
Piecewise Linear Value Function Approximation for Factored MDPs

Pascal Poupart and Craig Boutilier
Dept. of Computer Science

University of Toronto

Toronto, ON, M5S 3H5

ppoupart,cebly@cs.toronto.edu

Relu Patrascu and Dale Schuurmans
Department of Computer Science

University of Waterloo

Waterloo, ON, N2L 3G1

rpatrasc,dale@cs.uwaterloo.ca

Abstract

A number of proposals have been put forth in recent years
for the solution of Markov decision processes (MDPs)
whose state (and sometimes action) spaces arefactored.
One recent class of methods involves linear value func-
tion approximation, where the optimal value function is
assumed to be a linear combination of some set of basis
functions, with the aim of finding suitable weights. While
sophisticated techniques have been developed for finding
the best approximation within this constrained space, few
methods have been proposed for choosing a suitable ba-
sis set, or modifying it if solution quality is found want-
ing. We propose a general framework, and specific pro-
posals, that address both of these questions. In particu-
lar, we examineweakly coupled MDPswhere a number of
subtasks can be viewed independently modulo resource
constraints. We then describe methods for constructing a
piecewise linear combination of the subtask value func-
tions, using greedy decision tree techniques. We argue
that this architecture is suitable for many types of MDPs
whose combinatorics are determined largely by the exis-
tence multiple conflicting objectives.

1 Introduction

Markov decision processes (MDPs) form the foundations of
most recent work in decision-theoretic planning and rein-
forcement learning. Classical solution techniques for MDPs,
however, generally rely on explicit state and action space enu-
meration, and thus suffer from the “curse of dimensionality.”
Specifically, since realistic domains are oftenfactored—that
is, the state space consists of assignments of values to a set
of variables—they have states spaces that grow exponentially
with the number of relevant variables.

Fortunately, the factored nature of an MDP often admits
compact representation[7; 3]. For example, dynamic Bayes
nets (DBNs) can be used to represent the dynamics of the
MDP, taking advantage of the fact that actions tend to have
independent effects on state variables, and that these effects
depend only on the status of a small set of other variables[6;

Copyright c© 2002, American Association for Artificial Intelligence
(www.aaai.org). All rights reserved.

3]. Additive reward functions can also be used to great ef-
fect[2; 12]. Methods exist for exploiting these forms of struc-
ture when solving an MDP, obviating the need for state space
enumeration, and producing compact representations of value
functions (VFs) and policies. These include exact and approx-
imate methods for piecewise constant representations[7; 3;
10; 5] and feature-based approaches[1; 18].

Among feature-based models,linear approximationshave
proven popular. In linear approximations, a small set of basis
functions (over state space) is assumed, and the VF is taken
to be a linear combination of these functions. Recently, sev-
eral clever proposals have shown how to find the best linear
approximation, given a fixed basis set, in a way that exploits
the factored nature of an MDP[8; 16; 9]. These models use
basis functions over a small set of variables and DBN action
representations to ensure computation is effective. These ap-
proaches have the potential to scale well for certain classes of
problems.

The main drawback of linear models is the need for a good
basis set. While these approaches may scale, the quality of
the approximation depends critically on the underlying basis.
If no decent approximate VF lies in the subspace spanned by
the basis, it is impossible to obtain good solutions using such
techniques. Unfortunately, in the recent work on linear ap-
proximations for factored MDPs, no proposals exist for either:
(a) the choice of a good basis; or (b) the modification of an ex-
isting basis to improve decision quality. Studies to date have
used simple characteristic functions over (very small) subsets
of state variables.

We address both of these problems in this paper. We first
describe one technique for the generation of a suitable basis
set, based on the notion ofsubtask value functions: these arise
naturally isweakly coupled MDPs (WCMDPs)[12], a general
class of large, factored MDPs. A WCMDP is one in which
a process can be decomposed into a number of subprocesses
corresponding to distinct objectives, with each of these sub-
processes coupled in a weak sense. The weakly coupled na-
ture of an MDP can be discovered through analysis of its DBN
representation. Our first technique for basis function gener-
ation exploits weak coupling and can be thought of as rely-
ing on domain-specific properties. We then describe a general
framework for the incremental construction of a suitable ba-
sis for linear approximation of a factored MDP. This approach
relies on no special domain properties, and can be instantiated

292 AAAI−02

From: AAAI-02 Proceedings. Copyright © 2002, AAAI (www.aaai.org). All rights reserved.

in a number of concrete ways[14]. We focus in this paper on
a particular instantiation of our framework that allows for the
construction of apiecewise linear (PWL)combination of ba-
sis functions. We argue that this model is especially suited to
the solution of WCMDPs, a fact supported by our empirical
results.

We begin in Section 2 with a brief overview of factored
and weakly coupled MDPs and existing methods for linear ap-
proximation for factored MDPs. In Section 3, we describe our
general framework for incremental basis function construc-
tion, and discuss a decision-tree approach for the construc-
tion of PWL combinations of basis functions in Section 4. We
offer some preliminary experimental results in Section 5 and
conclude in Section 6.

2 Linear Approximations of MDPs
We begin with an overview of MDPs, a discussion of factored
and weakly-coupled MDPs, and recent techniques for linear
function approximation.

