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ABSTRACT Piecewise linear regressions have shown many successful applications in image denoising,

signal process, and data mining fields. In essence, they attempt to seek multiple linear functions (piece-

wise/stepwise function) to fit the given scatter data points by various methodologies, typically point-centered

clustering methods, such as k-means or fuzzy c means. Obviously, it is reasonable that plane-centered

clustering is more suitable for capturing the linearities in data. In this paper, we propose an efficient piecewise

linear regression method based on k-plane clustering, termed as PlrPC. The proposed method first partitions

the data into multiple plane-centered clusters and then analytically compute corresponding piecewise linear

functions. Compared with the state-to-the-art linear regressors, the advantages of the PlrPC lie in fourfold:

1) it is generated from plane clustering, which is truly coincident with geometrical intuition; 2) to fuse the

linear characteristics into plane clustering, a new implicit regression method is proposed; 3) a new plane

jump method is proposed to detect the number of clusters, and; 4) the leading problem can be solved by

ordinary eigenvalue problems. The experimental results will show the aforesaid characters on some artificial

and some benchmark datasets.

INDEX TERMS Piecewise linear regression, minimum square error, optimization, closed-form solution.

I. INTRODUCTION

Regression analysis is a powerful tool in statistical process

and data mining for estimating the relationships among vari-

ables, and usually be characterized by an input-output map

(also called regressor) between a dependent variable and

one or more independent variables. It is useful for peo-

ple to explore and understand the latent information from

the map. By the generated functional descriptor, people

can accurately predict the output variable from the rele-

vant input variables without further considering complicated

inner mechanism [1]. Another scenario for regression is data

denoising [2], [3], which is under the assumption that the

data observations sampled from different distribution satisfy

with local similarity condition. Due to the various learning

tasks, there are many regression methods, including MSE

(Minimum Square Error) linear regression, ridge regression,
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support vector regression, artificial neural network, kernel-

based regression, piecewise/stepwise regression, etc. Espe-

cially in recent years, regression analysis has achieved great

success in many fields, such as consumption forecasting [4],

chemical component investigation [5], [6], Remote-sensing

data analysis [7], wastewater process [8], Hybrid Magnetic

research [9], image classification [10], solder Remaining-life

prediction [11], highway vehicle classification [12]. In this

paper, we only focus on piecewise linear regressions.

As nonlinear approximators, piecewise functions are fre-

quently studied in the literatures. It is well known that a

nonlinear function can be approximated by a series of lin-

ear segments/planes that follow the gradient of the func-

tion. However, such approximations mainly confront two

challenges: domain selection and the number of partitions.

Herein domain selection means how to partition the dataset

into several clusters/groups, and the number of partitions

equals to the number of clusters. The previous work for

this topic can go back to classic point-centered clustering
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FIGURE 1. Illustration for 3 segmented clusters: k-means vs. kPC,
(a) original data distribution, (b) k-means, and (c) kPC clustering.

algorithms [13], [14], such as k-means [15] and FCM (fuzzy

c-means) [16], [17]. After data clustering, people continue

to do domain selection or execute linear regression for each

cluster. Once combined with concrete applications, there

are a large number of regression technologies. Here we

only named a few. Some related work will be presented in

Section II A. Instead of the point-prototype of the foresaid

point-centered clustering, for instance, k-means, k plane clus-

tering (kPC) [18] takes the planes as their corresponding

cluster centers. In doing so, kPC aims to capture the linearities

in data. Figure 1 illustrates an example with three segmented

scatter points, whose distribution like the slanted letter ‘‘Z’’

(Fig. 1a). Set the number of clusters, k = 3, we run k-means

(Fig. 1b) and kPC (Fig. 1c) respectively and mark cluster

results with colorful ‘‘o’’, ‘‘+’’ and diamond.

Fig. 1 shows that k-means easily ignores such linearity and

clusters the points, especially located at corner area, to the

wrong cluster, while kPC able to capture underlying local

linearities in data, and its clustering results are coincident

with original distribution.

Our motivation originally generates from k-plane cluster-

ing which is more powerful for capturing linearity in data.

In this paper, we propose a new Piecewise linear regression

under the guidance of Plane Clustering algorithm, termed as

PlrPC. No free Lunch (NFL) theorem says that sufficiently

making use of prior information is one of the most effective

ways to promote learning machine’s performance. By replac-

ing the point prototypes with so-called plane prototypes as

cluster centers, we define a new optimization objective to

meet the foresaid problem.

We highlight the contributions of this paper.

