica 39, 205–217 (2003).

91. Nakada, H., Takaba, K. & Katayama, T. Identification of
piecewise affine systems based on statistical clustering
technique. Automatica 41, 905–913 (2005).

92. Bottou, L. Stochastic gradient learning in neural net-
works. Proc. Neuro-Nimes 91, 12 (1991).

93. Jin, C., Netrapalli, P., Ge, R., Kakade, S. M. & Jordan,
M. I. On nonconvex optimization for machine learning:
Gradients, stochasticity, and saddle points. J. ACM 68,
1–29 (2021).

94. Duchi, J., Hazan, E. & Singer, Y. Adaptive subgradient
methods for online learning and stochastic optimization.
J. Mach. Learn. Res. 12, 2121–2159 (2011).

95. Kingma, D. P. & Ba, J. Adam: A method for stochas-
tic optimization. In Proceedings of the International
Conference on Learning Representations (2015).

19/23

https://arxiv.org/abs/1505.00853

96. Gupta, V., Koren, T. & Singer, Y. Shampoo: Precondi-
tioned stochastic tensor optimization. In Proceedings
of the International Conference on Machine Learning,
1842–1850 (2018).

97. Anil, R., Gupta, V., Koren, T., Regan, K. & Singer, Y.
Scalable second order optimization for deep learning.
Preprint at https://arxiv.org/abs/2002.09018 (2020).

98. Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I.
& Salakhutdinov, R. Dropout: a simple way to prevent
neural networks from overfitting. J. Mach. Learn. Res.
15, 1929–1958 (2014).

99. Ioffe, S. & Szegedy, C. Batch normalization: Accelerat-
ing deep network training by reducing internal covariate
shift. In Proceedings of the International Conference on
Machine Learning, 448–456 (2015).

100. Shorten, C. & Khoshgoftaar, T. M. A survey on image
data augmentation for deep learning. J. Big Data 6,
1–48 (2019).

101. Erhan, D., Courville, A., Bengio, Y. & Vincent, P. Why
does unsupervised pre-training help deep learning? In
Proceedings of the International Conference on Artifi-
cial Intelligence and Statistics, 201–208 (2010).

102. Neyshabur, B., Wu, Y., Salakhutdinov, R. & Srebro,
N. Path-normalized optimization of recurrent neural
networks with ReLU activations. In Advances in Neural
Information Processing Systems, 3477–3485 (2016).

103. Meng, Q. et al. G-SGD: optimizing relu neural networks
in its positively scale-invariant space. In Proceedings of
the International Conference on Learning Representa-
tions (2019).

104. Wang, G., Giannakis, G. B. & Chen, J. Learning relu
networks on linearly separable data: Algorithm, opti-
mality, and generalization. IEEE Transactions on Signal
Process. 67, 2357–2370 (2019).

105. Tsay, C., Kronqvist, J., Thebelt, A. & Misener, R.
Partition-based formulations for mixed-integer optimiza-
tion of trained ReLU neural networks. In Advances in
Neural Information Processing Systems, vol. 34, 2993–
3003 (2021).

106. Ergen, T. & Pilanci, M. Global optimality beyond two
layers: Training deep relu networks via convex pro-
grams. In International Conference on Machine Learn-
ing, 2993–3003 (2021).

107. Wen, W., Wu, C., Wang, Y., Chen, Y. & Li, H. Learning
structured sparsity in deep neural networks. In Advances
in neural information processing systems, 2074–2082
(2016).

108. Han, S., Pool, J., Tran, J. & Dally, W. Learning both
weights and connections for efficient neural network.
In Advances in neural information processing systems,
1135–1143 (2015).

109. Denton, E. L., Zaremba, W., Bruna, J., LeCun, Y. & Fer-
gus, R. Exploiting linear structure within convolutional
networks for efficient evaluation. 1269–1277 (2014).