2.1 Markov Decision Processes
We assume a fully-observable MDP with finite sets of statesS
and actionsA, transition functionPr(s, a, t), reward function
R(s, a), and a discounted infinite-horizon optimality criterion
with discount factorβ. Pr(s, a, t) denotes the probabilitywith
which the system transitions to statet when actiona is taken at
states, while R(s, a) denotes the immediate utility of taking
actiona at states. A stationary policyπ : S → A determines
a particular course of action. Thevalueof a policyπ at states,
V π(s), is the expected sum of future discounted rewards over
an infinite horizon:

Eπ [
∞∑

t=0

γtRt|S0 = s].

The functionV π can be computed as the solution to the fol-
lowing linear system:

V π(s) = R(s, π(s)) + β
∑

t∈S
Pr(s, π(s), t) · V π(t) (1)

The operator on the r.h.s. of Eq. 1 is referred to as thebackup
operator for policyπ, denotedBπ; V π is thus a fixed point of
Bπ. We denote byBa the backup operator for the policy that
applies actiona at each state.

Our aim is to find a policyπ∗ that maximizes value at each
state. Theoptimal VF, denotedV ∗, is unique and is the fixed
point of the followingBellman backup operator[11]:

V ∗(s) = max
a∈A

R(s, a) + β
∑

t∈S
Pr(s, a, t) · V ∗(t) (2)

A number of algorithms exist to construct the optimal VF, in-
cluding dynamic programming algorithms such as value and
policy iteration. We focus here on a simple linear program
(LP), whose solution isV ∗:

Min:
X

s

V (s) Subj. to:V (s) ≥ (BaV)(s),∀a, s (3)

Here eachV (s) is a variable, and the value(BaV)(s) is
a linear function of these variables, as seen in Eq. 1. For

many classes of MDPs, exact solution using LP methods is not
as effective as using dynamic programming algorithms[15].
The value of the LP formulation, however, becomes apparent
when we consider linear approximation[16; 9].

2.2 Factored and Weakly Coupled MDPs
One weakness of the classical MDP formulation is its reliance
on explicit transition and reward functions. When the state
space of the MDP isfactored—i.e., when states correspond
to the instantiation of state variables—an MDP can often be
specified more compactly by exploiting regularities in the re-
ward function and the dynamics[3]. We assume a set of
(for simplicity, boolean) state variablesX = {X1, . . . , Xn}.
Each state is thus a vectorx assigning a value to each variable.

Reward often depends only on the status of a few state vari-
ables, or additively on “local” reward functions. We assume

R(x, a) =
m∑

j=1

Rj(xr
j , a)

where eachRj is a function that depends on a small subset
Xr

j ⊂ X, andxr
j denotes the restriction ofx to the variables

in Xr
j . Similarly, dynamics can often be specified compactly.

We assume the effect of each actiona can be decomposed into
independent effects on each variableXi, and that its effect on
Xi depends on a small subsetXa

i ⊂ X of variables. A local
functionPr(Xi|a,Xa

i) denotes the distribution overX i given
any assignment toXa

i . We then have

Pr(x, a,x′) =
∏

i

Pr(x′
i|a,xa

i).

We refer to the local functionPr(Xi|a,Xa
i) as the conditional

probability table ortablefor Xi under actiona. This forms the
basis of DBN action representations.

This representation allows MDPs to be encoded concisely,
requiring space linear in the number of variables if each table
Rj or Pr(Xi) refers to a bounded number of variables. The
size of the representation can be reduced even further by us-
ing specialized representations for these tables, such as deci-
sion trees[3] or ADDs[10]. Furthermore, several techniques
can take advantage of this structure to avoid state space enu-
meration when solving the MDP. If a candidate VF depends
on only a few variables, the fact that each variable depends on
only a small number of parents ensures that applying a Bell-
man backup results in a new VF that depends only on a few
variables[3].

Finally, this type of representation allows us to identify
weakly coupled MDPs (WCMDPs). A WCMDP is one in
which the reward function is decomposable as above, and the
set of variablesrelevantto the eachRj is small. The variables
relevant to eachRj are determined as follows[2]: the vari-
ablesXr

j are relevant toRj ; and ifXi is relevant toRj , then
so are the variablesXa

i for all a.1 WCMDPs arise in many
guises, but most often when the combinatorics of a given
problem are largely due to the existence of many competing
subobjectives[2; 12]. When determining the variables rele-
vant to one objective, other objective variables do not play a

1Note the recursive nature of this definition.

AAAI−02 293

role; thus, the objectives are coupled only through the exis-
tence of a common core of relevant variables. Problems that
exhibit such structure include resource allocation problems,
and scheduling of tasks in multi-user domains. We elaborate
on WCMDPs in Section 3.1.

2.3 Linear Approximations
A common way to approximate VFs is with linear approxi-
mators[18; 8; 16]. Given a small set ofbasis functionsF =
{f1, · · · , fm} over state space, alinear value functionV is
defined asV (s) =

∑
i wifi(s), or V = Fw, for some set of

coefficients (orweights) w = 〈w1, . . . , wm〉. HereF denotes
a matrix whose columns are the functionsfi. UnlessF spans
a subspace that includesV ∗, any linear VF will be, at best, an
approximation ofV ∗. The aim is then to find the best linear
approximation of the true VF, using a suitable error metric.