1). Similar to linear regression methods, the PlrPC has

clear geometrical interpretation. We will illustrate this work

on several small-scale synthetic datasets.

2). The leading problem is a non-successive quadratic

optimization, which can be decomposed into two sub mod-

els. One corresponds to our proposed implicit target-variable

regression, which can be solved by ordinary eigenvalue prob-

lem, thus linear function can be uniquely determined by the

corresponding covariance. The other, i.e. the number of piece-

wise linear functions, will be determined by our proposed

plane jump method [19].

3). Instead of point-to-point distance in point-centered

clustering, PlrPC adapts point-to-plane distance to design

optimization objective, which is more suitable for capturing

linearities in data.

The rest of paper is organized as follows. In Section 2,

we briefly review some preliminary work. The PlrPC will be

detailed in Section 3, including optimization model, geomet-

rical interpretation, and solution. In Section 4, we provide the

experimental results on some artificial and public datasets.

Finally, we conclude the whole paper in Section 5.

II. PRELIMINARIES AND NOTATIONS

In this section, we first review some related work about

piecewise linear regressions.

A. RELATED WORK

As aforementioned, piecewise linear regressions have been

widely studied in literatures in last decade. Similar to k-means

clustering based piecewise regressions, a convex piecewise-

linear fitting method [20] was proposed with the fixed num-

ber of clusters. Moreover, it sometimes suffers from matrix

singularity during solving the leading problem. Following

the convex optimization route, CAP (convex adaptive parti-

tioning) [21] also creates a globally convex regression model

and estimates the number of partitions by cross validation.

However, it is hard to determine two tuning parameters: the

number of knots and the size of minimal subset, which are

sensitive to regression loss and computational time. Instead

of Euclidean distance, Shao et al. [24] introduced a new

metric into super resolution and proposed a piecewise linear

regression named HHCR (Half Hypersphere Confinement

Regression). It is still based on the point-centered method

(named anchored neighborhood regression) in the half hyper-

sphere space which is transformed from input space by MDS

(multidimensional scaling).

Another branch abandons clustering analysis, and directly

estimates break-points or interval fields. Yang et al. [25]
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investigated statistics F-test and p-value to check the par-

tition of experimental adsorption data. The method largely

depended on the graphical plot and scarcely spread to high

dimension cases. Malash and El-Khaiary [26] proposed a

threshold selection to determine break points by maximizing

the adjusted coefficient of determination. It maybeworkswell

for only one independent variable (one-dimension informa-

tion). Ahmed and Ramadan [27] theoretically constructed an

alternative sequential procedure to estimate the number of

breaks. Conclusions hold under a series of statistic assump-

tion, such as parameter consistent estimation, well-defined

moment matrix, and infinite tendency. To estimate rotor posi-

tion of switch reluctance machine, Strikholm [28] advised

a method for selecting the optimal interval. In fact, it is

a two-region data fitting method, and almost impossibly

extended to multiple regions. OPLRA (Optimal Piecewise

Linear Regression Analysis) [29] able to simultaneously

identify the partition feature/variable and the number of

regions under linear minimum optimization objective with bi-

linear constraints. It needs extra heuristic procedure to find

the number of break points, which need to repeatedly solve

optimization problems. Yang et al. [30] estimated breaks in

linear model with band spectral regression. Owing to conclu-

sions mainly come from statistical significance, people do not

know the performance for the case of limit samples. In ICML

2016, Acharya and partners [31] proposed a piecewise lin-

ear regression named GreedyMerging which has two tuning

parameters. While facing real application, the authors failed

to give more advice for parameter selection.

As aforementioned, quite different from point-centered

clusters, plane-centered clustering methods [18], [23]–[24],

such as kPC and its variants [32]–[33], aim to seek k planes

to assign data points into k clusters according to the point-

to-plane distance. This will be described by mathematical

programming problem in next section.

B. kPC: k-PLANE CLUSTERING

Assume a given data set {xi|xi ∈ Rd }ni=1 represented by a

matrix A(∈ Rn×d ), where the ith line of A, Ai, corresponds to

the point xi, and R
d denotes d-dimensional real space.

Define k planes in Rd : {x|x ∈ Rd ,wTl x + bl = 0},

l = 1, 2, · · · , k , where the parameter pair (wl, bl) denotes the

normal vector and threshold of the lth plane, respectively. The

superscript ‘‘T ’’ denotes matrix transpose operator. Training

kPC is alternatively running two steps: ‘‘point assignment’’

and ‘‘plane update’’. ‘‘Point assignment’’ means assigning

each point to the cluster corresponding to its closest plane,

while ‘‘plane update’’ means updating k planes by minimiz-

ing the sum of the squares of distances between planes and

points in their corresponding clusters.

