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ABSTRACT.   The possibility (subject to certain restrictions) of solving the

following approximation and interpolation problem with a given set of "Muntz

polynomials" on a real interval is demonstrated:

(i)  approximation of a continuous function by a "copositive" Muntz

polynomial;

(ii)  approximation of a continuous function by a "comonotone" Muntz

polynomial;

(iii)  approximation of a continuous function with a monotone fcth differ-

ence by a Muntz polynomial with a monotone fcth derivative;

(iv)  interpolation by piecewise monotone Muntz polynomials—i. e., polyno-

mials that are monotone on each of the intervals determined by the points of in-

terpolation.

The strong interrelationship of these problems is shown implicitly in the

proofs.

The following related questions have been settled:

I iMonotone Approximation). Let fix) he a continuous function with the

property that the /th difference u¿f> 0 on [0, 1] where / is some nonnegative

integer. Must there be for a given e > 0 a corresponding polynomial p(x) with

p0)(x) > 0 on [0, 1] such that

||/-p|| =    sup     \f(x)-p(x)\<el
*e[o,i]

II (Comonotone Approximation). Let f(x) he a continuous function with

a finite number of nodes on [0, 1] ; i.e., suppose 0 = x0<xx < ••• <xk = 1

and that f(x) is alternately nondecreasing and nonincreasing on the intervals

(0, xx), (xx, x2), . . . , (xk_x, xk).  For a given e > 0 must there be a correspond-

ing polynomial p(x) that has the same monotonicity as fix) on each of the inter-

vals (*,_!, xj), i = 1, 2,.... k, and such that ||/-p|| < e?
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198 ELI PASSOW, LOUIS RAYMON AND OVED SHISHA

III  {Piecewise Monotone Interpolation). LttX- {x0, xx, . . . , xn) and

r = 0Wi>- • • ,y„)whexeO = x0<xx <••• <xn = 1 andy¡ ¥= y¡_x,

i = 1, 2, . . . , m.   Is there a polynomial p such that p(x() = y¡, i = 0, 1, . . . , «,

and such that p(x) is monotone in each of the intervals (x¡_x, x¡), i = 1,2,...,ni

The answer to I is in the affirmative, by the properties of the Bernstein

polynomials [5]. II and III also have affirmative answers, as established by

Wolibner [12], Kammerer [2] and Young [13].  Furthermore, quantitative esti-

mates have been obtained for the degree «(e) of the polynomial that is sufficient

for monotone and comonotone approximation [11], [10], [6], [4], [9], [7],

and for the degree n(X, Y) of the polynomial that is sufficient for piecewise

monotone interpolation [8]. By the classic Theorem of Muntz, if 0 = X„, Xx,

Xj,... is a sequence of distinct nonnegative real numbers such that X,- -/-»• 0,

then the "Muntz polynomials" 2?L0a¡x l axe dense in C[0, 1] if and only if

2(1/X,.) = »o. (If the interval [0, 1] is replaced by [a, b] with a > 0, then the

restriction Xq = 0 may be omitted.) A natural question to ask is: Are monotone

approximation, comonotone approximation and/or piecewise monotone interpola-

tion possible with Muntz polynomials?  In this article we answer these three ques-

tions in the affirmative (for "admissible" sets A = X0,XX,...) and, for the

case of monotone approximation we obtain quantitative estimates for this approxi-

mation.  Theorems 2 and 3, concerning, respectively, comonotone approximation

and piecewise monotone interpolation, and Theorem 1 have proofs that are inter-

related.

Theorem 1. Let [0, 1 ] be partitioned into k subintervals by the points

0 = x0 < xx < • • • < xk = 1. Suppose that f(x) is a continuous function that is

alternately nonnegative and nonpositive on the intervals (0, xx), (xx, x2), . . . ,

{xk_x, 1). Let A — {Xq, Xx, . . .} be a sequence of nonnegative real numbers

with the following properties:  (i) 0, 1, . . . , k - 1 E A; (ii) limXf = °°;

(iii) 2(1/X,) = oo.   Then, given e > 0 there is a corresponding Muntz polynomial

p(x) = 2jl0 a{x ' such that p(x) is copositive with f(x) (i. e., p(x) is nonnegative

on those intervals of the partition in which f is nonnegative and p(x) is nonposi-

tive on those intervals of the partition on which f is nonpositive) and such that

Wf-P\\<e.