An important challenge, the construction of good linear ap-
proximators for factored MDPs, has recently been tackled in
[8; 16], resulting in techniques that can find approximatelyop-
timal linear approximators in way that exploits the structure
of the MDP without enumerating state space. We assume that
each basis functionfj is compact, referring only to a small
set of variablesXf

j . Linear value and policy iteration are de-
scribed in[8], while a factored LP solution technique is pre-
sented in[16; 9]. We discuss the method proposed in[16].

The LP formulation of a factored MDP above can be en-
coded compactly when an MDP is factored. First, notice that
the objective function Eq. 3 can be encoded compactly:

∑

x

V (x) =
∑

x

∑

j

wjfj(x) =
∑

j

wjyj (4)

whereyj = 2n−|xf
j | ∑

xf
j
fj(x

f
j). Intuitively, eachyj is the

sum of the values assigned by functionfj , multiplied by the
number of states at which they apply, and can be precomputed.
Observe that the variables are the weightsw, which determine
the valuesV (x). Second, the set of constraints in Eq. 3 can be
encoded compactly by observing that this set is equivalent to2

max
x

V (x) − (BaV)(x) ≥ 0, ∀a (5)

SinceV is compactly representable as the sum of compact
functions,(BaV) is similarly representable. Specifically, the
construction of(Bafj) for basis functionfj can exploit the
fact that it refers only a small subset of variables; theregres-
sion of fj througha produces a function that includes only
those variablesXa

i for eachXi ∈ Xf
j , and variables inXr

k

[3]. The maximization overx is nonlinear, but can encoded
using the clever trick of[8]. For a fixed set of weights, acost
networkcan be solved using variable elimination to determine
this max without state space enumeration. While this tech-
nique scales exponentially with the maximum number of vari-
ables in any function (i.e, the functionsfj, (Bafj), or inter-
mediate factors constructed during variable elimination), this
“local exponential” blow up can often be avoided if more so-
phisticated representations like ADDs are used[10].

2When approximation is used, this LP can be viewed as approx-
imately minimizingL1-error.

An approach that offers even greater computational savings
is the incremental constraint generation technique proposed in
[16]. The LP above can be rewritten as minimizing Eq. 4, s.t.

∑

j

wjCj(x, a) ≥ R(x, a), ∀x, a (6)

whereCj(·, a) is a function refers only to variablesXf
j and

Xa
i for eachXi ∈ Xf

j . More precisely, we have

Cj(x, a) = fj(x
f
j) − β

∑

x̂f
j

Pr(x̂f
j |xf

j,a, a)fj(x̂
f
j)

where xf
j,a refers to the set instantiation of variablesXa

i

for each Xi ∈ Xf
j . This LP is solved without con-

straints, then using the cost network technique to compute
minx mina

∑
j wjCj(x, a), the state-action pair that maxi-

mally violates the constraints in Eq. 3 is determined. This con-
straint is added to the LP, which is then resolved.

In matrix form, we can rewrite this LP as

min
w

y>w subject toCw ≥ r (7)

whereC is a matrix whosem columns correspond to the func-
tionsCj(x, a). ThusC has|X||A| rows. The advantage of
constraint generation is that the rows ofC are added incre-
mentally, and the LPs being solved are dramatically smaller
than those described above: the number of constraints ulti-
mately added isO(m) (i.e., the number of basis functions),
considerably smaller than the number of constraints required
by the LP generated by the cost network. Once all constraints
are generated, the LP constraints areC∗w ≥ r∗, whereC∗
andr∗ are restricted to theO(m) active constraints.

We observe that this LP attempts to minimizeL1-error, not
Bellman orL∞-error, as is usual when solving MDPs. Fur-
thermore, this LP model imposes a one-sided constraint on
L1-error, so it cannot strictly be viewed as minimizingL1-
error. L∞-error can be tackled directly using algorithms like
policy and value iteration[8], but at higher computational
cost. The difficulties associated with minimizing different er-
ror metrics in the LP context are discussed in[14].

3 Basis Function Selection
While linear approximations scale well, determininga pri-
ori the solution quality one can obtain using a given basis
set is difficult. Ideally,V ∗ would be an element of the sub-
space spanned byF , in which case an exact solution could be
found. If this is not the case, the quality of the best approxi-
mation could be gauged by considering the projection ofV ∗
on this subspace. However, since we do not have access to
V ∗, choosing a suitable basis set is problematic. Indeed, no
serious proposals for this problem exist in the recent litera-
ture on factored linear approximations. Since solution qual-
ity depends critically on the choice of basis, we must consider
methods that allow selection of a good initial basis set, or in-
telligent revision of a basis if solution quality is unacceptable.
We consider both of these problems.

294 AAAI−02

S1

Sk

Tn

T1

S1

Sk

Tn

T1

Action

Figure 1: DBN for a generic resource allocation problem.

3.1 Subtask Value Functions
In a variety of MDPs, the combinatorial explosion in state
space (and often action space) size is caused by the presence
of multiple, conflicting objectives. For instance, in a man-
ufacturing setting we might need to allocate resources (e.g.,
machines) to different orders placed by clients. If the process
plan for a specific order is more or less fixed, then the problem
is one of resource allocation. In an office environment, a robot
might be charged with performing tasks of differing priorities
for many users.