C. DETERMINING THE NUMBER OF CLUSTERS k

To determine the ‘‘true’’ number of groups in a data set is

one of the most difficult problems in cluster analysis. The

proposals are Gaussian model-based approach and the gap

statistic by comparing the change in within-cluster dispersion

like variances, mean square error, etc. [34]. Theoretically and

empirically, ‘‘Sharp jump method’’ [19], derived from Shan-

non mutual information theoretic ideas, would be suitable for

piecewise problems. However, the jump method starts from

k-means algorithm (details see Fig. 1) and its transformation

power Y should be early determined though the authors gave

a default value with Y = d /2, where d denotes samples

dimension. Next, we will improve this method to suit our

PlrPC, and named it as ‘‘plane jump method’’.

III. PIECEWISE LINEAR REGRESSION BASED

ON PLANE CLUSTER

From figure 1, we know that, for k-means, the points are

misled into wrong clusters, and at least the points in two clus-

ters are not consistent with original line-shaped distribution

(marked blue diamond and red ‘‘+’’, see Fig. 1b). While kPC

is capable of capturing linearity and clusters the points into

the three line-shaped clusters (Fig. 1c). The example clearly

illustrates superiority of the plane clustering, especially for

the data sampled from plane-shaped distribution (also named

subspace distribution [35]).

To meet regression tasks, we redefine n points and their

responses as {(xi, yi) ∈ Rd × R}ni=1, where the symbol x is

a d-dimensional dependent (input) variable, and y is its cor-

responding target variable (response/independent variable).

Define a fixed but currently unknown map: f : Rd → R

from hypothesis set F of candidate functions. By merging the

target variable into the independent variables, we denote it as

{x̃i|x̃i ∈ Rd+1}ni=1, where x̃
T
i = [xTi , yi]. Thus each x̃ can be

viewed as a point in the (d + 1) dimensional real space.

A. OPTIMIZATION PROBLEM

As foresaid in Section II B, kPC attempts to seek k planes

(presented as linear equations) to partition the given n points

into k clusters. By the Euclidian point-to-plane distance,

we obtain the optimization problem as

min J (W̃ , b, k) =

k
∑

i=1

ni
∑

j=1

|w̃Ti x̃
(i)
j + bi|

||w̃i||
+ λk (1)

where {x|w̃Ti x + bi = 0} denotes the ith plane, w̃i(∈ Rd+1)

and bi(∈ R) denotes normal vector and bias, respectively. x̃
(i)
j

denotes the jth sample in the ith cluster whose cardinality

is ni. λ(> 0) is a regularization parameter. The first term

in (1),
ni
∑

j=1

|w̃Ti x̃
(i)
j +bi|

||w̃i||
, is total sum of distances between the

points in the ith clusters to its corresponding fitting plane

{x|w̃Ti x + bi = 0}. Define W̃ = [w̃1, w̃2, · · · , w̃k ] and

b = [b1, b2, · · · , bk ]
T .

Obviously, when k increases, the value of the first termwill

decrease, and vice versa. The objective function is capable

for minimizing the distance sum to fitting data and simultane-

ously controlling the number of clusters k . However, it is hard

to solve because there exist nonsuccessive nondifferentiable
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terms. Next wewill divide and conquer it. Firstly, we consider

linear regression problem in next subsection with a fixed k .

B. PIECESIZE LINEAR REGRESSION

With a fixed the number of clusters k , rewrite first term of (1)

as,

min J (W̃ , b) =

k
∑

i=1

ni
∑

j=1

(w̃Ti x̃
(i)
j + bi)

2

s.t. ||w̃i||
2 = 1, i = 1 ∼ k (2)

The advantages of the optimization problem of (2) lie in

two-fold: 1) inheriting geometrical interpretation of the orig-

inal objective function in (1); and 2) restraining singularity

of the plane norm vector when the objective value decreases.

We will discuss its solution described as following theorems.

Theorem 1: The problem (2) is a convex problem.

Theorem 2: The problem (2) can be individually solved by

k ordinary eigenvalue problems.

For proofs, see Appendix. Theorems 1 and 2 say that fitting

planes can be solved by k ordinary eigenvalue problems, thus

we have the following corollaries.

Corollary 1: The optimum of problem (2) reaches at min-

imal sum of the k minimal eigenvalues of the k eigenvalue

problems.