Theorem 2. Let [0, 1] be partitioned into k subintervals by the points

0 = x0 <xx <"• <xk= 1. Suppose that f(x) is a continuous function that

is alternately nondecreasing and nonincreasing on the intervals (0, xx), (xx, x2),

• ■•. ixk-i' O- Let A = {Xq, Xx, . . . } be a sequence of nonnegative real num-

bers with the following properties: if) 0,1, ... ,k E A; (ii) limX,- = °°;

(iii) 2(1/X,.) = oo.  Then, given e > 0 there is a corresponding Muntz polynomial

p(x) = X^L0a¡xXi such that p(x) is comonotone with f(x) (i. e., p(x) is nonde-
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APPROXIMATION WITH MUNTZ POLYNOMIALS 199

creasing on those intervals of the partition on which f is nondecreasing, and p(x)

is nonincreasing on those intervals of the partition on which f is nonincreasing)

and such that \\f- p\\ < e.

Theorem 3. Let X = (x0, xx,. . . , xn) and Y = (y0, yx,. . . , yn) where

0 = xQ < xx < '" < xn = 1 and yt i:yi_x, i = 1,2, .. . ,n. Let k-lbe the

number of "vertices" (x¡, yj) at which the piecewise linear function joining the

points (x0, yQ), (xx,yx), . . . , (xn, yn) changes monotonicity ik < n). Let

A = {Xq, Xj , . . .} be a sequence of nonnegative real numbers with the following

properties:  (i) 0, 1, . . . , k E A; (ü) lim X,- = °°;  (iii) 2(1/X() = °°. Then there

is a Muntz polynomial p(x) = 2^0a¡xX' such that p(xj) = y¡, i = 0, I, . . . , n,

and such that p(x) is monotone in each of the intervals (x¡_x, xj), i = 1,2, ...,n

Denote by Tlk Theorem 1 for the case where the number of intervals in

the partition is A:, A: = 1, 2, ... ; denote by T2fe Theorem 2 for the case where

the number of intervals in the partition is A:; denote by T3fc Theorem 3 for the

case where k - 1 is the number of vertices at which the described piecewise linear

function changes monotonicity.

Theorems 1, 2 and 3 follow immediately from the following sequence of

lemmas.

Lemma 1. Tlr

Lemma 2. Tlfc => T2fc, k = 1, 2,. . . .

Lemma 3. T2fc ==> T3fc, k = 1, 2.

Lemma 4. T3fc -*Tlfc+1, Jfc= 1, 2 .   ■

Lemma 1 is trivial: Suppose f(x) > 0 on [0, 1] and let e > 0 be arbitrary.

Then, by Muntz' Theorem, there is a Muntz polynomial pipe) such that ||/-p|| <

e/2. Then p*(x) = p(x) 4- e/2 is a Muntz polynomial satisfying

p*ix) = e/2 4- pix) -fix) 4-/Cc) > e/2 + fix) - \\f-p\\ > 0,

and

Il/-P*IKII/-Pll + Ilp-P*ll<e.

Proof of Lemma 2. Let f(x) and A be as described in Theorem 2, and

let e > 0 be arbitrary. Let /*(x) be defined on [0, 1] with the following proper-

ties:

(i) /* has the same nodes as/(i.e., at x¡, i = 1, 2, . . . , k - 1) and is

alternately nondecreasing and nonincreasing on the same intervals as /;

(ii) /*GC'[0,1];

(iii) 11/*-/IK e/2.
(f* may be chosen to be a spline approximation to / with knots at the nodes,
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200 ELI PASSOW, LOUIS RAYMON AND OVED SHISHA

with care taken to ensure the monotonicity property.)

Then g(x) = df*(x)[dx is a continuous function on [0,1] that is alternately

nonnegative and nonpositive on the intervals on which /* is alternately nonde-

creasing and nonincreasing. Furthermore if A' = {X¡ = X¡ - 1 : X¡ G A and X¡ > 1},

then A' satisfies the requirements (i), (ii) and (iii) of Tlfc. Then, by Tlfc, there

is a Muntz polynomial q(x) = 2^0 b¡xxi that is copositive with g(x) such that

\\g - q\\< e/2.  Let p(x) = ¡%q(x) dx + /*(0).  Then p is comonotone with /*

(hence, with f) and

lip-/* 11 =

hence

¡XQ[g{x)-q(x)]dx < Hi-9 IK e/2,

llp-/IKIIp-/*ll + ll/*-/IKe.