In problems like these, the underlying MDP is oftenweakly
coupled: given a choice of action (e.g., an assignment of re-
sources to each order) each subtask (e.g., order) has a certain
small set of state variables that are relevant to determining
how best to achieve it, and this subset has little or no over-
lap with that of other objectives. Thus, each subtask can be
viewed as an independent MDP, defined over a much smaller
set of variables, that can be meaningfully solved. The sub-
task MDPs are weakly coupled because their state and ac-
tion spaces (e.g., feasible resource assignments) are linked:
performing a specific action in one subtask MDP influences
which actions can be concurrently executed in another (e.g.,
because it consumes resources).

To illustrate, consider a resource allocation problem withn
potential tasks,T1, . . . , Tn, each of which may be active or
inactive, and can change status stochastically (e.g., this might
reflect the placement or retraction of orders). We havek re-
sources, each of which can be applied at any point in time to
the achievement of any active task. Thestatusof resource
j, denoted by variableSj determines how effective that re-
source is in the completion of its assigned task. The status of a
resource evolves stochastically, depending on its use at each
time step (e.g., consider machines requiring maintenance or
workers needing breaks). Multiple resources can be applied
to a task, thus the size of the action space isO(kn+1). A DBN
illustrating the dependencies for such a problem is illustrated
in Figure 1. Finally, we assume that a rewardri is associated
with the successful completion of an active taskTi.

This MDP can be decomposed readily into distinct subtask
MDPs for eachTi. Since variablesTj (j 6= i) have no influ-
ence onTi or the reward associated withTi, the subtask MDP
for Ti has as its only variablesS1, . . . , Sk andTi. For small
numbers of resources, this subtask MDP can be solved opti-

mally. Of course, the optimal solutions for the different sub-
task MDPs may not be compatible. The policies for different
subtasks are coupled by the resources—in particular, by con-
straints on the feasible actions one can apply to jointly to each
task. Notice that the action spaces are also considerably re-
duced in the subtask MDPs.

WCMDPs have been examined recently and several tech-
niques proposed to take advantage of their structure[2; 12;
17]. Given a factored MDP with an additive reward function
reflecting subtask structure, constructing a (factored) subtask
MDP for each objective is straightforward (see the discussion
of relevant variables in Section 2.2)[2]. In the example above,
backchaining through the DBN allows us to construct the sub-
task MDPs for each task, starting only with the variablesTi

(which are the only “reward variables”).
If a subtask MDP is of manageable size, it can be solved to

produce the optimalsubtask value function, defined on the set
of variables relevant to that MDP. All the techniques described
in [2; 12; 17] use subtask VFs to great effect to approximate
the solution of the full WCMDP. For instance, using heuris-
tic techniques to piece together a global policy using subtask
VFs, problems involving several thousand boolean variables
(and similarly sized action spaces) can be solved[12].

Subtask VFs are ideal candidates for a basis set. If, for
example, we havek subtasks of widely differing priorities
(or having different deadlines) the optimal policy might have
the form: complete the highest priority subtask (using all re-
sources); then complete the next subtask; and so on. In this
case, the optimal VF is:V (x) = V 1(x1) + βt1V 2(x2) +
βt1+t2V 2(x2)+. . . , whereV i is the VF for subtaski, defined
over variablesXi, andti is the expected time to completion
of taski under the optimal policy. Thus a linear combination
of subtask VFs may provide a good approximation.

Unfortunately, a linear combination of subtask VFs may
not always be suitable. For instance, if subtasks become ac-
tive stochastically, the allocation of resources will often de-
pend on the status of each task. One should then focus on a
high priority taski (and get valueV i) only if that task is ac-
tive and suitable resources are available; otherwise one might
focus on a lower priority task. Thus the optimal VF might
best be approximated by apiecewise linearcombination of
subtask VFs, where different linear approximators are “used”
in different regions of state space. For example, a VF might
take the form: If c, V (x) = V 1(x1) + βt1V 2(x2); if c,
V (x) = V 3(x3) + βt3V 4(x4). Here tasks 1 and 2 should
be tackled when conditionc holds (say these two high prior-
ity tasks are active), and tasks 3 and 4 handled otherwise. We
elaborate on such PWL approximators in Section 4.

3.2 Basis Function Addition
The use of subtask VFs requires that the underlying MDP ex-
hibit a certain structure. As such, it can be viewed as a domain
dependent method for boosting the performance of linear ap-
proximators. If domain dependent structure, or other heuristic
information, is unavailable, domain independent methods are
needed to construct a suitable basis set. For this reason, a more
general framework is needed for constructing and revising ba-
sis sets. We present such a framework now. This approach is
described in much more detail in[14]; but we overview the ap-

AAAI−02 295

proach here, since it is relevant to our development of piece-
wise linear approximators in Section 4.

We assume some set of candidate basis functionsB and
an initial basis setF0. At each iterationk, we compute the
best linear approximation w.r.t.Fk, and estimate its error. If
the error is unacceptable, and sufficient computation time is
available, we then use somescoring metricto estimate the im-
provement offered by each element ofB w.r.t.Fk, and add the
bestf ∈ B to obtainFk+1.