110. Frankle, J. & Carbin, M. The lottery ticket hypothe-
sis: Finding sparse, trainable neural networks. In Pro-
ceedings of the International Conference on Learning
Representations, 6336–6347 (2019).

111. Zoph, B. & Le, Q. V. Neural architecture search with
reinforcement learning. In Proceedings of the Interna-
tional Conference on Learning Representations (2017).

112. Tao, Q., Xu, J., Suykens, J. A. K. & Wang, S. Fast
adaptive hinging hyperplanes. In Proceedings of the
IEEE Conference on Decision and Control, 1482–1487
(2018).

113. Cybenko, G. Approximation by superpositions of a
sigmoidal function. Math. Control. Signals Syst. 2, 303–
314 (1989).

114. Kurková, V. Kolmogorov’s theorem and multilayer neu-
ral networks. Neural networks 5, 501–506 (1992).

115. Hornik, K., Stinchcombe, M. & White, H. Multilayer
feedforward networks are universal approximators. Neu-
ral networks 2, 359–366 (1989).

116. Yarotsky, D. Error bounds for approximations with deep
ReLU networks. Neural Networks 94, 103–114 (2017).

117. Lu, Z., Pu, H., Wang, F., Hu, Z. & Wang, L. The
expressive power of neural networks: A view from the
width. In Advances in Neural Information Processing
Systems, 6231–6239 (2017).

118. Lin, H. & Jegelka, S. ResNet with one-neuron hid-
den layers is a universal approximator. In Advances in
Neural Information Processing Systems, vol. 31, 1–10
(2018).

119. Barron, A. R. Universal approximation bounds for su-
perpositions of a sigmoidal function. IEEE Transactions
on Inf. Theory 39, 930–945 (1993).

120. Cohen, N. & Shashua, A. Convolutional rectifier net-
works as generalized tensor decompositions. In Proceed-
ings of the International Conference on International
Conference on Machine Learning, 955–963 (2016).

121. Kumar, A., Serra, T. & Ramalingam, S. Equivalent and
approximate transformations of deep neural networks.
Preprint at http://arxiv.org/abs/1905.11428 (2019).

122. DeVore, R., Hanin, B. & Petrova, G. Neural net-
work approximation. Acta Numer. 30, 327–444 (2021).
The approximation properties of NNs are described
as they are presently understood and their perfor-
mance with other methods of approximation is also
discussed, where ReLU is centered in the analysis in-
volving univariate and multivariate forms with both
shallow and deep architectures.

20/23

https://arxiv.org/abs/2002.09018
http://arxiv.org/abs/1905.11428

123. Huang, S.-C. & Huang, Y.-F. Bounds on the number of
hidden neurons in multilayer perceptrons. IEEE Trans-
actions on Neural Networks 2, 47–55 (1991).

124. Mirchandani, G. & Cao, W. On hidden nodes for neural
nets. IEEE Transactions on Circuits Syst. 36, 661–664
(1989).

125. Huang, G.-B. Learning capability and storage capac-
ity of two-hidden-layer feedforward networks. IEEE
Transactions on Neural Networks 14, 274–281 (2003).

126. Zhang, C., Bengio, S., Hardt, M., Recht, B. & Vinyals,
O. Understanding deep learning requires rethinking
generalization. In Proceedings of the International Con-
ference on Learning Representations, 1–15 (2017).

127. Hardt, M. & Ma, T. Identity matters in deep learning.
Preprint at https://arxiv.org/abs/1611.04231 (2016).

128. Nguyen, Q. & Hein, M. Optimization landscape and
expressivity of deep CNNs. In Proceedings of the In-
ternational Conference on Machine Learning, vol. 80,
3730–3739 (2018).

129. Yun, C., Sra, S. & Jadbabaie, A. Generalization bounds
and consistency for latent structural probit and ramp loss.
In Advances in Neural Information Processing Systems,
vol. 32 (2019).