Corollary 2:When the objective function in (2) reaches the

optimum, the optimal solution will be uniquely determined

by k covariance matrices and means of the corresponding k

clusters.1

For the proofs of Corollary 1 and 2, please see Appendix.

From the proof of corollary 1 and [32, Th. 2.1], the solution

of the problem (2) can be stationary at and only at the eigen-

vectors of the ordinary eigenvalue problems. Corollary 2 says

the solution of (2) only depends on the samples of its corre-

sponding cluster without considering other cluster samples

(eq. (3-4)). That is, the problem (2) can be solved by the k

individual ordinary eigenvalue problems.

8w̃i = ηiw̃i (3)

bi = −w̃Ti m̃i (4)

C. IMPLICIT TARGET REGRESSION

In the Section III B, we have concluded a linear regression

method as a byproduct, which merging target variable into

dependent variables and then seeking a fitting plane to fit

these variant sample points. In the merged dataset, since we

need not to strictly distinguish target variable or independent

variables, we name it implicit target regression (Hereafter,

shortly ImTarReg).

Linear regression aims to find a linear function y = f (x),

x ∈ Rd (generally, convex linear function) to fit a set of scatter

1When suffering degenerate eigenvalue problem, i.e., many eigenvectors
sharing the same eigenvalue, one can refer to our work in 2010 [42].

Algorithm 1 ImTarReg: Implicit target regression algorithm

Input: a set of scatter points {xj, yj}
l
j=1;

Output: parameter pair (w̃, b) of the fitting plane w̃T z +

b = 0;

Step1. Form a new data set {x̃j}
l
j=1, where x̃

T
j = (xTj , yj);

Step2. Compute the covariance matrix 8 and mean m of

the sample set {x̃j}
l
j=1;

Step3. Compute fitting plane by 8w̃ = λw̃ and b =

−w̃Tm, where w̃ is an eigenvector corresponding to the

minimal eigenvalue of 8.

FIGURE 2. Illustration for line regression: ImTarReg vs. LR.

points in d-dimensional linear space. We rewrite it as an

equation ϕ(x, y) = y− f (x) = 0. As foresaid, we define such

equation as

w̃ ·

[

x

y

]

+ b = 0. (5)

where w̃(∈ Rd+1) and b(∈ R) denote the parameters of the

plane {z|w̃T z+ b = 0, z ∈ Rd+1} in the (d + 1) dimensional

space. We describe this process in algorithm form.

Fig. 2 illustrates an example for ImTarReg. The scatter

points marked blue ‘‘o’’ are generated from the function

y = 3x + 0.5 + ε, where ε is uniform distribution noise, and

the component x of samples are sampling from the interval

[0.1, 1) with step 0.1. The lines, marked green solid and

magenta solid plus triangle, are regressed by ImTarReg and

classic linear regression (shortly LR), respectively. Instead

of minimizing square sum of distances between target and

estimated value in LR, ImTarReg aims to seek a plane under

minimizing square sum of distances between scatter points

to the regression plane (the line marked magenta solid plus

triangle). Geometrically, the LR minimizes the sum of line

segments (left dash line segment of the Fig. 2) which parallel-

ing to the y-axis, while for ImTarReg, it minimizes the sum of

line segments (right dash line segment) perpendicular to the

regression plane (magenta solid line plus triangle of Fig. 2).

From the viewpoint of data fitting, both LR and ImTarReg

are capable of obtaining line regression functions, though

they have different optimization objectives. However, simi-

lar to LR, when need predict values by ImTarReg, one can

compute it by the expression (6), a variant version of (5).

y = −(wT x+ b)/w̃d+1, (6)
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Algorithm 2 The Plane Jump Method

Input: n scatter point pairs {xi, yi}
n
i=1;

Output: the optimal k∗;

Step1. Compute d̂k = min
(w̃i,bi)

k
∑

i=1

ni
∑

j=1

(w̃Ti x̃
(i)
j + bi)

2, symbols

defined as before;

Step2. Select a nonnegative transformation power p.

(A typical value p = (d + 1)/2, advised by [27]);

Step3. Compute the jumps Jk = d̂
−p
k − d̂

−p
k−1;

Step4. Find k∗ = argmax
k

Jk

FIGURE 3. Illustration the PlrPC on 3-segmented data.

where w ∈ Rd , and wj = w̃j, j = 1, 2, · · · , d , wj and w̃j
denote the jth component of w and w̃, respectively.

Next, wewill discuss how to determine the number of plane

clustering.

