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Piecewise Linear Quadratic Optimal Control
Anders Rantzer and Mikael Johansson

Abstract—The use of piecewise quadratic cost functions is ex-
tended from stability analysis of piecewise linear systems to per-
formance analysis and optimal control.

Lower bounds on the optimal control cost are obtained by
semidefinite programming based on the Bellman inequality.
This also gives an approximation to the optimal control law. An
upper bound to the optimal cost is obtained by another convex
optimization problem using the given control law.

A compact matrix notation is introduced to support the calcula-
tions and it is proved that the framework of piecewise linear sys-
tems can be used to analyze smooth nonlinear dynamics with arbi-
trary accuracy.

Index Terms—Nonlinear systems, optimal control, semidefinite
programming.

I. INTRODUCTION

A
POWERFUL model class for nonlinear systems is the

class of piecewise affine systems [18], [14]. Such systems

arise naturally in many applications, for example in presence

of saturations. Piecewise affine systems can also be used for

approximation of other nonlinear systems.

A new framework for stability analysis of piecewise affine

systems was developed in [9] and similar ideas were reported

in [13]. It was suggested to search for piecewise quadratic

Lyapunov functions using convex optimization. The approach

covers polytopic Lyapunov functions (see [3] and the references

therein) as a special case and is considerably more powerful

than quadratic stability [4].

In this paper, the method is developed further, to treat per-

formance analysis and optimal control. We show that several

concepts from linear systems theory, such as observability

Gramians, linear quadratic regulators, and induced gains

can be generalized using the framework of piecewise quadratic

Lyapunov functions.

Quadratic control of piecewise linear systems was addressed

earlier in [2]. The treatment there was based on backward so-

lutions of Riccati differential equations, and the optimum had

to be recomputed for each new final state. Computation of non-

linear gain using the Hamilton–Jacobi–Bellman (HJB) equa-

tion has been done in [19] and [5]. Our use of convex optimiza-

tion based on the HJB inequality is closely related to the opti-

mality condition by [20] and leads to piecewise quadratic upper

and lower bounds on the optimal cost function.

An important feature of our approach is that a local

linear-quadratic analysis near an equilibrium point of a non-
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linear system can be improved step by step, by splitting the state

space into more regions, thereby increasing the flexibility in

the nonlinearity description and enlarging the validity domain

for the analysis. In principle, any smooth nonlinear system can

be approximated to an arbitrary accuracy in this way, so the

tradeoff between precision and computational complexity can

be addressed directly.

This paper includes material from [16] and [8] is organized as

follows. The basic setup for system representation and stability

analysis is described in Section II. This analysis is refined in the

next section, to estimate the transient properties of the system.

Optimal control problems are studied in Section IV and applied

to gain computations and other dissipation inequalities in Sec-

tion V. Simplex partitions are discussed in Section VI and used

to prove a converse theorem on existence of piecewise quadratic

Lyapunov functions.

II. STABILITY ANALYSIS

Consider piecewise affine systems of the form

for (1)

Here, is a partition of the state space into a

number of closed (possibly unbounded) polyhedral cells. The

index set of the cells is denoted . Let be a

continuous piecewise function on the time interval .

We say that is a trajectory of the system (1), if for every

such that the derivative is defined, the equation

holds for all with .

Note that the trajectory cannot stay on the boundary

unless it satisfies the differential equation for both and si-

multaneously. Hence, most kinds of sliding modes are excluded.

Extensions to such cases are straightforward (see [10]) but will

be omitted here for ease of presentation.

We let be the set of indices for the cells that contain

origin and be the set of indices for cells that do not

contain the origin. It is assumed that . For

convenient notation, we introduce

(2)

Then

for

The cells are polyhedrons, so we can construct matrices

0018–9286/00$10.00 © 2000 IEEE
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with and for and such that

(3)

(4)

The vector inequality means that each entry of is non-

negative. Construction of the constraint matrices and will

be further discussed in Section VI. The following result on sta-

bility analysis was given in [9].

Proposition 1 (Piecewise Quadratic Stability): Consider

symmetric matrices and , such that and

have nonnegative entries, while for and

for satisfy

Then tends to zero exponentially for every continuous

piecewise trajectory in satisfying (1) with

for .

Remark 1: In solving the inequalities of Theorem 1, it is ad-

visable to first consider only the Lyapunov inequality (the one

containing ) in each region and ignore the positivity condi-

tion (the inequality containing ). Once a solution to this re-

duced problem has been found, it remains to investigate whether

or not the resulting piecewise quadratic function is nonnegative

in the entire state space. This can be done in each region sepa-

rately. If it turns out to be negative in some point, then no tra-

jectory in starting in this point can approach the origin

as .

