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ABSTRACT

A well-known approach to image interpolation is cubic
convolution, in which the ideal sinc function is modelled
by a finite extent kernel, which consists of piecewise
third order polynomials. In this paper we show that the
concept of cubic convolution can be generalized. We
derive kernels of up to ninth order and compare them
both mutually and to cardinal splines of corresponding
orders. From spectral analyses we conclude that the
improvements of the higher order schemes over cubic
convolution are only marginal. We also conclude that
in all cases, cardinal splines are superior.

1. INTRODUCTION

Interpolation of sampled data is required in many dig-
ital image processing operations. Examples of these
include sample rate conversion (magnification or “mini-
fication”), and the application of geometrical transfor-
mations (rotations, translations, elastic deformations),
which are frequently required for the purpose of image
registration or volume visualization. In many situa-
tions, it is of paramount importance to limit as much as
possible the loss of detail (blurring), or the creation of
spurious details (aliasing phenomena), as caused by in-
terpolation operations. From the Whittaker-Shannon
sampling theorem [1, 2, 3] it is well known that, to this
end, the ideal interpolation kernel is the sinc function,
which is of infinite extent and has a low rate of decay.
In the attempt to obtain practical and computation-
ally efficient image processing algorithms, a frequently
used approach to interpolation is to employ finite ex-
tent kernels (FIR filters), obtained by modelling the
sinc function, e.g. by piecewise polynomials. A well-
known example of such a kernel is the so called cubic
convolution kernel [4, 5], which consists of piecewise
third order polynomials.

In this paper we show that the concept of cubic
convolution can be generalized to yield a class of piece-

wise nth-order polynomial interpolation kernels. We
extend the results of a previous paper [6] by deriving
kernels of up to ninth order and by comparing them
both mutually and to cardinal splines of correspond-
ing orders. From several spectral analyses we conclude
that—although the improvement of cubic convolution
over linear interpolation is known to be substantial—
the improvements of the higher order schemes over cu-
bic convolution are only marginal. We also conclude
that in all cases, cardinal splines are superior.

2. PIECEWISE POLYNOMIAL KERNELS

Under the assumption of uniformly sampled data, with
inter-sample distance ξ ∈ R, the general form of a
piecewise nth-order polynomial kernel is given by:

hP(x) =

{ ∑n
i=0 aij |x|i, jξ � |x| < (j + 1)ξ

0, mξ � |x| (1)

where j = 0, 1, . . . , m − 1, and the parameter m ∈
N\{0} determines the extent of the kernel. In this pa-
per we only consider polynomials of odd degree, i.e.,
n and m are related by n = 2m − 1. The (n + 1)m
coefficients aij are to be determined by imposing the
following constraints on hP :

1) hP(x) = 1 for x = 0, and hP(x) = 0 for |x| =
ξ, . . . , (m − 1)ξ,

2) h
(l)
P (x) must be continuous at |x| = 0, ξ, . . . , mξ,

and for l = 0, 1, . . . , k.

In the second constraint, k must be sufficiently large
so as to yield a sufficient number of equations in order
to be able to solve for the unknown coefficients aij .
As we have shown recently [6], given the order n of
the polynomials constituting the interpolation kernel
hP , the proper value of k is 0 for n = 1, and n − 2
for n > 1. From this, it follows that for n = 1, the
system of equations can be solved uniquely to yield a



C0 interpolation kernel, viz., the linear interpolation
kernel. For every n > 1 (n odd), the constraints result
in a Cn−2 kernel, which is a function of exactly one
tunable parameter, denoted by α.

3. PARAMETER TUNING

From the early literature on cubic convolution, several—
rather ad hoc—approaches are known to fix the free
parameter, α. For example, it has been proposed to
constrain the slope of the kernel at |x| = ξ to be equal
to that of the sinc function [7, 8]. An alternative ap-
proach has been to constrain the (n−1)th order deriva-
tive of the kernel to be continuous at that point [8].
In this section we briefly discuss two alternative ap-
proaches which yield the mathematically most precise
interpolants.