130. Pascanu, R., Montufar, G. & Bengio, Y. On the number
of response regions of deep feed forward networks with
piece-wise linear activations. Preprint at https://arxiv.
org/abs/1312.6098 (2013).

131. Zaslavsky, T. Facing up to arrangements: Face-count
formulas for partitions of space by hyperplanes: Face-
count formulas for partitions of space by hyperplanes,
vol. 154 (American Mathematical Sociesty, 1975).

132. Raghu, M., Poole, B., Kleinberg, J., Ganguli, S. & Sohl-
Dickstein, J. On the expressive power of deep neural
networks. In Proceedings of the International Confer-
ence on Machine Learning, 2847–2854 (2017).

133. Serra, T., Tjandraatmadja, C. & Ramalingam, S. Bound-
ing and counting linear regions of deep neural networks.
In Proceedings of the International Conference on Ma-
chine Learning, 4558–4566 (2018).

134. Hanin, B. & Rolnick, D. Complexity of linear regions
in deep networks. In Proceedings of the International
Conference on Machine Learning, 2596–2604 (2019).

135. Xiong, H. et al. On the number of linear regions of
convolutional neural networks. In Proceedings of the
International Conference on Machine Learning, vol.
119, 10514–10523 (2020).

136. Goodfellow, I. J., Shlens, J. & Szegedy, C. Explaining
and harnessing adversarial examples. In Proceedings of
the International Conference on Learning Representa-
tions (2015).

137. Katz, G., Barrett, C., Dill, D. L., Julian, K. & Kochen-
derfer, M. J. ReLUplex: An efficient SMT solver for
verifying deep neural networks. In Proceedings of the In-
ternational Conference on Computer Aided Verification,
97–117 (2017).

138. Bunel, R., Turkaslan, I., Torr, P. H. S., Kohli, P. &
Mudigonda, P. K. A unified view of piecewise linear
neural network verification. In Advances in Neural In-
formation Processing Systems, 4795–4804 (2018).

139. Jia, J., Cao, X., Wang, B. & Gong, N. Z. Certified
robustness for top-k predictions against adversarial per-
turbations via randomized smoothing. In Proceedings
of the International Conference on Learning Represen-
tations (2020).

140. Tjeng, V., Xiao, K. Y. & Tedrake, R. Evaluating robust-
ness of neural networks with mixed integer program-
ming. In Proceedings of the International Conference
on Learning (2019).

141. Cheng, C.-H., Nührenberg, G. & Ruess, H. Maximum
resilience of artificial neural networks. In International
Symposium on Automated Technology for Verification
and Analysis, 251–268 (2017).

142. Wong, E. & Kolter, Z. Provable defenses against adver-
sarial examples via the convex outer adversarial poly-
tope. In Proceedings of the International Conference on
Machine Learning, 5286–5295 (2018).

143. Stern, T. E. Piecewise-linear Network Theory (MIT
Tech. Rep., 1956).

144. Katzenelson, J. An algorithm for solving nonlinear
resistor networks. The Bell Syst. Tech. J. 44, 1605–1620
(1965).

145. Ohtsuki, T. & Yoshida, N. Dc analysis of nonlinear
networks based on generalized piecewise-linear charac-
terization. IEEE Transactions on Circuit Theory CT-18,
146–152 (1971).

146. Chua, L. O. & Ushida, A. A switching-parameter algo-
rithm for finding multiple solutions of nonlinear resistive
circuits. Int. J. Circuit Theory Appl. 4, 215–239 (1976).

147. Chien, M.-J. Piecewise-linear theory and computation
of solutions of homeomorphic resistive networks. IEEE
Transactions on Circuits Syst. 24, 118–127 (1977).

148. Yamamura, K. & Ochiai, M. An efficient algorithm
for finding all solutions of piecewise-linear resistive
circuits. IEEE Transactions on Circuits Syst. 39, P.213–
221 (1992).