The conditions of Proposition 1 assure that

(5)

is a Lyapunov function that is both decreasing and positive.

Any level set of that is fully contained in the cell parti-

tion is a region of attraction for the equilibrium .

In particular, if covers the whole state space, then the

system is globally exponentially stable.

Proposition 1 can be used for systematic analysis of nonlinear

systems based on piecewise approximations. A linear model

valid locally around an equilibrium point can be refined by split-

ting the state space into more regions, each with different affine

dynamics. Splitting a given partition also increases the flexi-

bility of the piecewise quadratic Lyapunov function. The ap-

proach is illustrated in the following example.

Example 1 (Piecewise Linear Analysis): Simulations indi-

cate that the following nonlinear system is stable:

We would like to verify global exponential stability of the origin

by computing a piecewise quadratic Lyapunov function for the

system. This will be done by writing the model as

Fig. 1. Simulated trajectories (full) and level surfaces of the Lyapunov
function (dashed).

and utilizing bounds of the form

We notice that a Lypunov function candidate is decreasing along

trajectories of the original system if it is decreasing for the two

extremal systems obtained by replacing with and

, respectively. The global bound is, how-

ever, insufficient, since gives the unstable system

Instead, we can partition the state space into the four quadrants

and note that

in the first and third quadrant and

in the second and fourth quadrant. To assure stability of the

system, we search for a piecewise quadratic Lyapunov function

that is valid for the two extremal systems in each region. The

numerical routines return the Lyapunov function with the level

curves indicated in Fig. 1. This proves global exponential sta-

bility.

III. TRANSIENT ANALYSIS

The objective of this section is to refine the stability analysis

by estimating the “transient integral” as a

function of the initial state . Here, denotes arbitrary sym-

metric matrices. It is assumed that for .

The estimate can be obtained using a minor modification of the

Lyapunov inequalities.

Theorem 1 (Bound on Transient): Let with

be a continuous piecewise trajectory of the system

(1) with and for . Consider sym-

metric matrices and , such that have nonnegative entries,

while and satisfy

Then
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Fig. 2. Simulated state trajectory (left) and output (right).

Proof: It follows directly from the two inequalities that

Multiplying this inequality from left and right by and re-

moving the nonnegative terms including gives

where is chosen so that . Integration from

to gives the desired result.

In particular, upper and lower bounds on the “output energy”

are obtained from Theorem 1 as

(6)

where satisfy the conditions of Theorem 1 with

and satisfy them with .

Example 2 (Transient in Flower Example): Consider the

piecewise linear system with the cell partition shown in Fig. 2

(left) and dynamics given by the matrices

and . The trajectory of a simulation with initial

value moves toward the origin in a flower-like

trajectory, as shown in Fig. 2 (left). The corresponding output

is shown in Fig. 2 (right). This output has the total energy

, while (6) with the initial cell partition gives

the bounds .

A possible reason for the gap between the bounds is that the

level curves of the cost function cannot be well approximated

by piecewise quadratic functions. To improve the bounds, we

introduce more flexibility in the approximation by repeatedly

splitting every cell in two. This simple-minded refinement pro-

cedure, illustrated in Fig. 3, is repeated three times yielding the

Fig. 3. Upper (full) and lower (dashed) bounds on the storage function
computed in Example 2. The bounds get increasingly tight when we move
from 8 cells (left) to 16 cells (right).

TABLE I
LOWER AND UPPER BOUNDS OBTAINED

FROM (6) FOR EXAMPLE 2

bounds shown in Table I. Note that the bounds on the output

energy optimized for the initial state (1, 0) match closely over

the the whole state space, giving good estimates of the output

energy also for other initial states. The computation time for the

final partition is comparable to the computation time for a sim-

ulation giving the same accuracy.

It should be noted that systems with discontinuous dynamics

require special attention in analysis and simulation. All simula-

tion examples in this paper were performed in Omsim [1] with

special treatment of discrete events.

In duality with transient estimation, which can be viewed as

an observability problem, one may also consider reachability.

The problem is then to estimate the input energy

that is needed to reach a certain state starting from

. However, rather than the reachability problem, we will next

consider a more general class of optimal control problems.

