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PIECEWISE LINEAR �PRE��WAVELETS ON NON�UNIFORM MESHES

ROB STEVENSON

Abstract� In this paper� an explicit construction of compactly supported prewavelets
on linear �nite element spaces is introduced on non�uniform meshes on polyhedron do�
mains and on boundaries of such domains� The obtained bases are stable in the Sobolev
spaces Hr for jrj � �

�
� The only condition we need is that of uniform re�nements� Com�

pared to existing prewavelets bases on uniform meshes� with our construction the basis
transformation from wavelet� to nodal basis �the wavelet transform� can be implemented
more e�ciently�

�� Motivation and background

Report No� ����� Department of Mathematics� University of Nijmegen� January ����� submitted to Proceedings EMG����

Let us denote by Hs� s � R �or jsj � t� a scale of Sobolev spaces on a d�dimensional
bounded polyhedral domain or su�ciently smooth manifold� For s � �� Hs is to be
understood as �H�s��� Consider a variational problem	 Given f � H�r� search u � Hr

such that

a�u� v� 
 f�v� �v � Hr�������

where a is a scalar product satisfying a�v� v� 

� kvk�Hr � i�e� the problem ����� is bounded

and elliptic of order �r� For completeness� with C �
� D we mean that C can be bounded

by a multiple of D� independently of parameters C and D may depend on� Obviously�
C �
� D is de�ned as D �

� C� and C 

� D as C �

� D and C �
� D�

Model examples for ����� are given by variational formulations of the di�erential equation
�r � Bru  cu 
 f on a domain �� where B�x� 


� I and � � c�x� �� �� with suitable
boundary conditions �r 
 ��� and of reformulations of Laplace� equation as an integral
equation on � 
 �� as the single layer potential equation �r 
 ��

�
�� the hypersingular

equation �r 
 �
�
�� or� in case of a smooth �� the double layer potential equation �r 
 ���

We consider Galerkin discretizations of ����� on a sequence of nested linear �nite element
spaces

M� �M� � � � �MJ � � � � � Hr�

where we assume dyadic re�nements and conforming triangulations �no hanging nodes��
Let f�J�x 	 x � �Jg be a basis of MJ � where as index set �J we may use the set of nodal

Date� February 	� 
����

��
 Mathematics Subject Classi�cation� 	N��� 	N� 	F�� 	R���
Key words and phrases� wavelets� non�uniform meshes� optimal multi�level preconditioners�

�



� ROB STEVENSON

points in the mesh� excluding possible nodes in which essential boundary conditions are
prescribed� With respect to this basis� the sti�ness matrix AJ � C

�dimMJ �
�
is de�ned by

�AJuJ �vJ�
 a�
X
x

�uJ�x�J�x�
X
x

�vJ�x�J�x� �u�v � C
dimMJ ��

where ��� denotes the Euclidean scalar product on the vector space� Taking b � C dimMJ

to be the vector satisfying

�bJ �vJ�
 f�
X
x

�vJ�x�J�x� �v � C
dimMJ ��

the Galerkin scheme leads to the linear system

AJuJ 
 bJ ������

For solving ������ we are interested in its conditioning� Let DJ be the diagonal of AJ �
Then from

�AJuJ �uJ�

�DJuJ �uJ�



a�
P

x�uJ�x�J�x�
P

x�uJ�x�J�x�P
x j�uJ�xj�a��J�x� �J�x�

�

and a�v� v� 
� kvk�Hr � we see that the spectral condition number ��D��
J AJ� satis�es

��D��
J AJ� 
�

�J�r�

	J�r�
�

where �J�r� and 	J�r� are the optimum constants in

	J�r�
X
x

jcJ�xj
�k�J�xk

�
Hr � k

X
x

cJ�x�J�xk
�
Hr � �J�r�

X
x

jcJ�xj
�k�J�xk

�
Hr �

We will call a basis Hr�stable when �J �r�
�J �r�

is bounded uniformly in J � We conclude that the

�diagonally preconditioned� system ����� is well�conditioned� i�e� ��D��
J AJ� is bounded

uniformly in J � if and only if the basis f�J�x 	 x � �Jg is Hr�stable�

Remark ���� In many papers� a basis is calledHr�stable only if k
P

x cJ�x�k�xk
�
Hr



�
P

x jcJ�xj
��

i�e� the scaling of the basis is taken into account� Clearly� if a basis� or a scaled version of
it� is Hr�stable according to this de�nition� then this basis is Hr�stable in our terminology�

It is well�known that the nodal basis is stable only in L�� Assuming shape regular
simplices� for this basis the quotient �J�r�

�J�r�
is equivalent to �Jjrj� So� to solve elliptic problems

of order �r for r �
 �� an obvious approach is to search for other bases�
In this paper� we study bases of multiscale type	 For k 	 �� let Vk �Mk be such that�

V� 
M�

Vk 
Mk 
Mk�� if k 	 ��

and let f
k�x 	 x � �kn�k��g ���� 	
 �� be a basis of Vk� For reasons of an e�cient
implementation� we are only interested in 
k�x that are linear combinations of an �uni�
formly� bounded number of nodal basis functions of Mk� We have that MJ 
 �J

k��Vk�
which type of space decomposition is called a multiscale decomposition� As a consequence�
J
k��f
k�x 	 x � �kn�k��g is a basis of MJ � called multiscale�� wavelet� or hierarchical

basis�
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Su�cient conditions for Hr�stability of this wavelet basis are

k
X
k

vkk
�
Hr



�
X
k

�krkvkk
�
L�

�vk � Vk������

and

f
k�x 	 x � �kn�k��g is an L��stable basis of Vk������

Indeed� from ����� and ������ we obtain that

k
X
k�x

ck�x
k�xk
�
Hr



�
X
k

�krk
X
x

ck�x
k�xk
�
L�



�
X
k�x

jck�xj
��krk
k�xk

�
L�



�
X
k�x

jck�xj
�k
k�xk

�
Hr �

Note that ����� is equivalent to the condition k
P

k vkk
�
Hr



�
P

k kvkk
�
Hr �vk � Vk�� which

is clearly a necessary condition for Hr�stability of the wavelet basis� and the additional
condition kvkkHr 


� �krkvkkL� � i�e� the energy scalar product restricted to Vk is well�
conditioned�

Concerning Condition ������ an attractive choice is to take Vk 
Mk 

�L� Mk��� With

this L��orthogonal decomposition� at least for quasi�uniform meshes ����� holds for jrj � �
�

�e�g� see �Osw����� Concerning the upperbound �
�
for r� note that MJ �� H

�
� �

The lower bound � �
�
of the range of stability is not optimal� For the shift�invariant case

�uniform� unbounded mesh� in one dimension� for any t 	 �� a �biorthogonal� wavelet basis
can be constructed that is Hr�stable for r � ��t� �

�
� �see �CDF����� Moreover� adaptations

of these bases to an interval� retaining its nice properties have been constructed in �DKU����
Yet� these constructions are essentially restricted to uniform meshes� Moreover� we note
that the advantages of these biorthogonal bases do not lie so much in having larger ranges
of stability� since r � � �

�
is su�cient for practical applications� as well as in having more so�

called vanishing moments� and the fact that for these bases the basis transformation onMJ

from nodal� to wavelet basis �the inverse wavelet transform� can be explicitly computed as
a composition of local mappings on all coarser levels� with total costs � dimMJ operations�
As we will see� for preconditioning purposes there is no need for an explicit inverse wavelet
transform� We will comment on vanishing moments later on�

In the case of Vk 
 Mk 

�L� Mk��� basis functions of Vk are often called prewavelets�

in the general setting of L��orthogonal decompositions of a trial space� the name wavelets
is usually preserved for basis functions that are also mutually L��orthogonal within each
complement space�

So far� also for the L��orthogonal decomposition� prewavelets have been constructed
basically for the uniform mesh case only �cf� �CW���� �KO��� and references cited here���
where moreover the case of a bounded domain is treated only in one dimension� Yet�
in �Jun��� the case of linear �nite element spaces on the surface of some block�shaped
three�dimensional domains is treated� which gives at corners situations di�erent from the
uniform mesh case on a domain� In �LO��a� a suggestion is made how non�uniform meshes
could be treated�

In this paper� we introduce an explicit construction of prewavelets satisfying ����� on non�
uniform meshes on domains and on surfaces of polyhedral domains in any space dimension�
The only condition we need is that of uniform� �regular� re�nements� We keep complete



 ROB STEVENSON

freedom concerning initial meshes and boundary conditions� Since ����� is satis�ed for
jrj � �

�
� the constructed �pre��wavelet basis is Hr�stable for this range of r�

For comparison� recall that in two dimensions the standard hierarchical basis ��Yse����

is Hr�stable only for � � r � �
�
� whereas for r 
 � the quotient ��r�

��r�
grows logarithmically

as function of J � The situation in more dimensions is worse�

This paper is not restricted to the construction of bases of the L��orthogonal complement
spaces� In Sect� �� we give a general framework for constructing �pre��wavelets� As
applications� in Sect� � we treat the L��orthogonal complement case� In Sect� �� we show
that also the three�point wavelet basis ��Ste��b� Ste��a� Ste���� cf� also �LO��a�� �ts into
this framework� and in Sect� � an alternative three�point wavelet basis is constructed for
which we have an explicit inverse wavelet transform�

Finally in this introductory section� to appreciate wavelets from a practical point of view�
we recall some facts about implementation� When ����� stems from a di�erential equation�
the sti�ness matrix with respect to the nodal basis is sparse� Yet� due to interactions
between wavelets from di�erent levels� the sti�ness matrix corresponding to MJ with
respect to the wavelet basis can be expected to have � J � dimMJ non�zeros� Concerning
e�ciency� this means that a naive implementation of the matrix�vector product would
partially undo the e�ect of having a stable basis�

Therefore� let pk and qk be the representations of the inclusions Mk�� � Mk and
Vk � Mk respectively with respect to nodal bases on the �nite element spaces� and the
basis f
k�x 	 x � �kn�k��g on Vk� Note that pk is the usual multi�grid prolongation�
and� by assumption� that the columns of qk contain an uniformly bounded number of
non�zeros� When we now apply a from top�to�bottom level�wise ordering of the wavelets�
the basis transformation TJ on MJ from wavelet� to nodal basis �the wavelet transform�

can be written as TJ 

h
qJ pJTJ��

i
� where� when we equip V� 
M� with nodal basis�

T� 
 I� So� after having applied TJ��� the application of TJ costs a number of additional
operations � ���Jn�J���� and so the total costs are � dimMJ �

Let now A
�N�
J u

�N�
J 
 b

�N�
J and A

�W �
J u

�W �
J 
 b

�W �
J be the systems ����� with respect to

nodal� and wavelet basis respectively� Then it is easily veri�ed that A
�W �
J 
 T�

JA
�N�
J TJ �

b
�W �
J 
 T�

Jb
�N�
J and u

�N�
J 
 TJu

�W �
J � and so for the diagonal D

�W �
J of A

�W �
J it holds that

D
�W �
J 


�
diag�q�JA

�N�
J qJ� �

� D
�W �
J��

�
� whereD

�W �
� 
 diagA

�N�
� � We conclude that with TJ � all

ingredients for iterating on ����� with respect to the wavelet basis� as well as transferring the
obtained approximate solution to nodal basis can be implemented in � dimMJ operations�

The basis transformation on the right�hand side before� as well as the one on the ap�
proximate solution after the iteration can even be avoided by operating directly on the

system with respect to the nodal basis� From TJD
�W �
J

��
A

�W �
J T��

J 
 CJA
�N�
J � where

CJ 	
 TJD
�W �
J

��
T�
J � we conclude that the preconditioned matrices in both systems

CJA
�N�
J u

�N�
J 
 CJb

�N�
J and D

�W �
J

��
A

�W �
J u

�W �
J 
 D

�W �
J

��
b
�W �
J have equal spectral condi�

tion number� Using the de�nitions of TJ and D
�W �
J � we end up with the following e�cient
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recursive implementation of this multi�level preconditioner CJ for the system with respect
to nodal basis	 ��

� CJ 
 qJ�diag�q
�
JA

�N�
J qJ��

��q�J  pJCJ��p
�
J J 	 �

C� 
 �diagA
�N�
� ����

In Sect� �� we will see that for the wavelets introduced in this paper a somewhat modi�ed
version of this implementation results in an even more e�cient algorithm�

So far� we con�ned the discussion of the implementation to di�erential equations� The
situation is completely di�erent for integral equations� With respect to both the nodal�
as the wavelet basis� the sti�ness matrix will generally be dense� Yet� assuming some
standard smoothness conditions on the Schwarz kernel of the integral operator outside its
diagonal� due to the oscillating nature of wavelets the sti�ness matrix with respect to the
wavelet basis will be close to a sparse one� This �oscillating nature� can be quanti�ed
as follows	 A wavelet is said to have � vanishing moments when it is L��orthogonal to all
polynomials of degree less than �� In �Sch���� it is demonstrated that for an problem of
order �r� the sti�ness matrix can be compressed to a sparse one without loosing the order
of convergence when the wavelets have more than ���r vanishing moments� Things can be
cleverly organized such that the complete sti�ness matrix does not have to be computed�
which would undo the reduction of the order of complexity�

Prewavelets have two vanishing moments� which means that they do not give optimal
compression rates for problems of non�positive order� Yet� instead of searching to bases
that� on non�uniform meshes have both a large range of stability as the prewavelet basis�
and more than two vanishing moments� an alternative approach might be to use di�er�
ent wavelet bases for compression and preconditioning� In that case� to implement the
preconditioner� we would need the basis transformation from �preconditioning basis� to
�compression basis� �instead of the nodal one�� Su�cient is that for the compression basis
we have an explicit inverse wavelet transform�

�� A two�step construction of wavelets

For k 	 �� let � � �Mk
be a Hermitian sesquilinear form on Mk� which on Mk�� is

even a scalar product� i�e� �u� u�Mk
� � when � �
 u � Mk��� As main application we

have in mind that � � �Mk

 � � �L� � It is easily veri�ed that each u � Mk has an unique

decomposition u 
 w  �u� w�� where w � Mk�� and �u� w�Mk���Mk

 �� and so we

may de�ne

Vk 
Mk 

����Mk Mk��������

On the other hand� corresponding to any decomposition Mk 
Mk�� � Vk� there exists a
�non�unique� � � �Mk

as above such that ����� is valid�
For � � fk � �� kg� let

f���x 	 x � �lg�����
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be a basis of M�� In our applications� we will take the nodal basis� Now� as the �rst step
in the construction of a basis of Vk� suppose we have constructed an adjoint basis

f��k���y 	 y � �k��g � Mk

of the basis f �k���y
��k���y��k���y�Mk

	 y � �k��g of Mk��� i�e��

� ��k���y� �k���z�Mk



�
��k���y� �k���y�Mk

if y 
 z

� if y �
 z�
�����

Clearly� since we search an adjoint basis in a space that is larger than Mk��� this basis is
not unique� In our applications we will use this freedom to select an adjoint basis that is
locally supported�

Then� as the second step� for x � �kn�k�� we de�ne


k�x 
 �k�x �
X

y�	k��

��k�x� �k���y�Mk

��k���y� �k���y�Mk

��k���y������

Using ������ it is easily veri�ed that 
k�x � Vk�

Theorem ���� Suppose that
�a� f�k�x 	 x � �kn�k��g  f��k���y 	 y � �k��g is an L��stable basis of Mk�

�b� the spectral norm of the matrix
�
��k�x��k���y�Mk

k
�k���ykL�
��k���y��k���y�Mk

k�k�xkL�

	
y�	k���x�	kn	k��

is bounded

�uniformly in k	�
Then

f
k�x 	 x � �kn�k��g is an L��stable basis of Vk �cf� Condition ���
		�

Proof� Since ���kn�k��� 
 dimVk� it is su�cient to show that k
P

x�	kn	k��
ck�x
k�xk

�
L�



�P

x�	kn	k��
jck�xj

�k
k�xk
�
L�
� By Condition �a�� there holds

k
X

x�	kn	k��

ck�x
k�xk
�
L�



�

X
x�	kn	k��

jck�xj
�k�k�xk

�
L�


X

y�	k��

j
X

x�	kn	k��

��k�x� �k���y�Mk

��k���y� �k���y�Mk

ck�xj
�k��k���yk

�
L�
�

Condition �b� shows that

� �
X

y�	k��

j
X

x�	kn	k��

��k�x� �k���y�Mk

��k���y� �k���y�Mk

ck�xj
�k��k���yk

�
L�

�
�

X
x�	kn	k��

jck�xj
�k�k�xk

�
L�
�

The proof is completed by combining both estimates�

Remark ���� In our applications� both supx�	kn	k��
�fy � �k�� 	 ��k�x� �k���y�Mk

�
 �g
and supy�	k��

�fx � �kn�k�� 	 ��k�x� �k���y�Mk
�
 �g are bounded �uniformly in k�� that

is� the number of non�zeros in each row and column of the matrix from Theorem ���
Condition �b� is bounded� This means that for �b�� we only have to verify whether the
elements of this matrix are bounded�
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The forms � � �Mk
we will consider are L��bounded� and on Mk�� they will be even

equivalent to the L��scalar product � i�e� �u� u�Mk


� kuk�L� �u � Mk���� With these prop�

erties� a su�cient condition for boundedness of above matrix elements is that k��k���ykL� ��
k�k���ykL� �

In the following sections� for three choices of � � �Mk
� we will construct adjoint bases

satisfying the conditions of Theorem ���� and so by applying this theorem� we �nd L��

stable bases of Vk 
 Mk 

����Mk Mk��� From now on� with ���x �������� we will always

mean the nodal basis function� i�e��

���x�y� 


�
� if x 
 y

� if x �
 y � ���

�� Prewavelets

In this section� we consider the case that � � �Mk

 � � �L� � i�e�� we are searching for an

L��stable basis of Vk 
Mk
�L� Mk�� consisting of basis functions �prewavelets� that are
linear combinations of a bounded number of nodal basis functions of Mk�

The next example shows that for locally re�ned meshes such a basis generally does not
exist�

Example 	��� For some h small enough with h�� � �N � let Mk��� Mk � H�
� ���� ��� be

the linear �nite element spaces corresponding to the sets of nodal points

�k�� 
 fih 	 i � f�� � � � � h�� � �gg

and

�k 
 �k��  f�i�
�
�
�h 	 i � f�� � � � � �

�
h��gg

respectively� That is� Mk is constructed from Mk�� based on an uniform partition� by
halving only the elements in ��� �

�
��

Let �
k � Vk� By the orthogonality to the coarse�grid nodal basis functions� it is easily
seen that �
k�x� �
 � for some x 	 �

�
implies that ��

�
� �� � supp �
k� and in the other direction

that

inf supp �
k � �k��  f�g  fhg������

Now suppose that supp �
k � ��� �
�
� and �
k�

h
�
� 
 ��

�
�
k�h�� It is well�known that for each

x � Ik 	
 fx � �kn�k�� 	
�
�
h � x � �

�
� �

�
hg� the function


k�x 	
 �k�x�h � ��k�x�h
�
 ���k�x � ��k�x�h

�
 �k�x�h�����

is in Vk� By adding to �
k suitable multiples of 
k�x for x � Ik� by ����� we can create an
 �
k � Vk with supp �
k � � �

�
� �h� �

�
�� It is easily veri�ed that this means that  �
k 
 �� Since

�Ik 
 dimVk � �� we conclude that each basis of Vk contains at least two basis functions
�
k with �
k�

h
�
� �
 � �

�
�
k�h� or �

�
�
� �� � supp �
k� and thus at least one basis function �
k with

��
�
� �� � supp �
k�
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Above example shows that we have to restrict ourselves to uniform re�nements� Consid�
ering the meshes used in practice� it is then not a real further restriction to study uniform�
regular and dyadic re�nements only� that is� we assume that when going from level k�� to
level k� each d�simplex �k�� underlyingMk�� is subdivided into d� congruent d�simplices�

We will search the adjoint basis function ��k���y as a linear combination of �k�y and

�k���y� Clearly� this ��k���y is L��orthogonal to �k���z for y and z that do not share a
common simplex underlying Mk��� Because of the re�nement strategy� the values

 


R
�k��

�k�y�k���yR
�k��

�k���y�k���y
and 	 


R
�k��

�k�y�k���zR
�k��

�k���y�k���z

are independent of the simplex �k�� underlying Mk��� vertices y and z of �k�� with z �
 y�
and k 	 �� By writing integrals over the whole domain as sum of integrals over the
simplices �k��� we see that

��k�y � 	�k���y� �k���y�L� 


�
�� 	�k�k���yk�L� if y 
 z

� if y �
 z � �k���

Straightforward computations on a reference d�simplex show that

 
 ��
�
�d���d �� and 	 
 ��

�
�d���

Since 	 �
 � we conclude that

f��k���y 	

�d��

d��
�k�y �

�
d��

�k���y 	 y � �k��g � Mk�����

is an L��adjoint basis of f
�k���y

k�k���yk
�
L�

	 y � �k��g�

We will check the conditions of Theorem ���� Again using the regular re�nement strategy�
for y being a vertex of �k�� one can compute that