Proof of Lemma 3. Let X, Y and A be given subject to the conditions

in T3fc, and let L(x) be the piecewise linear function described in the theorem.

Then L(x) is alternately increasing and decreasing on k subintervals partitioning

[0, 1]. Let L = L(X, Y, e) be the set of all possible piecewise linear functions

joining (x0, y0 ± e), (*1,.J'1 ± e),. .. , (xn, y„ ± e).  L consists of 2"+I piece-

wise linear functions Lx, L2,.... L2„+x. Choose e > 0 so small that L¡{x) is

comonotone with L(x) for each 1 < / < 2"+1.  For each Li there is, by T2k, a

corresponding Muntz polynomial p¡ comonotone with L¡ (hence, with L) such

that \\L¡ - p¡\\ < e/2. Then, Y is in the convex hull (in En+1) of the points

iP,(X)} = {(Piixo),..., Pi{xn))},     0 < i < 2n+i.
n -4* 1

Hence Y = 2?=0    b¡p¡(X), with b¡ > 0 for all i. We observe that linear combin-

ations of Muntz polynomials are Muntz polynomials, and that positive linear com-

binations of functions comonotone with L(x) axe comonotone with L(x). Conse-

quently, p(x) = 22=1    b¡p¡(x) is a Muntz polynomial with the desired properties.

Proof of Lemma 4. Let f{x) be a continuous function that is alternately

nonnegative and nonpositive on the k + 1 intervals in a partition of [0, 1] deter-

mined by the nodes 0 = xQ < xx < ••• < xk+l = I, and let A be as described

in Tlfc+ j. Suppose, first, that /is not constant on any of the intervals {x¡_v x¡),

i= 1,2,. . . ,k + I. Let

(1) 0<e<8=     min max        I/(jc)|.
1<i<*+1 x¡_í<x<x¡

For each point x¡ of the k points xx.xk at which f{x) changes sign

let a¡, b¡ be defined as follows:

a¡ = max [x : \f{x) [ > e/6};     b, =  min {x : \fix) | > e/6}.
x<x¡ x>x¡
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APPROXIMATION WITH MUNTZ POLYNOMIALS 201

It follows from (1) that A = U («/» bj) form k nonoverlapping intervals. The

complement CA of A consists of A: 4- 1 intervals on which / is alternately nonneg-

ative and nonpositive. Let

/*(*) =

/(*),      xEA,

max [fix), e/6], on intervals of CA on which / is nonnegative,

min [fix), - e/6], on intervals of CA on which /is nonpositive.

Observe that

(i) /* is continuous, and copositive with /;

(ii)  |/*(x)|<e/6forxG,4;

(iii)  \f*ix)\>e/6fotxECA;

(iv) /*(*,) = 0, /=1,..., A:;

(v) ll/-/*ll<e/6.
Let /** be a function with the following properties:

(i) /** is alternately nonnegative and nonpositive on the intervals

ix0, xx),.... ixk, xk+x) (i.e.,/** is copositive with/* and/);

(ii) f** EC1 [0,1];
(hi) at each point x¡ that fix) changes from nonnegative to nonpositive,

df**ixj)/dx = - 1 ; at each point xt that fix) changes from nonpositive to non-

negative, df**ixj)/dx = 1;

(iv)  ||/**-/*||<e/12.

/** will then have the following additional properties:

(v)  |/**(x)| < |/*(x)| 4- ||/** -/*|| < e/4 for x G A;

(vi) |/**(jc)| > \f*ix)\ - ||/** -/*|| > e/12 for * G CA;

(vii) II/** -/II < 11/** -/*|| + 11/* -/|| < e/4.
Let gix) = df**ix)/dx, and let A' = {X¡ = X, - 1 ; X,- G A and X, > I}. By

Muntz' Theorem there is a Muntz polynomial qix) — S£L0 c¡xXi such that \\g - cj||

< e/24. Let r(x) = /£ qix) dx 4- /**(0). Then r is a Muntz polynomial with re-

spect to A, and

(0  \\r -/**|| = H/5 [gix) - qix)] dx\\ < \\g - ill < e/24.
In particular,

(Ü) |rCt>)|<e/24,/=l,...,*.

Also

(iii) ||r -/|| < \\r -/**|| 4-1|/** -/|| < 7e/24.

(iv) For x G A, |r(x)| < |/**(jc)| 4- ||r -/**|| < 7e/24.

(v) For x E CA, r is copositive with /, and

|r(x)| > |/**(x)| - \\r -/**|| > e/24.