D. DETERMINING THE NUMBER OF PLANE CLUSTERING

In the cluster analysis fields, it is the most difficult problem

for how to identify the ‘‘true’’ number of groups in a data

set. Numerous approaches for solving this problem have

been suggested over the years. Unfortunately, as said in [19]

and [36], those methods are more generally applicable tend

either to be model-based, which hence requiring strong para-

metric assumptions, or to be computation-intensive, or both.

According to NFL theories, it is the fact that the optimal

cluster partition algorithm does not exist unless merging

knowledge in prior. Here we will merge plane linearity char-

acteristics into ‘‘cluster jump method’’ [19] by replacing the

point with plane as cluster center, and name it ‘‘plane jump

method’’ (see Algorithm 2).

The jump method describes a monotone decreasing rela-

tion between dk and k . Here dk , a quantity from asymptotic

rate distortion theory, is a measure of within cluster disper-

sion, and d̂k , its estimated value. Particularly, when set k = 1,

the piecewise problem degenerates to linear regression, i.e.,

adopting one plane to fitting all training data, as described in

Step1. Thus d̂1 =
n
∑

j=1

(w̃T x̃
(i)
j + b)2, where w̃ and b can be

directly solved by (3) and (4).

In the end, we restatement our PlrPC in Algorithm 3 and

interpret its geometrical meaning in Figure 3.

Fig. 3 gives an example for the PlrPC on the foresaid three

segmented data. After Step 1 and 2, we sort the clusters by

Algorithm 3 The PlrPC Method

Input: n scatter point pairs {xi, yi}
n
i=1;

Output: k sub intervals and fitting segmented planes

Step1. Run the plane jump method to determine the

number of cluster k;

Step2. Alternatively run k-PC and ImTarReg to obtain k

clusters and their corresponding fitting planes;

Step3. Sort the k clusters to partition the interval into k

disjoint sub intervals by some certain component, saying,

the first one;

Step4. List piecewise linear functions on each subinter-

val.

FIGURE 4. Illustration for 3-class plane-shaped data and experimental
comparison between PlrPC and the k-Means based regression.
(a) original distribution for 3-class synthetic data; (b-c) PlrPC based on
kPC clustering and k-Means clustering.

the first components, x-component, of their means, and then

obtain the borders of the clusters neighbor to each other by

their corresponding fitting planes.

IV. EXPERIMENTAL COMPARISONS

To verify the effectiveness of our proposed PlrPC, in addi-

tional of the foresaid theoretical analysis, we report the
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FIGURE 5. Illustration for the image ‘‘lighthouse’’ and its histogram.
(a) 256-level gray image and (b) histogram.

empirical performance on synthetic and real data. As base-

line, firstly we compare our plane-polytype piecewise regres-

sor to the point-polytype one, typically, k-means, on some

synthetic datasets. Then we further report the comparison

results with the state-of-the-art regressors in two aspects:

selection of the number of cluster k and regression error

with MSE loss function on real data. All experiments are

conducted on dell inspiron laptop computer with a 2.2GHz

Intel Core i7 CPU and 8 GB of RAM running matlab 2015b.

A. SYNTHETIC DATA

For visualization, synthetic data points are composed of 300

samples from 3 different clusters. Points of each cluster are

drawn from a 3-dimensional plane with 10 percentage uni-

form noise. Fig. 4a illustrates the 3-class points marked red

‘‘+’’, blue ‘‘o’’ and magenta ‘‘✩’’, respectively. To improve

3D stereoscopic vision, we also provide plane-shaped semi-

transparent shadows (set transparency parameter alpha 0.5),

where three planes are perpendicular to each other. Among

them, points in one plane are linearly separate from the

points in the other two crossed planes. Intuitionally, PlrPC

able to achieve better fitting performance (Fig. 4b) than that

of the k-means based regression (Fig. 4c). The regression

result for PlrPC is almost coincident with original three

plane distributions. Numerically, Fig. 4 reports that the cluster

accuracy rate of PlrPC is 99.3% (298 out of 300), while for

k-means regression, it is 65.0% (195 out of 300). Figure 4c

also figures out that point-centered clustering usually failed

to deal with the points located at overlapped area. While

for PlrPC, due to considering data linearity (prior knowl-

edge), it is more appropriate for piecewise linear regression

tasks.

FIGURE 6. Illustration for our PlrPC on the histogram. (a) Normalized
‘‘lighthouse’’ histogram, (b) regression loss marked ‘‘loss’’ and Jk values
by PlrPC and k-means, respectively, and (c) piecewise regression with
6 line segments by PlrPC.