149. Pastore, S. & Premoli, A. Polyhedral elements: A new
algorithm for capturing all the equilibrium points of
piecewise-linear circuits. IEEE Transactions on Circuits
Syst. I: Fundamental Theory Appl. 40, 124–132 (1993).

150. Yamamura, K. & Ohshima, T. Finding all solutions of
piecewise-linear resistive circuits using linear program-

21/23

https://arxiv.org/abs/1611.04231
https://arxiv.org/abs/1312.6098
https://arxiv.org/abs/1312.6098

ming. IEEE Transactions on Circuits Syst. I: Funda-
mental Theory Appl. 45, 434–445 (1998).

151. Chua, L. O. Modeling of three terminal devices: A black
box approach. IEEE Transactions on Circuit Theory 19,
555–562 (1972).

152. Meijer, P. B. Fast and smooth highly nonlinear multi-
dimensional table models for device modeling. IEEE
Transactions on Circuits Syst. 37, 335–346 (1990).

153. Yamamura, K. On piecewise-linear approximation of
nonlinear mappings containing gummel-poon models
or schichman-hodges models. IEEE Transactions on
Circuits Syst. I: Fundamental Theory Appl. 39, 694–697
(1992).

154. Chua, L. O., Komuro, M. & Matsumoto, T. The double
scroll family. IEEE Transactions on Circuits Syst. 33,
1072–1118 (1986).

155. Billings, S. & Voon, W. Piecewise linear identification
of non-linear systems. Int. J. Control. 46, 215–235
(1987).

156. Sontag, E. From linear to nonlinear: some complexity
comparisons. In Proceedings of the IEEE Conference
on Decision and Control, vol. 3, 2916–2920 (1995).

157. Mestl, T., Plahte, E. & Omholt, S. W. Periodic solutions
in systems of piecewise- linear differential equations.
Dyn. & Stab. Syst. 10, 179–193 (1995).

158. Yalcin, M., Suykens, J. A. & Vandewalle, J. Cellular
neural networks, multi-scroll chaos and synchronization,
vol. 50 (World Scientific, 2005).

159. Yu, J., Mu, X., Xi, X. & Wang, S. A memristor model
with piecewise window function. Radioengineering 22,
969–974 (2013).

160. Mu, X., Yu, J. & Wang, S. Modeling the memristor
with piecewise linear function. Int. J. Numer. Model.
Electron. Networks Devices & Fields 28, 96–106 (2015).

161. Yu, Y., Juntang Li, Mu, X., Zhang, J., Miao, X. & Wang,
S. Modeling the AginSbTe memristor. Radioengineer-
ing 24, 808–813 (2015).

162. Yu, J. Memristor model with window function and its
applications. Ph.D. thesis, Tsinghua University (2016).

163. Bemporad, A., Torrisi, F. D. & Morari, M. Optimization-
based verification and stability characterization of piece-
wise affine and hybrid systems. In International Work-
shop on Hybrid Systems: Computation and Control,
45–58 (2000).

164. Bemporad, A., Ferrari-Trecate, G. & Morari, M. Ob-
servability and controllability of piecewise affine and
hybrid systems. IEEE transactions on automatic control
45, 1864–1876 (2000).

165. Heemels, W., De Schutter, B. & Bemporad, A. Equiv-
alence of hybrid dynamical models. Automatica 37,
1085–1091 (2001).

166. Bemporad, A. Piecewise linear regression and classi-
fication. Preprint at https://arxiv.org/abs/2103.06189
(2021).

167. Huang, X., Xu, J. & Wang, S. Nonlinear system identifi-
cation with continuous piecewise linear neural network.
Neurocomputing 77, 167–177 (2012).

168. Huang, X., Mu, X. & Wang, S. Continuous piecewise
linear identification with moderate number of subre-
gions. In the 16th IFAC Symposium on System Identifi-
cation, 535–540 (2012).