If fix) is changing from nonnegative to nonpositive at x¡, since r\xj) is close to

-1, there must be an interval (c/( dj) such that r(x) is decreasing on (cf, dj).
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202 ELI PASSOW, LOUIS RAYMON AND OVED SHISHA

Also, if/is changing from nonpositive to nonnegative at x¡, r'(x¡) is close to 1,

and there must be an interval (c¡, d¡) such that r is increasing on (c¡, d¡). Clearly,

c¡, d¡ may be chosen such that a¡ < c¡ <x¡< d¡ < b¡.

Let L(x) he a piecewise linear function with the following properties:

(i) L(x) alternately decreases and increases k times; L(x) is decreasing on

each interval (a¡, b¡) containing a point x¡ at which / changes from nonnegative

to nonpositive, and is increasing on each interval {a¡, b¡) containing a point x¡ at

which / changes from nonpositive to nonnegative. (None of the segments of

L(x) is parallel to the *-axis.)

(ii) L(x) has vertices at x¡, c¡, d¡, i = 1, . . . , k; L(x¡) = - r(x¡); \L(c¡)\ >

7el24;\L(di)\>7el24.

(iii) lili*)|| < 17e/24.

Applying T3k where X and Y axe determined by the vertices of L(x), there

is a Muntz polynomial s(x) with the following properties:

(i) s(xf) = - r(x¡), i = 1,.. . ,k;

(ii) s is copositive with / on the complement of the intervals (c¡, d¡), i =

l,..-,k;

(iii) s is alternately decreasing and increasing on the intervals (a¡, b¡), . . . ,

(iv)  |s(jc)| > 7e/24 on the intervals (a¡, cf), (d¡, b¡), i = 1.k;

(v)  \\s(x)\\ < 17e/24.

Let pOO = r{x) + s(x). Then p(x) is a Muntz polynomial with p(x¡) = 0,

i = 1, 2, . . . , k.  We show that p and / are copositive: since r and s axe both

copositive with / on G4, p is copositive with / on this set.  For points x¡ at which

/changes from nonnegative to nonpositive, r and s are both nonincreasing on the

corresponding intervals (c¡, d¡); hence their sum p is nonincreasing on these inter-

vals (and passes through 0 at xf), and / and p are copositive on the interval

(c¡, d¡). Similarly, / and p are copositive on intervals (c¡, d¡) containing points

x¡ at which / changes from nonpositive to nonnegative.  On the remaining points,

(a¡, c¡), (b¡, d¡), i = 1,. . . , k, fand s axe copositive. Also, \s(x)\ > 7e/24 >

\r(x)\, and p must be copositive with s.  Hence p and faxe copositive through-

out [0,1].

Finally,

lip -/Il < \\r-f\\ + \\s\\ < 7e/24 + 17e/24 = e,

and the proof is complete for the case where / is not constant on any of the in-

tervals {x¡_x, x¡), i = 1, . . . , «.   This case may be dispensed with by taking a

continuous copositive approximation f of f that is not constant on any of the

intervals, and approximating / by a copositive Muntz polynomial.

If it is assumed that /(0) = 0, or that the interval under consideration is

[a, b] with a > 0, then it may be shown by proofs along the lines of those given
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APPROXIMATION WITH MUNTZ POLYNOMIALS 203

above that it is not necessary to assume that any specific numbers are in A:

Corollary 1. 7/z'f is assumed in Theorems 1,2,3 that /(0) = 0, or that

the interval under consideration is [a, b], a > 0, then conclusions will follow for

sets A = {Xq, Xt,. . .} of nonnegative real numbers with the following proper-

ties: (i)limXf = °°; (ii) S(l/X,) = °°.

Theorem 4. Let fix) be a continuous function on [0, 1] with the prop-

erty that A'fis alternately nonnegative and nonpositive on the intervals (jc0, JCj),

ixx, x2), . . . , ixk_x, xk) where 0 = x0 <xx < ••• <xk = 1. Let A =

{Xq, Xj ,. . .} be a sequence of nonnegative real numbers with the following

properties:  (i) 0, 1.Ik +/ - 1 € A; (ii) limX, = °°, (iii) 2(1/Xf) = °°.

Then given e > 0 there is a corresponding Muntz polynomial p(jc) = 2^0 atx '

such that pV\x) is alternately nonnegative and nonpositive on the same intervals

as A'/, and such that ll/-p|| < e.