B. REAL DATA

In this subsection, firstly, we will experimentally interpret the

foresaid plane jump method (see Algorithm 2). A benchmark

image, titled ‘‘lighthouse’’ from matlab image toolbox, will

be used to validate our plane jump method. Fig. 5 illustrates

the original image (Fig. 5a) and its histogram (Fig. 5b), where

horizontal axis denotes image gray level, and the vertical

axis, marked ‘‘histogram’’, denotes the number of pixels

corresponding to different gray level.

This histogram will be piecewisely regressed by PlrPC,

illustrated in Fig. 6. For better view sight, both pixel level and

histogram are normalized to the interval [0,1], and mark them

with ‘‘pixel level rate’’ and ‘‘histogram rate’’ respectively

(see Fig. 6a). Fig. 6b illustrates three curves corresponding

to kPC loss, Jk by PlrPC and Jk by k-means, respectively,

when the number of clusters k grows from 1 to 20. The kPC

loss curve (blue solid line plus ‘‘o’’) tends to monotonous

decrease with the increase of k , and there seems to exist a

knee point nearby k = 6 [37]. This may be an appropriate

number of clusters k, as [38] advised. Meanwhile, the curve

of Jk by PlrPC reaches the maximizer also at this position.
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TABLE 1. UCI data information.

TABLE 2. Comparisons of 8 UCI benchmark datasets.

To compare with point-centered clustering methods, we also

report the Jk by k-means in Fig. 6b, which achieves the

maximum Jk at k = 20. To further validate our proposed

method, we also report piecewise fitting results (six segments,

marked magenta dash line) by PlrPC, as illustrated in Fig. 6c.

Note that our piecewise regressor almost able to reflect the

tendency for the foresaid image histogram.

Another experiment carries on the benchmark UCI data.

Eight UCI real world datasets will be used to test the pre-

diction performance as reported in [29] and [39], includ-

ing Yacht Hydrodynamics (shortly Yacht), Energy Efficiency

Heating (EEH), Energy Efficiency Cooling (EEC), Concrete

Strength, Airfoil, White Wine Quality (Wine), Combined

Cycle Power Plant (Cycle), and Facebook Comment Volume

(Fbook). Corresponding data information are listed in Tab.

1. Similar experimental setting to OPLRA [37], a 5-fold

cross validation on each dataset is performed to estimate

the absolute predictive accuracy (loss) of the regressors. The

predictive results of 50 rounds of 5-fold cross validation

are averaged as the final error. But for the latter two larger

scale datasets, we average 5 rounds of 2-fold cross valida-

tion. For the purpose of comparison, we also introduce some

state-of-the-art regression methods, including classic linear

regression (LR), MLP (Mulilayer Perceptron), Kriging [40],

VOLUME 7, 2019 29851



X. Yang et al.: Piecewise Linear Regression Based on Plane Clustering

FIGURE 7. Illustration for the loss comparison of UCI datasets.

FIGURE 8. Illustration for the training time comparison.

SVR (Support Vector Regression), KNN (k Nearest Neigh-

bor), MARS (Multi-variate Adaptive Regression Splines),

Pace-Regression (Pace), ALAMO (Automated Learning of

Algebraic Models for Optimization) and OPLRA. The exper-

imental results are listed in Tab. 2 and showed in Fig. 7. To test

model complexity, we also report average training time in

Tab. 2 and Fig. 8.

From Tab. 2 and Fig. 7, different from the foresaid MSE,

for the fair comparison, here we also adopt the absolute

error (regression loss) to measure losses for all regressors.

Generally, as piecewise regressors, both OPLRA and PlrPC

outperform than other global regression methods. Our PlrPC

achieves better regression loss on the most of datasets. For

the data EEH, PlrPC is ranked as the third method, merely

0.054 far behind MARS and 0.042 behind OPLRA. Obvi-

ously, when we set the bigger number of clustering k , PlrPC

able to achieve lower loss, as illustrated in Figure 6b. Note

that, the results on the data Fbook (Facebook) are unavailable

for the four regressors, including Kriging, SVR, KNN, and

OPLRA. Kriging, SVR and KNN need to compute high order

matrix operator for matrix inverse, kernel matrix and distance

matrix, respectively. It is still a big challenge for time- and

memory-consuming problem when facing large scale learn-

ing tasks. While for OPLRA, as foresaid, it need to consider

attribution combination problem. That is, the dimension of

the search space, spanned by attribution combination, will be

increased exponentially, which unavoidably result in curse of

dimensionality. Hence, there are no reports on the data Fbook

for the four regressors in Tab. 2, Figs 7 and 8.