This generic framework can be instantiated in many ways.
First, we must define the setB suitably. We might assume a
fixed dictionaryof candidate basis functions, and score each
explicitly. We will adopt this approach below. However, one
might also defineB implicitly, and use methods thatconstruct
a suitable candidate[14].3

We also require a scoring metric. An obvious, and com-
putationally demanding, approach would involve adding each
candidate functionf toFk and resolving, in turn, each result-
ing LP. This gives an exact measure of the value of addingf .
Other less demanding approaches are possible. One we con-
sider here is thedual constraint violationheuristic.

When we solve the LP Eq. 7, we obtain the corresponding
values of thedual variablesλj , one per contraint: because we
use constraint generation, all constraints generally will be ac-
tive, and allλj > 0. If we addf to our current basis set (with
correspondingcolumnc in the LP, and sum of valuesy), this is
imposes a new constraint in the dual LP:λ>c ≤ y. If this con-
straint is satisfied given the current value ofλ, we will make
no progress (since the current solution remains optimal). The
degree to which this dual constraint isviolated—i.e., the mag-
nitude ofλ>c − y, provided it is greater than 0—is a good
heuristic measure of the value of addingf . Note again that
the set of dual variables isO(m) due to incremental constraint
generation. The dual constraint violation heuristic scores each
basis function in the dictionary using this measure and adds
that function to the basis with maximal score.

This framework is inherently greedy: it considers theim-
mediateimpact of adding a candidatef to the current basis.

4 Piecewise Linear Value Functions
As suggested above, subtask VFs can often best approximate
the optimal VF when combined in a piecewise linear fashion.
We now describe an algorithm for constructing PWL approx-
imations using subtask VFs as the underlying basis set. Our
model uses greedy decision tree construction to determine ap-
propriate regions of state space in which to use different com-
binations of basis functions. This framework can be seen as a
way of incorpating both a domain dependent technique for ba-
sis functionselection, and a domain independent technique for
basis function addition. Indeed, nothing in this approach re-
quires that the underlying basis set comprise the subtask VFs;
but we expect WCMDPs to benefit greatly from this model.

The use of decision trees in value function approximation,
both in solving MDPs and in reinforcement learning, is rather
common. Examples include generalization techniques in re-
inforcement learing[4], dynamic discretization of continuous

3We explore a variety of such domain independent basis function
construction techniques, and scoring metrics, in[14].

state spaces[13], and their use in constructing piecewise con-
stant value function representation for MDPs[3].

4.1 Evaluating Local Splits
We assume a small set ofm basis functionsF has been pro-
videda priori, with eachfj defined over a small subsetXf

j ⊂
X of our state variables. These might be, say, the optimal sub-
task VFs for a WCMDP, or a basis constructed using some
domain-independent method. The model we adopt is one in
which the linear approximation can vary in different parts of
state space. These regions are determined by building a deci-
sion tree that splits on the variablesX.

Before providing details, we illustrate the intuitions by con-
sidering a single split of the VF on a fixed variable. Rather
than determining the best linear approximator, suppose we al-
low the weight vector to take on different values,wx andwx,
when variableX is true and false, respectively. So we have:

V (x) =
∑

i

wx
i fi(x) for any x ∈ [x]

V (x) =
∑

i

wx
i fi(x) for any x ∈ [x].

LettingMx be a “mask” matrix that selects those states where
X is true—i.e., a diagonal matrix with 1 at eachx-state and 0
at eachx-state—and definingMx similarly, our approxima-
tion is

V = MxFwx + MxFwx (8)

Our goal is to find the optimalpair of weight vectors:

Min: min
wx,wx

X

x∈[x]

X

j

fj(x)wx
i (x) +

X

x∈[x]

X

j

fj(x)wx
j (x)

s.t.: Ba(MxFwx + MxFwx) − (MxFwx + MxFwx) ≤ 0, ∀a

Note that unless the MDP completely decouples along vari-
ableX , we must optimize the weightswx,wx jointly.

This optimization can be performed in exactly the same
manner as described in Section 2.3. We observe that for each
functionfj, the “masked” version of this depends on the same
variables as originally, with the possible addition ofX . Fur-
thermore, the dependence onX is trivial: in the positive case,
the function takes the constant value 0 ifX is false, and takes
the value indicated by the original ifX is true. An ADD rep-
resentation of the masked function thus has only one more
node than the original (i.e., it doesnot double the size of
the function representation). Since these functions are them-
selves “small,” the same cost network and constraint genera-
tion methods can be applied directly.

The approximation above is apiecewise linear function
over the original basis set, but can also be viewed aslinearap-
proximatorover anewbasis set. We have replaced the original
basis set with the masked copies: the new basis set is

{Mxf : f ∈ F} ∪ {Mxf : f ∈ F}
4.2 Decision Tree Construction
The intuitions above suggest an obvious greedy technique for
constructing a PWL approximator. We build a decision tree,

296 AAAI−02

where each interior node splits the state space on some vari-
ableX , and each leaf is labeled with a suitable weight vec-
tor denoting the linear approximation to be used in that part
of state space.4 The algorithm is initialized by computing the
optimal linear weight vector. The initial tree consists of a sin-
gle leaf (the root). At each iteration, we extend the current tree
as follows: (a) we evaluate the improvement offered by split-
ting each leaf using each variable, using some scoring met-
ric; (b) the best split is applied, and the optimal PWL VF (or
some approximation) for the new tree is computed. The algo-
rithm terminates when no split offers decent improvement, or
the tree reaches some size limit.