For /=1 this theorem reduces to Theorem 2. The theorem follows from

Theorem 1, and the method of proof is an extension of that of Lemma 2.  Here,

/* is chosen to be a function in C'[0, 1] with the property that/^ is alternately

nonnegative and nonpositive in the same intervals as A'/, and such that ||/-/*||

< e/2. qix) is then chosen (by Theorem 1) to be a copositive Muntz approxima-

tion to gix) where

gix) = fj f*ix),   and   qix) = Z *#***.
dx' /*6

X', G A' = {X,. - /; X,- G A and X, > /} and \\g - q ||< e/2. Let

Plix) =fXQ qix)dx +£^ /*(0)  and p2Qc) = f¡pxix)dx +£^ /*(0).

Iterate the procedure until we let

Pix) = Pjix) = f*Pj_x ix)dx + f*i0).

Then

»-rt-|C[nM»-s™]*|<h-,-|/1

<-<lk-T7-,^il<ll<?-^ll<f>
II       dx'-1    II L

and p is the desired polynomial.

A quantitative theorem on monotone approximation is more simply stated
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204 ELI PASSOW, LOUIS RAYMON AND OVED SHISHA

with the help of some preliminary notation.  Let A ={X0, Xp . . .}.  Let PN 0 =

PN 0(A) be the set of all Muntz polynomials p(x) = X^a^' satisfying p(x) >0

on [0,1] ; let PN ¡ = PNj(A),f = 1,2,..., be the set of all Muntz polynomials

p{x) = 2^0a/x ' satisfying p^\x) > 0 on [0,1]. The degree of monotone approx-

imation EN j of a function/GC' such that A;/> 0 is given by

ENj(f,A)=      inf      II/-PH,     ; = 0,1.
PSÍ^/ÍA)

Theorem 5. // A = {X0, Xx,. . .} is a sequence of nonnegative real num-

bers with 0, 1, . . . , / G A, and A' = [X'¡ = X¡ -j, X¡ G A and X¡ > /}, then for

any function fE C1 with A'f> 0,

ENJ(f,A)<EN_ji0(fV>,A').

Theorem 5 may be proved in the same manner that Theorem 4 is proved.

Let q E PN_j 0(A') be a Muntz approximation to fU\ Let

Px{x)=f*q(x)dx+fV-iX0)   and p2 = j¡Px{x)dx + /</-2>(0);

iterate until p(x) = /Jp;_x(x)dx +f (0). Then p G PNJ(A), and

IIP -/II < IIP/., -/'II < — < Up, -/«-»H < II? -f°\
and the theorem follows.    □

The results of Bak and Newman [1], and Leviatan [3] may now be used

to give estimates on the degree of monotone approximation to a function / G Cp,

p>j.   In particular, Bak and Newman have proved the following:

Let A = {Xfj = 0, Xj = 1,. . . , X¡ =/, X/+1, X/+2, . . .} be a sequence

satisfying the growth condition Xfc > sk for k>j where s > 2.  If/G Cy[0, 1],

then there is a Muntz polynomial p(x) = 2^0 a¡xXi such that ||/ - p\\ <

A ¡e ¡¿if3}; e) where A¡ is a constant depending only on /, e = exp(- 2 2^x (1/XjJ),

and <jj(f, 5) denotes the modulus of continuity:

co(/;6)=    sup     1/00-/001.
\x-y\<6

We may use this result and Theorem 5 to obtain the following result (hy a

proof similar to that of Lemma 1):

Corollary 2. Let A = { X0 = 0, Xx = 1, ..., Xy_, = / - 1, X;,

X.+ j, . . . } be a sequence satisfying the growth condition Xk > sk for k > 2/

where s > 2. IffE C'[0, 1] and /W >0 on [0,1], then

EnJ{f;A)<Ajeia>{f<»;e)

where A- is a constant depending only on j, and e = exp(- 22"=1 (1/Xk)).

Added in proof.  D. Leviatan has pointed out to us that Theorems 1, 2,

3 may be improved as follows:
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APPROXIMATION WITH MUNTZ POLYNOMIALS 205

Corollary l'.  Condition (i) in Theorems 1, 2, 3 may be replaced sim-

ply by\0 = 0.

Proof.  Condition (i) is not needed in Tip while in Lemma 2 we can

make the variable change t = x l and proceed with the proof for the sequence

p¡ = X,/Xp the same alteration may be made in Lemma 4.
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