As far as training time is concerned, from Tab. 2 and

Fig. 8, LR is the fastest method, while KNN is the slowest

one among ten regressors. For the convenience of visualiza-

tion, Fig. 8 reports training time in logarithmic to balance

value difference from 0.0016 (LR training time on Yacht) to

2972.1 seconds (MLP on Fbook). The training time of our

PlrPC is longer than that of LR,MLP, ALAMO, and Pace, but

shorter than that of KNN, OPLRA. With the size of samples

raising, PlrPC defeats KNN, MARS, Kriging, SVR, OPLRA,

and ALAMO. PlrPC spends much training time in preparing

kPC, while KNN, in finding k nearest neighbors by Euclidian

distance. As for MARS, Kriging, ALAMO, they involve in

matrix inversion. SVR needs to solve quadratic program-

ming problem, besides kernel parameter selection and kernel

matrix computation. For OPLRA, it costs much more time

on attribution selection to determine intervals. As aforemen-

tioned, PlrPC only has one parameter, the number of clusters

for kPC, which can be determined by the proposed ‘‘Plane

jump method’’. Due to limit of paper volume, here we can

only test main aspects, including regression loss and training

time.

V. CONCLUSIONS

Following the point-centered regression, we proposed a

plane-centered piecewise linear regressor PlrPC. Compare to

the point-centered regressor, instead of the distance between

points to cluster centers, PlrPC aims to seek k planes by

minimizing the sum of distance between points to its cor-

responding fitting plane, and the leading problems can be

analytically solved by k ordinary eigenvalue problems. Fur-

thermore, to fuse the plane characteristics into optimization

model, an implicit target regression and a plane jump method

are also proposed, respectively. The former is used to trans-

form the general regression problem to cluster one, while the

latter is used to determine an appropriate number of clusters.

Compared to the k-means, experiments on some artificial

datasets explains that our PlrPC is more suitable for capturing

linearity in data. We illustrates an example for fitting image

histogram with a series of line segments. Experiments on

some UCI benchmark datasets, PlrPC able to achieve lower

regression loss and less training time on most cases.

APPENDIX

PROOFS OF THEOREMS

Theorem 1: The optimization problem (2) is a convex

problem.

Proof:We rewrite the problem (2) as (A-1)

min J (W̃ , b) =

k
∑

i=1

ni
∑

j=1

(w̃Ti x̃
(i)
j + bi)

2

s.t. ||w̃i||
2 = 1, i = 1 ∼ k (A-1)

Let uTi = [w̃Ti , bi], (z
(i)
j )T = [(x̃

(i)
j )T , 1] = [(x

(i)
j )T , yj, 1].

We have

k
∑

i=1

ni
∑

j=1

(w̃Ti x̃
(i)
j + bi)

2 =

k
∑

i=1

u
T
i Aiui (A-2)

29852 VOLUME 7, 2019



X. Yang et al.: Piecewise Linear Regression Based on Plane Clustering

and the constraints

u
T
i Gui = 1, i = 1 ∼ k, (A-3)

where Ai =
ni
∑

j=1

z
(i)
j (z

(i)
j )T is a Gram matrix, G =

[

I (d+1)×(d+1) 0(d+1)×1

01×(d+1) 0

]

, Id×d denotes an identity matrix

with the size d , and 0m×n denotes m × n vector or matrix

with all 0 entries.

We introduce new variables U
T = [uT1 ,uT2 , · · · ,uTk ]

and A = diag(A1,A2, · · · ,Ak ), herein diag(.) means block

matrix diagonalization. Thus
k
∑

i=1

uTi Aiui = U
T
AU , U is

a column vector with the size of k(d + 2). The Hessian

matrix of UT
AU over U , says 2A, is semi-definite positive.

Therefore, the objective function of (A-1) is convex, so it does

the constraints of (A-3).

Theorem 2: The optimization problem (A-1) can be respec-

tively solved by k ordinary eigenvalue problems.

Proof: Constructing Lagrange function and simplifying

the problem of (A-2) and (A-3), we have

L(ui, λi) =

k
∑

i=1

u
T
i Aiui −

k
∑

i=1

λi(u
T
i Gui − 1)

Let the deviation of (5) w.r.t. ui equals to 0, the original

optimization problem can be effectively solved by the follow-

ing general eigenvalue problem.

Aiui = λiGui, (A-4)

where Ai =
ni
∑

j=1

z
(i)
j (z

(i)
j )T , G =

[

I (d+1)×(d+1) 0(d+1)×1

01×(d+1) 0

]

.