IV. PIECEWISE LINEAR QUADRATIC OPTIMAL CONTROL

Consider the following general form of optimal control

problem:

Minimize

subject to

It is well known that the optimal cost for this problem

can be characterized in terms of the HJB equation

(7)

Lower bounds on the optimal cost are obtained by integrating

the corresponding inequality

(8)

Assuming that , we get
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Hence, every that satisfies (8) gives a lower bound. In fact, the

maximization of subject to (8) is a convex op-

timization problem in with an infinite number of constraints

parameterized by and . Under fairly general conditions [20],

the supremum of such lower bounds is equal to the optimal value

of the control problem. The objective of this section is to show

how the maximization of the lower bound can be done numeri-

cally in terms of piecewise quadratic functions.

Let us consider the case where is piecewise linear and is

piecewise quadratic. The control problem is to bring the system

to from an arbitrary initial state , while limiting

the cost

Here is defined so that . Under the assumption

that

for (9)

this can be done in analogy with the previous results as follows.

Theorem 2 (Lower Bound on Optimal Cost): Assume exis-

tence of symmetric matrices and , such that have non-

negative entries, while and satisfy

Then, every continuous piecewise trajectory

of (1) with satisfies

Remark 2: Theorem 2 can be readily modified to handle the

case of input constraints of the form

for

for

The first inequality condition then becomes

and the second is analogous.

Proof of Theorem 2: It follows directly from the two ma-

trix inequalities in Theorem 2 that

Multiplying from left and right by and removing the non-

negative terms including gives

Integration from 0 to gives the desired result.

Theorem 2 gives a lower bound on the minimal value of the

cost function . Upper bounds are obtained by studying specific

control laws. Consider the control law obtained by the mini-

mization

(10)

If satisfies the HJB equation (7), then every minimizing con-

trol law is optimal. In particular, has the decay rate given

by , which is typically negative, so may serve as a

Lyapunov function to prove that the optimal control law is sta-

bilizing.

However, if only (8) holds, for example as a result of solving

the matrix inequalities in Theorem 2, then there is no guarantee

that the control law minimizing (10) is even stabilizing. Still,

the minimization problem is the starting point for definition of

control laws that will be used in our further analysis.

Exact minimization of the expression (10) without input con-

straints can be done analytically in analogy with ordinary linear

quadratic control, using the notation

(11)

The minimizing control law can then be written as

This control law is simple but may be discontinuous and give

rise to sliding modes. For simplex partitions, to be described in

detail later, this difficulty can be avoided as follows. First design

control vectors for the grid-points of the partition, then use

linear interpolation between these vectors to define linear state

feedback laws inside the simplices. In this way, no

sliding modes are created and the design approach can also be

used in the case of state constraints.

Once a stabilizing piecewise linear control law has been de-

signed, an upper bound of the optimal cost is obtained from The-

orem 1.

Example 3 (LQ Control of an Inverted Pendulum): Consider

the following simple model of an inverted pendulum

(12)
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Fig. 4. The left figure shows piecewise affine bounds on the system
nonlinearity. The right figure shows lower (dashed) and upper (solid) bounds
on the optimal cost.

We are interested in applying the proposed technique to find

a feedback control that brings the pendulum from rest at the

stable equilibrium to the upright position while

minimizing the criterion

A piecewise linear model of (12) can be constructed by finding

piecewise affine bounds on the system nonlinearity . For

the purpose of this example, we divide the interval into

five segments and compute the bounds illustrated in Fig. 4 (left).

This description of the system nonlinearity induces the partition

shown by dotted vertical lines in Fig. 4 (right). The partition can

be viewed as a simplex partition in the variable, while is

independent of the partition. We apply Theorem 2 to compute a

lower bound on the achievable performance as .

It is easy to verify that the closed-loop system obtained by ap-

plying the control law (11) is stable and has no attractive sliding

modes. Theorem 1 can now be applied to compute the upper

bound on the performance to be . We conclude

that both the optimal and the computed control law satisfy

The level surfaces of the upper and lower bounds on the value

function is shown in Fig. 4 (right). Although the bounds are valid

for all initial values within the estimated region of attraction,

they match most closely for the optimized initial value. In ad-

dition, the computed control law is evaluated on the pendulum

model (12) by simulation. The value of the loss function com-

puted in this way is .

V. GAIN AND DISSIPATION INEQUALITIES

As another application of the central idea, we shall compute

bounds on the -induced gain of a piecewise linear system

as well as other dissipation inequalities. After verification of

stability, for example using Proposition 1, an upper bound for

the gain can be obtained as follows.