A key component of the algorithm is the choice of scoring
metric. We consider three metrics in this paper:

Full LP: The full LP (FLP) metric evaluates a split of the de-
cision tree by computing the optimal PLW approximator
for the extended tree. For a tree witht leaves, evaluating
a split requires solving an LP involvingm(t+1) weight
variables: we havet − 1 weight vectors for the unsplit
leaves, and two new weight vectors for the split leaves.

Fixed Weight LP: The fixed weight LP (FWLP) metric eval-
uates a split of the decision tree by computing the optimal
weight vector for the two new regions created, but holds
the weights for each other region fixed (to their values in
the preceding solution). Evaluating a split thus requires
solving an LP involving2m variables.

Max Dual Constraint Violation: This metric uses the LP
solution for the current tree to evaluate the degree of dual
constraint violation associated with the new basis func-
tions. A split onX at the end of a branch labeledy is
equivalent to adding the basis functionsMxyfj (for each
fj ∈ F) to the current basis. Each of these new functions
is scored using the dual constraint violation heuristic, and
the maximum of these scores (over eachj) is taken as the
score of the split.5

These evaluation techniques are listed from most to least
expensive. The full LP method finds the myopically optimal
split. It requires solving an LP (using the usual cost network
method for constraint generation) for each candidate split.
These LPs are larger than those for the linear approximator:
since we have a larger weight set, we generally need to add
more constraints, each requiring a cost network evaluation.
The fixed weight LP method is similar, but since we hold all
nonsplit weights fixed, there are fewer variables, fewer con-
straints, and fewer cost networks evaluated (at most twice the
number as with the original linear method). The fixed weight
technique does not necessarily find the optimal split: since
values in other parts of state space are fixed, they are uninflu-
enced by the change in value at the split states. We can view
this as analogous to asynchronous (block) dynamic program-
ming [1]. Once a split is chosen, we can then reoptimize all
weights; or if we believe the MDP is strongly decoupled, we

4We proceed as if all variables are binary. Binary (aggregate) and
multiway splits of multivalued variables are straightforward.

5Other ways (e.g., conic combinations) can be used to com-
bine the scores of these basis functions. We note that we only
have to consider the scores of one masked set (e.g.,X true), since
Mxyfj ,M

yfj jointly spanMxyfj .

might use the weights computed during evaluation to label the
split leaves, but not reassess other weights.

The dual constraint violation method is by far the cheapest.
Each candidate split can be evaluated using with just a handful
of inner product computations. No optimization is required.

Finally, with each of these scoring metrics, one heuristi-
cally choose a split by not re-evaluating the scores of previ-
ously unsplit nodes. That is, when the leaves of a tree have
been scored at one iteration, they are not rescored at a subse-
quent tree unless they are split. This method is heuristic since
the score of a split at a leaf is not local: it depends on the cur-
rent basis set (viewing the union of basis functions at each leaf
as the basis). However, the true score of a leaf can only go
down when other leaves are split; its contribution to an ex-
tended basis set can be no greater than its contribution to a
smaller set. Thus thisfixed scoremethod always associates
with each leaf an upper bound on the true score.

There is a “hidden” cost associated with decision tree con-
struction, since the masked basis functionsMyfj at leafy re-
fer to all variables along that branch. As the trees get deeper,
table-based representations of the functions become much
larger. However, as noted above, the ADD representation of
these functions (nor their regressionsBaMyfj) needn’t grow
exponentially with the number of variables (i.e., the depth of
the tree). Furthermore, the anticipated expense of cost net-
work evaluation can be computed and combinedwith the scor-
ing metric when considering a split, in an effort to induce a
preference for shallower trees.

5 Empirical Results
We describe in this section some very preliminary empiri-
cal results. We demonstrate the decision quality of the tree
growing technique as a function of the number of splits, us-
ing the three scoring metrics described above. We compare
this to the optimal linear approximator obtained using subtask
value functions, and to that obtained using bases comprising
only indicator functions over one or two variables (the only
method used in the literature). Naturally, since the best lin-
ear approximators are special cases of PWL approximators,
decision quality can only improve as we split. What we aim
to demonstrate is that quality improves significantly, and that
this technique offers ausefulway to improve a linear approx-
imation. We use the value of the LP objective as a surrogate
for quality of the resulting policy in most cases, but report on
Bellman error in one example for illustration.