169. Tao, Q. et al. Short-term traffic flow prediction based on
the efficient hinging hyperplanes neural network. IEEE
Transactions on Intell. Transp. Syst. 1–13 (2022).

170. Pistikopoulos, E. N., Dua, V., Bozinis, N. A., Bempo-
rad, A. & Morari, M. On-line optimization via off-line
parametric optimization tools. Comput. & Chem. Eng.
26, 175–185 (2002).

171. Bemporad, A., Borrelli, F. & Morari, M. Piecewise
linear optimal controllers for hybrid systems. In Pro-
ceedings of the American Control Conference, vol. 2,
1190–1194 (2000). The characteristic of PWL in con-
trol systems and the applications of PWL nonlinear-
ity are introduced.

172. Bemporad, A., Borrelli, F. & Morari, M. Model predic-
tive control based on linear programming - the explicit
solution. IEEE Transactions on Autom. Control. 47,
1974–1985 (2002).

173. Bemporad, A., Morari, M., Dua, V. & Pistikopoulos,
E. N. The explicit linear quadratic regulator for con-
strained systems. Automatica 38, 3–20 (2002).

174. Chikkula, Y., Lee, J. & Okunnaike, B. Dynamically
scheduled model predictive control using hinging hyper-
plane models. AIChE J. 44, 2658–2674 (1998).

175. Wen, C., Ma, X. & Ydstie, B. E. Analytical expres-
sion of explicit mpc solution via lattice piecewise-affine
function. Automatica 45, 910–917 (2009).

176. Xu, J. & Wang, S. Lattice piecewise affine representa-
tions on convex projection regions. In Proceedings of the
IEEE Conference on Decision and Control, 7240–7245
(2019).

177. Yue-Hei Ng, J. et al. Beyond short snippets: Deep
networks for video classification. In Proceedings of
the IEEE Conference on Computer Vision and Pattern
Recognition, 4694–4702 (2015).

178. Purwins, H. et al. Deep learning for audio signal pro-
cessing. IEEE J. Sel. Top. Signal Process. 13, 206–219
(2019).

179. Xie, Q., Luong, M.-T., Hovy, E. & Le, Q. V. Self-
training with noisy student improves imagenet classi-
fication. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, 10687–
10698 (2020).

22/23

https://arxiv.org/abs/2103.06189

180. Qiao, Y. et al. Fpga-accelerated deep convolutional neu-
ral networks for high throughput and energy efficiency.
Concurr. Comput. Pract. Exp. 29, e3850 (2017).

181. Dua, D. & Graff, C. UCI machine learning repository.
http://archive.ics.uci.edu/ml (2017).

182. LeCun, Y., Bottou, L., Bengio, Y., Haffner, P. et al.
Gradient-based learning applied to document recog-
nition. Proc. IEEE 86, 2278–2324 (1998). The ba-
sic learning framework for generic DNNs including
PWL-DNNs is formally introduced in this work.

183. Netzer, Y. et al. Reading digits in natural images with
unsupervised feature learning. In NIPS Workshop on
Deep Learning and Unsupervised Feature Learning
2011 (2011).

184. LeCun, Y., Huang, F. J. & Bottou, L. Learning methods
for generic object recognition with invariance to pose
and lighting. In Proceedings of the IEEE Computer
Society Conference on Computer Vision and Pattern
Recognition, vol. 2, II–104 (2004).

185. Krizhevsky, A. & Hinton, G. Learning multiple layers of
features from tiny images (Technical report, University
of Toronto, 2009).

186. Lin, T.-Y. et al. Microsoft COCO: Common objects in
context. In Proceedings of the European Conference on
Computer Vision, 740–755 (2014).

187. Russakovsky, O. et al. ImageNet Large Scale Visual
Recognition Challenge. Int. J. Comput. Vis. 115, 211–
252 (2015).

188. Krishna, R. et al. Visual genome: Connecting language
and vision using crowdsourced dense image annotations.
Int. J. Comput. Vis. 123, 32–73 (2017).