Theorem (Upper Bound on Gain): Suppose there exist

symmetric matrices and such that and have

nonnegative entries, while and sat-

isfy

for

for

Then every continuous piecewise trajectory with

satisfies

The best upper bound on the -induced gain is achieved by

minimizing subject to the constraints defined by the inequal-

ities.

Proof: It follows as in the proof of Theorem 2 that

Integration from 0 to gives the desired inequality.

In analogy with the previous section, it is possible to com-

pute a lower bound from an explicit control law . A

candidate for such a control law is obtained by maximizing the

expression

with respect to , where and come from the upper bound

computation. Simulating the system with this control law and

comparing the input and output norms gives a lower bound on

the gain.

Example 4 (Analysis of a Saturated Control

System): Consider the control system shown in Fig. 5. The

output of the system is subject to a unit saturation. The

closed-loop dynamics is piecewise affine, with three cells

induced by the saturation limits . We set and

estimate the induced gain from the disturbance to the

output . With the transfer functions

we obtain the results shown in Table II. Here “Lure

function” means a Lyapunov function of the form

and “IQC for mono-

tonic nonlinearities” means a gain estimate computed based

on [21] using the toolbox [12]. A lower bound on the gain,

computed in the linear region, is equal to 2.36.

The results on gain computation can be generalized in a nat-

ural way to validation or invalidation of other dissipation in-

equalities for the nonlinear system. More precisely, suppose
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Fig. 5. Saturated control system.

TABLE II
VARIOUS UPPER BOUNDS ON L GAIN

there exist symmetric matrices and such that and

have nonnegative entries, while satisfy

for . Then, the trajectories of (1) satisfy the dissipation

inequality

where is defined by (5).

Also integral quadratic constraints with a frequency-depen-

dent weight instead of the constant matrix can be verified in

the same way, by first introducing a state space realization of the

weight and include these dynamics in the system description.

The opposite problem to validation is invalidation. In analogy

with the lower bound bound on the gain, this can be done

by simulation, for example using a piecewise linear control law

defined in term of the matrices , by minimization of the ex-

pression

with respect to .

VI. SIMPLEX PARTITIONS

So far, we did not pay much attention to the partitioning of

the state space and the specification of the matrices and .

For a piecewise linear system, with a given state space partition

for the dynamics, it is natural to do the initial analysis using

the same partition for the Lyapunov function or loss function.

However, there are many examples where a more refined par-

tition is needed for the analysis. The purpose of this section is

to introduce some convenient concepts for this purpose and dis-

cuss their properties.

Fig. 6. Simplex partition of a compact domain of the state space.

An -dimensional polytope is defined as the convex hull of

a finite number of corner points in . It is called an -dimen-

sional simplex if the number of corner points is . Note

that any polytope which is not a simplex can be partitioned into

two polytopes, each with fewer corners than the original one.

Repeating this procedure eventually generates a partition of the

original polytope into simplices; see Fig. 6.

A simple and flexible way to partition the state space is to di-

vide it in to simplices. An important advantage with simplex

partitions is that arbitrary functions values at the grid points

can be interpolated by continuous functions that are linear (or

quadratic) in each simplex. This property makes it possible to

approximate arbitrary continuous functions over simplex parti-

tions, but is not valid for polytopic partitions in general. In this

section we define a parameterization that supports the interpo-

lation in simplices.

Let be a polytope with the simplex partition

, where all the simplices have nonempty interior and

is a simplex vertex. Let with be the

collection of vertices and define

Then, each has a unique representation as a convex combina-

tion with for all and

if and only if . Define . Then

For each simplex , define an extraction matrix

of as follows. The th row of

is zero for all such that and the remaining rows of

are equal to the rows of an identity matrix.

The extraction matrix then has the property that

for all corresponding to . In addition, the matrix

is invertible, due to the nonempty interior of . Let and

be defined by

(13)

(14)

for all . Then (3) and (4) are implied by the following

proposition.
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Proposition 2:

for (15)

In particular, and for .

Proof: Let . Then

The last column of , denoted , is identical to the that

corresponds to . Hence .

Remark 3: In applications, it is often advantageous to extend

the further, so that .

A. Polyhedral Regions

As a generalization of “polytope,” that also allows corners at

infinity, is called a polyhedron, if every can

be written as

(16)

with . The vectors are finite

vertices, while define vertex directions at infinity.

A generalized simplex is a polyhedron with .

Let be a polyhedron partitioned into general-

ized simplices, each with nonempty interior. Let the partition be

given by the finite vertices with and the

infinite vertex directions . Then, with and

defined as in the previous subsection, all the earlier state-

ments remain valid, except that the identity does

not include terms with .