It is important to note that,

Ai =

ni
∑

j=1

z
(i)
j (z

(i)
j )T = [z

(i)
1 , z

(i)
2 , · · · , z(i)ni ]













(z
(i)
1 )T

(z
(i)
2 )T

...

(z
(i)
ni )

T













(A-5)

Substituting (z
(i)
j )T = [(x̃

(i)
j )T , 1] into (A-5), we have

Ai =

[

x
(i)
1 x

(i)
2 · · · x

(i)
ni

1 1 · · · 1

]













(x
(i)
1 )T 1

(x
(i)
2 )T 1
...

...

(x
(i)
ni )

T 1













.

Let X i =













(x
(i)
1 )T

(x
(i)
2 )T

...

(x
(i)
ni )

T













and 1 =











1

1
...

1











, then

Ai =

[

X
T
i

1
T

]

[

X i 1
]

. (A-6)

The problem (A-4) is readily reformulated as

[

X
T
i X i X

T
i 1

1
TX i 1

T
1

] [

u′
i

ui,d+2

]

= λi

[

u′
i

0

]

(A-7)

where ui = [(u′
i)
T , ui,d+2]

T ,u′
i = [ui1, ui2, · · · , ui,d+1]

T ,

uij ∈ R, j = 1, 2, · · · , d + 2.

Expanding (A-7), we have

X
T
i X iu

′
i + ui,d+2X

T
i 1 = λiu

′
i (A-8)

1
T
X iu

′
i + ui,d+2ni = 0 (A-9)

So that for u′
i ∈ Rd+1,

(XT
i X i −

1

ni
X
T
i 11

T
X i)u

′
i = λiu

′
i (A-10)

Let m̃i = 1
ni

ni
∑

j=1

x̃
(i)
j denotes the mean of the ith cluster.

Substituting nim̃i = X
T
i 1 into (A-10), we have

(
1

ni
X
T
i X i − m̃im̃

T
i )u

′
i = ηiu

′
i (A-11)

where ηi = λi
ni
.

Corollary 1: The optimal value of problem (2) achieves at

minimum sum of the k minimal eigenvalues of the k eigen-

value problems.

Proof: Substituting (A-4) into (A-2), we have
k
∑

i=1

uTi Aiui =
k
∑

i=1

λiu
T
i Gui =

k
∑

i=1

λi, where λi is the

eigen-value of the ith eigenvalue equation Aiui = λiGui.

Because of symmetric positive semi-definition of the matri-

ces Ai and G, each λi should be non-negative. Therefore,

when the sum of k eigenvalues
k
∑

i=1

λi reaches the optimum,

each λi should be minimum eigenvalue of its corresponding

eigen-equation.

Corollary 2: When optimization objective function in (2)

reaches the optimal value, the optimal solution can be

uniquely determined by k covariance matrices and means of

the corresponding k clusters.

Proof:X i, denoted as (A-6), is a samplematrix, where its

jth row corresponds to the jth sample of the ith cluster, we can

reformulate the expression 1
ni
X
T
i X i − m̃im̃

T
i in (A-11) as

1

ni
X
T
i X i − m̃im̃

T
i =

1

ni

ni
∑

i=1

x̃
(i)
j (x̃

(i)
j )T − m̃im̃

T
i

=
1

ni

ni
∑

i=1

(x̃
(i)
j − m̃i)(x̃

(i)
j − m̃i)

T (A-12)

Substituting (A-12) into (A-11), we have

8u
′
i = ηiu

′
i (A-13)

where 8 = 1
ni

ni
∑

i=1

(x̃
(i)
j − m̃i)(x̃

(i)
j − m̃i)

T is the covariance

matrix of the ith cluster.
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From the definition of ui (defined in the proof of Theorem

1, uTi = [w̃Ti , bi]) and (A-7), we know that w̃i = u′
i and bi =

ui,d+2, i.e.,

8w̃i = ηiw̃i (A-14)

and

bi = −w̃Ti m̃i (A-15)

Thus the ith fitting plane is determined by the covariance

matrix and mean of the ith cluster. The constraints of (A-1)

are satisfied with constraint qualifications where there always

exists strictly feasible solution since the constraints in (A-1)

are only used to control the length of the optimal variables

and avoid them shrink to zeros. So they satisfy Slater’s condi-

tion [38], Section 5.2.3], and strong duality holds. Obviously,

both the objective function and equation constraints are all

convex (Theorem 1). Therefore, the problem has a unique

solution [39].
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