189. Abadi, M. et al. TensorFlow: Large-scale machine learn-
ing on heterogeneous systems. https://www.tensorflow.
org/ (2015).

190. Chollet, F. Keras. https://github.com/fchollet/keras
(2015).

191. Jia, Y. et al. Caffe: Convolutional architecture for fast
feature embedding. In Proceedings of the ACM interna-
tional conference on Multimedia, 675–678 (2014).

192. Chen, T. et al. MXNet: A flexible and efficient machine
learning library for heterogeneous distributed systems.
Preprint at https://arxiv.org/abs/1512.01274 (2015).

193. Bergstra, J. et al. Theano: a CPU and GPU math ex-
pression compiler. In Proceedings of the Python for
Scientific Computing Conference (2010).

194. Tao, Q. et al. Toward deep adaptive hinging hyper-
planes. IEEE Transactions on Neural Networks Learn.
Syst. (2021).

195. Tang, C. et al. Sparse MLP for image recognition: Is
self-attention really necessary? Preprint at https://arxiv.
org/abs/2109.05422 (2021).

196. Wang, Y., Li, Z., Xu, J. & Li, J. Multilevel lattice
piecewise linear representation and its application in
explicit predictive control. In Proceedings of the Asian
Control Conference, 1066–1071 (2019).

197. Kawaguchi, K. Deep learning without poor local min-
ima. In Advances in Neural Information Processing
Systems, 586–594 (2016).

198. Yun, C., Sra, S. & Jadbabaie, A. Global optimality
conditions for deep neural networks. Preprint at https:
//arxiv.org/abs/1707.02444 (2017).

199. Nguyen, Q. & Hein, M. The loss surface of deep and
wide neural networks. In Proceedings of the Interna-
tional Conference on Machine Learning, vol. 70, 2603–
2612 (2017).

200. Yun, C., Sra, S. & Jadbabaie, A. Small nonlinearities in
activation functions create bad local minima in neural
networks. In Proceedings of the International Confer-
ence on Learning Representations (2019).

23/23

http://archive.ics.uci.edu/ml
https://www.tensorflow.org/
https://www.tensorflow.org/
https://github.com/fchollet/keras
https://arxiv.org/abs/1512.01274
https://arxiv.org/abs/2109.05422
https://arxiv.org/abs/2109.05422
https://arxiv.org/abs/1707.02444
https://arxiv.org/abs/1707.02444

	1 Introduction
	2 Experimentation
	2.1 Preliminaries
	2.1.1 PWL functions
	2.1.2 PWLNNs

	2.2 Shallow PWLNNs
	2.2.1 Representations based on basis functions – the canonical family
	2.2.2 Representations based on basis functions – the hinge family
	2.2.3 Representations based on basis functions – others
	2.2.4 Lattice Representations

	2.3 PWL-DNNs

	3 Results
	3.1 Learning shallow PWLNNs
	3.1.1 Hinge finding algorithm and Newton's algorithm
	3.1.2 Tree Searching Algorithm
	3.1.3 Structured Decision Algorithm
	3.1.4 Other Algorithms

	3.2 Learning PWL-DNNs
	3.2.1 Optimization of Network Parameters
	3.2.2 Optimization of Network Structures

	3.3 Analysis on Shallow PWLNNs
	3.3.1 Universal Approximation and Representation Abilities
	3.3.2 Model Properties and Their Connections

	3.4 Analysis on PWL-DNNs
	3.4.1 Approximation Ability Concerning Width and Depth
	3.4.2 Expressive Capacity Given with Samples
	3.4.3 Analysis Specified with Localized Linearity over Domain Configurations

	4 Applications
	4.1 Circuits analysis
	4.2 Control
	4.3 Image processing

	5 Reproducibility and data deposition
	5.1 Data influence

	6 Limitations and optimizations
	7 Outlook
	8 Glossary
	9 Acknowledgements
	References