We consider a generic weakly coupled resource allocation
problem of the type described in Section 3.1, withn periodic
tasks andk indistinguishable resources. Whenj of thek re-
sources are applied to an active taskTi, there is probability
1 − (qi)j of successfullycompletingthat task (qi is the prob-
ability that one unit of resource wouldfail to complete the
task, a standard noisy-or model). A completed task becomes
inactive. An inactive taski becomes active with probability
pocc

i and an active task becomes inactive (if not completed)
with probabilityplv

i . A rewardri is obtained if taski is com-
pleted. A resourcej can beusableor depleted, indicated by
status variableSj . If usable resourcej is applied to a task, it
depletes with probabilitypd

j , and at each stage a depleted re-

AAAI−02 297

1 2 3 4 5 6 7 8 9
4900

5000

5100

5200

5300

5400

5500

5600

5700

5800

LP
 o

bj
ec

tiv
e

Tree Size (number of leaves)

SING

FLP

FWLP

DUAL

PAIR

PAIR + Subtask

Figure 2: Resource allocation task with no dominant tasks.

1 2 3 4 5 6 7 8 9
1.3

1.35

1.4

1.45

1.5

1.55

1.6

1.65
x 10

5

LP
 O

bj
ec

tiv
e

V
al

ue

Tree Size (number of leaves)

Dual

FWLP

SING

FLP

PAIR

Figure 3: Resource allocation task with two dominant tasks.

source has probabilitypr
j of becoming usable again. assigned

resources. Since this problem is weakly coupled, we use the
subtask value functions for eachTi as an initial basis set.

To illustrate the benefits of PWL approximators, we first
consider two small versions of this problem, withn = 4
tasks, andk = 2 resources. In the first, all tasks have roughly
the same level of priority (i.e., similar rewards and probabili-
ties). Figure 2 illustrates the value of the LP objective (which
roughly minimizesL1 error) as a function of the number of
regions (i.e. number of decision tree leaves) used in the PWL
approximator constructed using each of the scoring metrics
described above. As we see, in all cases, decision quality im-
proves with additional splits, which is hardly surprising. We
also see that the more expensive scoring metrics are produc-
ing much better splits. FLP, since it produces optimal my-
opic splits, clearly dominates the other methods. FWLP, while
much cheaper computationally, also finds improving splits
identical to FLP except in one instance. The dual metric, un-
fortunately, does not fare as well. Note that each curve starts at
the same spot: the value of the best linear approximator over
the subtask VFs. For comparison, we include the objective
value obtained by the best linear approximator over indicator
functions on all single variables (SING) and all pairs of vari-
ables (PAIR). Note that after very few splits, the PWL approx-
imators provide better VFs than these linear functions.6 We

6The results for FLP are shown only up to five leaves in this and
the subsequent graph.

1 2 3 4 5 6 7 8 9
0

2

4

6

8

10

12

B
el

lm
an

 E
rr

or

Leaves in Tree

SING

PAIR

DUAL
FLP

FWLP

Figure 4: Bellman error for 2 resources, 5 tasks.

also include the linear approximator over the basis with PAIR
indicators and then subtasks VFs. Adding the subtasks VFs
induces substantial improvement over PAIR, indicating their
suitability as basis functions. Note that subtask VFs alone do
not do as well as pairs, simply because the size of the pairs
basis set is substantially larger and spans a larger subspace.

We show the same results in Figure 3 for a variant of the
problem in which two of the four tasks have much higher pri-
ority than the others. In this case, the values of the low pri-
ority tasks have little influence on the optimal value function,
since resources are often held in reserve in case a high prior-
ity task should pop up. Again we see that the same relative
order emerge among the PWL approximators, and that deci-
sion quality is better than that of the linear approximators.

We also note that the PWL model can be used to produce
piecewise constant VFs using a single constant basis function.
In general, if the VF of an MDP has a small decision tree rep-
resentation, this method will find it quickly.

We also consider some slightly larger problems. Figure 4
shows similar results for a 2-resource, 5-task problem; but
Bellman error is plotted rather than LP-objective value. No-
tice that in this example, subtask VFs provide a better basis
than either SING or PAIR even before splitting. Computa-
tion times for each iteration of the decision tree algorithm vary
with the scoring metric. Averaged over the first 6 splits (7
leaves), we have (in CPU seconds) the following times: FLP
– 691s; FWLP – 388s; Dual – 935s.7 We note that the dual
times are based on an unoptimized implementation and can-
not be meaningfully compared to the others (but we include it
for completeness).

Figure 5 shows LP-objective value for a 1-resource, 20-task
problem for both DUAL and PAIR. The error for SING is not
plotted as it is about 5 times as high as for PAIR. Finally, a sim-
ilar plot is shown in Figure 6 for a 2-resource, 10-task problem
(again SING is not shown). In the former, the dual metric of-
fers an improvedsolution after only two splits, while in the lat-
ter, the subtask VFs themselves provide a better solution than
the pairs. In the latter case, an improved solution is found af-

7The implementation is in Matlab; calls to optimized C++ rou-
tines are used for FLP and FWLP, but not for dual. We project the
same optimization applied to dual would yield 10-fold speed up. Ex-
periments were run on a 700MHz PCs running Linux.

298 AAAI−02

1 2 3 4 5 6
1.8

2

2.2

2.4

2.6

2.8

3

3.2

3.4

3.6

3.8
x 10

8

LP
 o

bj
ec

tiv
e

Leaves in Tree

PAIRS

DUAL

Figure 5: LP-objective value for 1 resource, 20 tasks.