B. Partitioning a Subspace of the State Space

In some cases, it is natural to partition only a subspace of the

state space. This can be done conveniently by replacing with

for some matrix everywhere in the discussion

of simplex partitions. Then

and Proposition 2 holds with

VII. APPROXIMATION OF SMOOTH SYSTEMS

One motivation for the study of piecewise linear systems is

that they can be used to approximate smooth nonlinear systems.

The purpose of this section is to show how the approximation

error can be explicitly taken into account, in order to generate

formal results also for smooth systems. Moreover, we prove a

converse result for smooth nonlinear systems on the existence

and computability of piecewise quadratic Lyapunov functions.

In [7], it was suggested that upper and lower bounds of the

smooth nonlinearity are used in each polyhedral region. Sta-

bility of the original system follows if it is possible to find a

Lyapunov function that is valid for the bounding systems in all

regions. Another good alternative, particularly for multivariable

nonlinearities, is to use a norm bound of the approximation error

in the following manner.

Theorem 4: Let be a piecewise trajectory of the

system and assume that

If there exist numbers , symmetric matrices and

with nonnegative entries, and a symmetric matrix such that

and satisfy

(17)

(18)

for and

(19)

(20)

for , then tends to zero exponentially.

Proof: Define

(21)

The inequalities (17) and (19) imply that

for some . Let the approximation error be

Then, (18) and (17) together with the assumption

imply that

(22)

(23)

for some . This proves the exponential decay.
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Theorem 4 quantifies the trade off between computational ef-

fort and precision in the analysis. If no solution to the above in-

equalities is found, one may refine the state space partition for

the piecewise linear system approximation and the piecewise

quadratic Lyapunov function, and try again.

It is natural to ask how restrictive this approach is, compared

to a theorem based on arbitrary continuous Lyapunov functions.

The answer is given by the following result, showing that in

principle, whenever a Lyapunov function exists, there also exists

a solution to the relevant matrix inequalities.

Theorem 5: Let , where is a bounded in-

variant polytope for the system . If the system is glob-

ally exponentially stable on , then for every sufficiently re-

fined simplex partition with

and defined by (13), (14), there exists a solution

and to the inequalities (17)–(20).

Proof: First note that by a standard converse Lyapunov

theorem, see [11, Th. 3.12] for example, there exists a Lya-

punov function that satisfies

(24)

(25)

for some positive constants . The function can

be approximated by a function of the form (21) by letting

with defined by (15) and

This choice makes quadratic in all regions that contain the

origin and affine in all others. Moreover

so and become arbitrarily accurate approximations

of and as the partition is refined.

In the regions that do not contain the origin, and

are affine, so the inequalities (24) and (25) imply that

for sufficiently small . By Farkas lemma [17], this is

equivalent to existence of vectors and with positive coef-

ficients such that

Let and note that . With

it follows that

for sufficiently small . The analog choice of gives

Hence (19), (20) holds with appropriate values of and .

Finally, every region that contains the origin must have a

boundary surface in common with a region that does not. On

this surface, the is again affine, so the same argument can be

applied to construct and such that

for all on the hyperplane defined by the boundary surface. This

implies (17)–(18), so the proof is complete.

VIII. CONCLUSIONS

A flexible and powerful approach to computational analysis

and optimization of nonlinear control systems has been devel-

oped, using a combination of piecewise linear system descrip-

tions and piecewise quadratic Lyapunov functions and loss func-

tions.

Local analysis of nonlinear systems near an equilibrium is

usually done based on linearization. The linear approximation is

good close to the equilibrium and there is a powerful theory for

control and performance analysis of linear systems. However, as

the region of investigation is extended, it becomes desirable to

take the nonlinear effects more explicitly into account. Using the

framework of this paper this can be done incrementally. Starting

from the purely linear analysis, one can add more and more

partitions of the state space in order to extend the investigated

region of state space, piece by piece.

Last, but not least, it should be emphasized that the main

limiting factor for the application of the ideas in this paper

is the issue of computational complexity. For a fixed number

of regions, the complexity grows polynomially with the state

dimension. However, the necessary number of regions often

grows rapidly with dimension, resulting in exponential com-

plexity growth anyway. This is indeed a subject for future

research, and further ideas based on linear programming are

presented in [15]. Furthermore, the combination of upper and

lower bounds sometimes can be used to reduce the need for grid

refinement and increase the computational speed considerably.
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