� 	


R
�k��

�k�y�k�yR
�k��

�k���y�k���y

 ��d������

and so
k�k���ykL�
k�k�ykL�


 ��
�
� � Since �k���y � �k�y � spanf�k�x 	 x � �kn�k��g� the basis

transformation from f

�k���y
k�k�ykL�

	 y � �k��g  f
�k�x

k�k�xkL�
	 x � �kn�k��g to f

�k�x
k�k�xkL�

	 x � �kg

can be written in � � � block form S 


�
�d����
d��

I �
B I

�
� The well�known L��stability of

f�k�x 	 x � �kg� and the fact that ��
�
� �� � show that the spectral norm of B is �uniformly�

bounded� and so is the spectral norm of S��� Again by L��stability of the nodal basis� we
now conclude that f��k���y 	 y � �k��g  f�k�x 	 x � �kn�k��g is an L��stable basis of Mk

�cf� Remark ����� i�e� Condition �a� of Theorem ��� is satis�ed�

Since k��k���ykL�
�
� k�k���ykL� � Remark ��� shows that also Condition �b� of Theorem

��� is satis�ed� and so from this theorem we conclude that

f
k�x 	
 �k�x �
X

y�	k��

��k�x� �k���y�L�
��k���y� �k���y�L�

��k���y 	 x � �kn�k��g������
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with ��k���y from ����� is an L��stable basis of Mk 

�L� Mk���

We stress that above two�step construction of an L��stable basis of Mk 

�L� Mk��

applies independently of the initial mesh underlying M�� so in particular this mesh need
not be a regular one� and also independently of boundary conditions� The adaptation
of the prewavelets to these parameters takes place in the second� explicit step of the
construction� Recall that �k�� is de�ned as the set of nodal points in which no essential

boundary conditions are prescribed� The factors
��k�x��k���y�L�

��k���y��k���y�L�
can be computed using

the mass matrix� The �rst� implicit step of the construction� i�e� solving for � and � in
��k���y 
 ��k�y  ��k���y is independent of the initial mesh and boundary conditions� and
so this step does not have to be repeated�

In above aspect� the two�step construction of prewavelets di�ers from the proposals
known from the literature� There the prewavelet 
k�x is sought as linear combination of suf�
�ciently many �k�z with z close to x� the coe�cients in this linear combination are found by
imposing L��orthogonality of 
k�x to �k���y for all y � �k�� with supp�k���y � supp
k�x �
 ��
For each geometrically new situation this process have to be repeated� the existence of a
solution� and the stability of the obtained basis of Mk 


�L� Mk�� are not known a priori�

Furthermore� we note that the two�step construction also works when we would have
used a weighted L��scalar product �u� v�L� 


R
�uv� where � �

� �� as long as � is piecewise
constant on the simplices underlying M�� the same 	 and  are obtained� thus which are
in particular constants� Again� adaptations of the prewavelets to the actual � take place
in the second� explicit step of the construction�

An important application of a weighted scalar product is given by the case of linear �nite
element spaces on manifolds� in this case the role of the weight function � is played by the
Gram determinant of the actual parametrization used to de�ne the �nite element spaces
with� In case the manifold is the boundary of a polyhedron� this Gram determinant will be
piecewise constant� which means that this situation �ts into above framework� Note that�
compared to the domain case� geometrically new situations that occur at �corner points�
�points with less or more neighbours in the mesh� are treated automatically in the second�
explicit step� For parametrizations of manifolds for which the Gram determinant can be
written as a product of a globally smooth function and a piecewise constant function� the
L��scalar product may be changed by replacing this smooth function by a constant without
the adjoint spaces being changed� So also these situations can be �tted to our framework�

We now discuss the number of vanishing moments of prewavelets� For x � �kn�k���
let Vk���x be the union of simplices underlying Mk�� for which the intersection of the
interior with supp
k�x is not empty� Then� when there are no essential boundary conditions
prescribed on Vk���x� for each p � P� there exists an uk�� � Mk�� such that uk�� 
 p on
Vk���x� and so �
k�x� p�L� 
 �
k�x� uk���L� 
 �� We conclude that �away from essential
boundary conditions� prewavelets have two vanishing moments� A dimension argument
shows that the number of vanishing moments can not be uniformly larger than two�

Finally in this section� we show how the obtained prewavelets look like in the shift�
invariant mesh case� i�e� Mk is the linear �nite element space based on the subdivision of
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R
d into the collection of d�simplices

��kf�fx � ��� ��d 	 � � x���� � � � � � x��d� � �� � a permutation of f�� � � � � dgg 	 � � Z
dg�

and thus �k 
 ��kZd�

For d 
 �� the coe�cient
��k�x��k���y�L�
��k���y��k���y�L�

from ����� is �

for both coarse�grid parents

y � �k�� of x � �kn�k��� Plugging formula ����� into ����� now gives the familiar ��point
prewavelet �see Fig� �� �cf� �������

x
�	 	 ���
 �
� �

Figure �� Non�zero coe�cients
��k�x��k���y�L�
��k���y��k���y�L�

and resulting prewavelet

mask both multiplied by � in the one�dimensional shift�invariant mesh case�
The bold�faced numbers correspond to coarse�grid points�

For d 
 �� the coe�cient
��k�x��k���y�L�
��k���y ��k���y�L�

is �
��

for both coarse�grid parents y � �k�� of

x � �kn�k��� and it is �
��

for both remaining vertices y � �k�� of coarse�grid triangles

that contain x� In Fig� �� we show
��k�x��k���y�L�

��k���y��k���y�L�
and the resulting ���point prewavelet

mask for x � �k����k��� ��� Since there exists an invertible linear mapping that changes
all triangles in the mesh into equilateral ones without the volumes being changed� both
remaining cases lead to equivalent masks�

x�

��

��

�

�

���

���

� � � �

�

�

� �

� � � �

� �

� � � �

���

���

���

Figure �� Non�zero coe�cients
��k�x��k���y�L�

��k���y��k���y�L�
and ���point prewavelet

mask both multiplied by �� in the two�dimensional shift�invariant mesh case
and x � �k��  ��k��� ���

For this two�dimensional shift�invariant mesh case� prewavelets with ���point masks have
been constructed in �Jun��� KO���� Remarkably� as we will see in Sect� �� although our
masks are larger� the wavelet transformation can be implemented using less operations�
The prewavelet masks will not enter the computations� and in that respect the pictures of
these masks are a bit misleading�

For d 
 �� we have to distinguish between x � �k��  ��kf��� �� ��� ��� �� ��� ��� �� ��g

and x � �k��  ��kf��� �� ��� ��� �� ��� ��� �� ��� ��� �� ��g� In the �rst case
��k�x��k���y�L�

��k���y��k���y�L�
is



PIECEWISE LINEAR 	PRE
�WAVELETS ON NON
UNIFORM MESHES ��

��
��

for the two coarse�grid parents of x� and it is ��
��

for the four remaining vertices of

coarse�grid tetrahedrons that contain x �see Fig� ��� In the second case
��k�x��k���y�L�

��k���y��k���y�L�

is ��
��

for the two coarse�grid parents of x� and it is �
��

for the six remaining vertices of
coarse�grid tetrahedrons that contain x �see Fig� ���
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Figure �� Non�zero coe�cients
��k�x��k���y�L�

��k���y��k���y�L�
and !!�point prewavelet

mask both multiplied by ��� in the three�dimensional shift�invariant mesh
case and x � �k��  ��k��� �� ���
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Figure �� Non�zero coe�cients
��k�x��k���y�L�
��k���y ��k���y�L�

and ����point prewavelet

mask both multiplied by ��� in the three�dimensional shift�invariant mesh
case and x � �k��  ��k��� �� ���
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�� The three�point wavelet basis

This basis was introduced in �Ste��b� Ste��a�� and further analyzed in �LO��a� Ste����
The basic idea behind the construction originates from �Hac���� Here we recall some facts
about this basis� and show that it �ts into the framework of Sect� ��

The three�point wavelet basis corresponds to the decomposition Vk 
Mk

����Mk Mk���

where

�u� v�Mk

 �u� v�Tk 	


X
x�	k

wk�xu�x�v�x�������

with wk�x being the sum of the volumes� divided by d �� of the simplices underlying Mk

of which x is a vertex� There holds

�u� u�L� � �u� u�Tk � �d ���u� u�L� �u � Mk�������

Also in case of a weighted L��scalar product� e�g� the manifold case� with a weight
function that is piecewise constant on the simplices� we can construct � � �Tk satisfying
������ simply by multiplying the volumes by the corresponding weights� This is important
in order to get stability in the right scale of Sobolev norms� For simplicity� here we consider
the standard L��scalar product only and refer to �Ste��� for the general case�

For the decomposition Vk 
 Mk 

����Tk Mk��� in �Ste��� it has been shown that

k
P

k vkk
�
Hr



�
P

k �
krkvkk�L� �vk � Vk� is valid at least for �

�
� r �

�
�

�

��� if d 
 �
��� if d 
 �
�!� if d 
 �

�
�



�cf� ������� This result even holds for locally re�ned meshes� under the assumption that
simplices that were not� or irregularly re�ned when going from level k � � to level k are
never re�ned further on higher levels� This theoretical result concerning the range of sta�
bility turns out to be quite pessimistic� In all our experiments in two� and three dimensions
reported in �Ste��b� Ste��a�� we observed L��stability� also in case of locally re�ned meshes�
In ��LO��a��� it was proved that for the shift�invariant case the full range of stability is
r � ���������� �

�
� for d � f�� �� �g�

It is immediately clear that an adjoint basis of f �k���y
��k���y��k���y�Tk

	 y � �k��g with respect

to � � �Tk is given by

f��k���y 	

��k���y� �k���y�Tk
��k�y� �k���y�Tk

�k�y 	 y � �k��g�

The conditions of Theorem ��� are easily veri�ed� and so we conclude that an L��stable

basis of Vk 
Mk 

����Tk Mk�� �cf� ������ is given by

f
k�x 	
 �k�x �
X

y�	k��

��k�x� �k���y�Tk
��k�y� �k���y�Tk

�k�y 	 x � �kn�k��g������

Note that the elements in the sum over y in ����� are only non�zero when y is a coarse�
grid parent of x� This means that 
k�x is a linear combination of three �ne�grid nodal
basis functions� independently of the dimension d� For the shift�invariant mesh case in
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any dimension� 
k�x can be represented by the mask ���
�

� ��
� �� where the values � �

�
correspond to the coarse�grid parents of x�

Since �u� �l�Tk 
 �u� �l�L� �u � Mk�� where �l � Mk�� is de�ned by �l�x� 
 � if x � �k���
we conclude that �away from essential boundary conditions�� the three�point wavelets have
one vanishing moment� In areas where locally the meshes on levels k�� and k are uniform�
symmetry of 
k�x yields even two vanishing moments�

Concluding� we note that the three�point wavelet basis is more "exible than the pre�
wavelet basis constructed in Sect� �� since it can also be constructed in case of non�uniform
re�nements� e�g� on local re�ned meshes� As we will discuss in the next section� application
of the wavelet transform for the three�point wavelets is also cheaper� Moreover� at least in
one dimension� the three�point wavelets give smaller L�� and H� condition numbers� We
have to pay for this by having a smaller range of �guaranteed� stability�

�� Implementation

In this section for the wavelet bases discussed in this paper� we compare the number of
operations needed for applying the basis transformation from wavelet basis to nodal basis
�the wavelet transform�� From Sect� �� recall that the wavelet transform TJ is the only
variable part of the multi�level preconditioner corresponding to a wavelet basis�

Let SJ the basis transformation from f
J�x 	 x � �Jn�J��g  f�J���y 	 y � �k��g to
f�J�x 	 x � �Jg� Then� by using a splitting of the wavelet basis of MJ into the sets

f
J�x 	 x � �Jn�J��g and J��
k��f
k�x 	 x � �kn�k��g� we have TJ 
 SJ

�
I �
� TJ��

�
� and so

it is su�cient to compare the costs of applying SJ � There holds SJ 

h
qJ pJ

i
� where pJ

is the standard multi�grid prolongation� and where the columns of qJ contain the wavelet
masks�

In the following� we consider the two�dimensional uniform mesh case� which means that

pJ is represented by the !�point stencil �
�

�
�� � �

� � �

� �

�
��� Let n be the dimension of MJ � Then

a direct implementation of qJ yields the following operation count for SJ 	

 standard hierarchical basis	 � � �
�
n  ! � �

�
n 
 ��

�
n

 ��point wavelet basis	 � � �
�
n  ! � �

�
n 
 �n

 ���point prewavelet basis	 �� � �
�
n  ! � �

�
n 
 ���

�
n�

Clearly� a similar implementation of the ���point prewavelet basis would cost �� � �
�
n 

! � �
�
n 
 ��n operations� Yet� making use of the two�step construction� we can follow a

di�erent approach for implementing qJ 	 First� for each x � �Jn�J��� express 
J�x as a

linear combination of �J�x and four adjoint basis functions ��J���y� then� for each y � �J���

write ��J���y as linear combination of �J�y and �J���y� �nally� express each �J���y as a linear
combination of seven �ne�grid nodal basis functions �J�z� Note that we had to perform this
last step anyway� We end up with the following operation count for SJ 	
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 ���point prewavelet basis �two�step construction�	 ��  �� � �
�
n � � �

�
n ! � �

�
n 
 �n�

which is almost two times cheaper than when applying the ���point prewavelets�
Note that this implementation of qJ using pJ does not reduce the operation count for

the ��point wavelet basis� because in that case the adjoint basis function ��J���y is just a
multiple of �J�y�

In the three�dimensional uniform mesh case we obtain the following operation counts for
SJ 	

 standard hierarchical basis	 � � �

n  �� � �


n 
 ��

�
n

 ��point wavelet basis	 � � �

n  �� � �


n 
 ��

�
n

 ���#!!�point prewavelet basis �two�step construction�	

���  �� � �

n  ��  �� � �


n�  � � �


n �� � �


n 
 ��

�
n�

Note that we would need ���� � �

n  !! � �


n�  �� � �


n 
 ���

�
n operations with a direct

implementation of the ���#!! masks�
So� the two�step construction not only makes it possible to construct stable wavelet bases

on non�uniform meshes� it also gives rise to a wavelet transform that can be implemented
e�ciently in much less operations than one would expect on basis of the sizes of the masks�

�� An alternative three�point wavelet basis

A disadvantage of the prewavelet and three�point wavelet bases introduced in Sects� �
and � is that for these bases there does not exist an explicit inverse wavelet transform as
we will see below� There are applications of wavelets for which such an explicit wavelet
transform is needed� Examples are given by data compression� which belongs to the �clas�
sical� �eld of applications� and the construction of extension operators for use in domain
decomposition algorithms�

Recall that the wavelet transform TJ can be written as TJ 

h
qJ pJTJ��

i
� where pJ

and qJ are the representations of the inclusions MJ�� �MJ and VJ �MJ respectively�
with respect to the nodal bases f�J���y 	 y � �J��g and f�J�x 	 x � �Jg on MJ�� and
MJ � and the basis f
J�x 	 x � �Jn�J��g on VJ �

Alternatively� we could have equippedMJ with the two�level standard hierarchical basis
f�J�x 	 x � �Jn�J��gf�J���y 	 y � �J��g� Denoting corresponding matrices with a tilde�

we have �pJ 


�
�
I

�
� �qJ 


�
�qFJ
�qCJ

�
and so �TJ 


�
�qFJ �
�qCJ TJ��

�
� Assuming a �ne�to�coarse two�

level ordering of the nodal basis functions as well� the basis transformation on MJ from

two�level standard hierarchical basis to nodal basis is of the form

�
I pCJ
� I

�
� We end up

with the following �UL��factorization of TJ 	

TJ 


�
I pCJ
� I

� �
�qFJ �
�qCJ TJ��

�
�
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As always assuming that the columns of qJ and thus of �qJ contain an uniformly bounded
number of non�zeros� from this block factorization we conclude that T��

J is a composition
of explicitly given� level�wise local operators� which means that the application of T��

J can
be implemented in � dimMJ operations� if and only if ��qFJ �

�� is local� For the prewavelet
and three�point wavelet bases from Sects� � and � this ��qFJ �

�� is not local� For example�
in the one�dimensional shift�invariant mesh case� one may check that �qFJ is represented by
the stencils �

�
�� � � � �� and �

�
�� � � � �� respectively�

Clearly� a su�cient condition for ��qFJ �
�� being local is that �qFJ is a diagonal matrix� In

the context of Sect� �� this means that the adjoint basis functions ��k���y are in Mk���
or� 
k�x is a linear combination of �k�x and a number of coarse�grid nodal basis functions�

Su�cient for ��J���y � Mk�� is that f�k���y 	 y � �k��g is an orthogonal set with respect
to � � �Mk

�
In this section� for �� � ��Mk

being some L��bounded Hermitian sesquilinear form on Mk�
we de�ne

�u� v�Mk

 ��u� v��Mk

� ��Ik��u� Ik��v��Mk
 �Ik��u� Ik��v�Tk�� �

where Ik�� 	 Mk �Mk�� is the nodal value interpolant� and � � �Tk�� is de�ned in ������
In order to obtain locally supported wavelets� we assume that �� � ��Mk

is local in the sense
that ��u� v��Mk

�
 � only if suppu � suppv �
 ��
The following statements are easily veri�ed	 � � �Mk

is an L��bounded Hermitian sesquilin�
ear form on Mk� f�k���y 	 y � �k��g is an � � �Mk

�orthogonal set� and so an adjoint basis

with respect to � � �Mk
is given by f��k���y 	
 �k���y 	 y � �k��g� By Remark ���� both

conditions of Theorem ��� are easily veri�ed� and we conclude that

f
k�x 	
 �k�x �
X

y�	k��

���k�x� �k���y��Mk

��k���y� �k���y�Tk��
�k���y 	 x � �kn�k��g

is an L��stable basis of Vk 
Mk 

�� � �Mk Mk���

So far� we only investigated the case that �� � ��Mk

 � � �Tk � Then� the coe�cients

��k�x��k���y�Tk
��k���y��k���y�Tk��

are only non�zero for both coarse�grid parents y of x� independently of the

space dimension� For the shift�invariant mesh case� these coe�cients are equal to ��
�
�d���

So� although the resulting wavelet masks are larger than in case of the three�point wavelet
basis from Sect� �� in view of the results about implementation from Sect� �� we may call
this wavelet basis also a three�point wavelet basis� For the operation count of the wavelet
transform it makes no di�erence whether ��k���y is a multiple of �k�y or �k���y�

Since �u� �l�Mk

 ��I � Ik���u� �l�Tk  �Ik��u� �l�Tk�� 
 �u� �l�L� � we conclude that �away

from essential boundary conditions� also these three�point wavelets have at least one van�
ishing moment� As with the other three�point wavelets� in areas where locally the meshes
on levels k � � and k are uniform� symmetry of 
k�x yields two vanishing moments� So
compared to the prewavelets� this basis does not give better compression rates for integral
operators �cf� last paragraph of Sect� ��� Further research in this direction is necessary�

The three�point wavelet basis from this section generalizes bases known from the lit�
erature to the case of non�uniform meshes� In the one�dimensional shift�invariant mesh
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case� it equals the ����� biorthogonal wavelet basis from �CDF���� For the two�dimensional
shift�invariant mesh case it is equal to the basis proposed in �LO��a� x��� Example ���
Related proposals can be found in �CDP��� VW��� VW��� Swe����

We will now discuss for which r stability between the levels k
P

k vkk
�
Hr



�
P

k �
krkvkk

�
L�

�vk � Vk� is valid �cf� ������� In �LO��a�� for the two�dimensional shift�invariant mesh case�
stability has been shown for ������ � r � �

�
� Numerical experiments reported in �LO��b�

show that this wavelet basis is not L��stable�
To investigate stability for the non�uniform mesh case� we will follow the analysis from

�Ste���� The crucial thing is to �nd a t � ��� �
�
�� such that the L��norm of the projection

$
�J�
� 	 MJ � M� 	

PJ
k�� vk ��

P�
k�� vk �vk � Vk� is �

� �t�J���� Then Hr�stability for
r � �t� �

�
� is guaranteed�

Note that $
�J�
� 
 $

�����
� � � �$�J�

J�� and that $
�k�
k�� 	 Mk � Mk�� is the projection onto

Mk�� which is orthogonal with respect to � � �Mk
� From kukMk

	
 �u� u�
�
�
Mk



� kukL� for u �

Mk��� we have k$�J�
� kL��L�



� k$�����

� � � �$�J�
J��kM����MJ��

�
QJ��
k�� k$

�k���
k kMk���Mk��

�

Following the analysis from �Ste��� x����� the factors k$�k���
k kMk���Mk��

can be es�

timated using local projections� We obtain Hr�stability for �
�
� r �

�
�
�

if d 
 �
�
�

if d 
 �
�

Compared to Sect� �� we need the additional assumption that irregular re�ned simplices
do not contain parent nodes for subsequent re�nements� Unfortunately� application of this

analysis to the three�dimensional case yields the lowerbound r � � log
q
��
�
which is larger

than ��
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