1 2 3 4 5 6
7.5

8

8.5

9

9.5

10

10.5

11
x 10

5

LP
 o

bj
ec

tiv
e

Leaves in Tree

PAIRS

DUAL

Figure 6: LP-objective value for 2 resources, 10 tasks.

ter 3 splits. Computation times for the 20-task splits average
1784s, whereas the 10-task splits average 1801s. Again we
emphasize that the dual running times are based on an unop-
timized implementation.

While these results should be viewed as preliminary, they
are encouraging. The evidence suggests that subtask VFs pro-
vide very good basis sets for factored linear approximators.
Furthermore, we see that with very few splits, the PWL ap-
proach can offer further improvement over a purely linear ap-
proximator.

6 Concluding Remarks
While linear approximators have proven to be valuable tool
in the solution of factored MDPs, to date, no concrete propos-
als have been put forth for basis function selection and revi-
sion in the factored setting. We a described a concrete means
for basis function selection using subtask VFs, and suggested
a family of techniques for basis function revision. We inves-
tigated in some depth the use of decision tree techniques to
produce PWL approximators. Our empirical results show that
even with few splits, decision quality can be greatly improved
relative to standard linear approximators.

Future research directions include the development ofhy-
brid basis revision techniques, where new functions can be
added directly to the basis, along with splitting of state space.
Further experimentation is also needed to determine the range
of problems on which this approach works well. Finally,
we plan to investigate splitting criteria that tradeoff compu-

tational cost for projected improvement in decision quality.

Acknowledgements
Thanks to the referees for their comments. This research was
supported by the Natural Sciences and Engineering Research
Council and the Institute for Robotics and Intelligent Systems.

References
[1] D. P. Bertsekas and J.. N. Tsitsiklis.Neuro-dynamic Program-

ming. Athena, Belmont, MA, 1996.
[2] C. Boutilier, R. I. Brafman, and C. Geib. Prioritized goal de-

composition of Markov decision processes: Toward a synthesis
of classical and decision theoretic planning. InProc. Fifteenth
International Joint Conf. on AI, pp.1156–1162, Nagoya, 1997.

[3] C. Boutilier, R. Dearden, and M. Goldszmidt. Exploiting struc-
ture in policy construction. InProc. Fourteenth International
Joint Conf. on AI, pp.1104–1111, Montreal,1995.

[4] D. Chapman and L. P. Kaelbling. Input generalization in de-
layed reinforcement learning: An algorithm and performance
comparisons. InProc. Twelfth International Joint Conf. on AI,
pp.726–731, Sydney, 1991.

[5] T. Dean, R. Givan, and S. Leach. Model reduction techniques
for computing approximately optimal solutions for Markov de-
cision processes. InProc. Thirteenth Conf. on Uncertainty in
AI, pp.124–131, Providence, RI, 1997.

[6] T. Dean and K. Kanazawa. A model for reasoning about per-
sistence and causation.Comput. Intel., 5(3):142–150, 1989.

[7] R. Dearden and C. Boutilier. Abstraction and approximate de-
cision theoretic planning.Artif. Intel., 89:219–283, 1997.

[8] C. Guestrin, D. Koller, and R. Parr. Max-norm projections for
factored MDPs. InProc. Seventeenth International Joint Conf.
on AI, pp.673–680, Seattle, 2001.

[9] C. Guestrin, D. Koller, and R. Parr. Multiagent planning with
factored MDPs. InAdvances in Neural Info. Processing Sys.
14 (NIPS-2001), Vancouver, 2001.

[10] J. Hoey, R. St-Aubin, A. Hu, and C. Boutilier. SPUDD:
Stochastic planning using decision diagrams. InProc. Fifteenth
Conf. on Uncertainty in AI, pp.279–288, Stockholm, 1999.

[11] R. A. Howard.Dynamic Programming and Markov Processes.
MIT Press, Cambridge, 1960.

[12] N. Meuleau, M. Hauskrecht, K. Kim, L. Peshkin, L. P. Kael-
bling, T. Dean, and C. Boutilier. Solving very large weakly cou-
pled Markov decision processes. InProc. Fifteenth National
Conf. on AI, pp.165–172, Madison, WI, 1998.

[13] A. W. Moore and C. G. Atkeson. The parti-game algorithm for
variable resolution reinforcement learning in multidimensional
state spaces.Mach. Learn., 21:199–234, 1995.

[14] P. Poupart, C. Boutilier, R. Patrascu, and D. Schuurmans.
Piecewise linear value function approximation for factored
MDPs. InProc. Eighteenth National Conf. on AI, Edmonton,
2002. to appear.

[15] M. L. Puterman. Markov Decision Processes: Discrete
Stochastic Dynamic Programming. Wiley, New York, 1994.

[16] D. Schuurmans and R. Patrascu. Direct value approximation
for factored MDPs. InAdvances in Neural Info. Processing Sys.
14 (NIPS-2001), Vancouver, 2001.

[17] S. P. Singh and D. Cohn. How to dynamically merge Markov
decision processes. InAdvances in Neural Info. Processing Sys.
10, pp.1057–1063. MIT Press, Cambridge, 1998.

[18] J. Tsitsiklis and B. Van Roy. Feature-based methods for large
scale dynamic programming.Mach. Learn., 22:59–94, 1996.

AAAI−02 299