3.1. Keys’ Approach

Let I : R → R be an arbitrary, continuous, one-dimen-
sional image, and Î : R → R the interpolated image,
that is,

Î(x) =
�n/2�∑

s=−�n/2�
I((r + s)ξ)hP(x − (r + s)ξ), (2)

where r = �x/ξ�. If I is at least C3, then according to
Taylor’s theorem

I((r + s)ξ) =
2∑

i=0

I(i)(rξ)
(sξ)i

i!
+ O(ξ3). (3)

After substitution of Eq. (3) and the polynomials of
hP as a function of the free parameter α into Eq. (2),
the optimal image-independent value for α is obtained
by minimizing the difference between I and Î. It turns
out that it is possible to choose α such that

I(x) − Î(x) = O(ξ3), ∀x ∈ R, (4)

which implies that the interpolation error converges to
zero at a rate proportional to ξ3.

This approach was described first by Keys [4] in the
context of cubic convolution, and is equally well appli-
cable to higher order kernels. For the cubic, quintic,
septic, and nonic kernels, this results in the values pre-
sented in Table 1. It is important to note that Eq. (4)
holds regardless of n.

3.2. Park’s Approach

An alternative approach, initially proposed by Park &
Schowengerdt [5] and recently generalized by us [6],

n α

3 − 1
2

5 3
64

7 − 71
83232

9 3829
788235264

Table 1: The optimal image-independent values of the
free parameter α for the cubic (n = 3), quintic (n = 5),
septic (n = 7), and nonic (n = 9) piecewise polynomial
interpolation kernels.

is based entirely on the analysis of the spectra of the
kernels as a function the free parameter α.

Since hP is real-valued and even, the Fourier trans-
form, H̃P , is also real-valued and even, from which it
follows that the Maclaurin series only consist of even
terms:

H̃P(f) = λ0 + λ2f
2 + λ4f

4 + λ6f
6 + . . . (5)

It can be shown that the coefficients, λi, are linear
functions of the parameter α. As argued by Park &
Schowengerdt [5] in the context of cubic convolution,
the optimal image-independent value for α is obtained
by solving λ2 = 0, which causes H̃P to be flat at f = 0,
thereby preventing unnecessary high frequency empha-
sis or low frequency suppression.

This approach is also applicable to higher order ker-
nels. Although we have not demonstrated the equiv-
alence of Keys’ and Park’s approach, the latter yields
the exact same values (Table 1).

4. SPECTRAL ANALYSES

Using the theory described in the previous sections, we
have derived and analyzed kernels of up to ninth order.
An impression of the characteristics of the spectra of
these kernels can be obtained from Fig. 1, where we
have assumed the sampling frequency, Fs = 1/ξ, to be
equal to 1 for convenience. Note that although the high
frequency suppression capabilities of the higher order
kernels are considerably better than those of the cubic
convolution kernel, the low-pass characteristics are only
slightly better.

Another well-known approach to piecewise polyno-
mial interpolation is to use so called B-splines, origi-
nally introduced by Schoenberg [9], which are obtained
by auto-convolution of a rectangular pulse (equal to the
zeroth order or nearest neighbor interpolation kernel).
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Figure 1: Linear (left) and logarithmic (right) plots of the magnitude of the spectrum H̃P of the piecewise polyno-
mial kernel hP defined in Eq. (1) for n = 1, 3, 5, 7, 9. The free parameter α was computed by using the approaches
described in Section 3. The spectrum of the sinc function (box filter) is shown for comparison.

The explicit form of an nth-order B-spline reads [10]:

βn(x) =
1
n!

n+1∑
i=0

(
n + 1

i

)
(−)i

(
x − i +

n + 1
2

)n

+

(6)

where (x)n
+ denotes the one-sided power function. Since

βn(x) � 0, ∀n ∈ N, ∀x ∈ R, interpolation using B-
splines requires preprocessing of the raw image data.
This can be done either by matrix manipulations [11],
or by means of recursive filtering techniques [12, 13, 14].
As has been stressed by several authors, notably Mae-
land [15] and Unser et al. [12], comparison of interpo-
lation kernels by means of spectral analyses requires
for B-spline interpolation to consider, not the Fourier
transform of Eq. (6), but that of the so called cardinal
splines. The spectrum of a cardinal B-spline of order
n, which is the filter obtained by discrete convolution
of its corresponding direct and indirect B-spline filters,
is given by:

H̃S(f) =
(

sin(πf)
πf

)n+1 1
Bn(ei2πf )

(7)

where Bn(z), z = ei2πf, is the z transform of the sam-
pled version of the B-spline defined in Eq. (6). A com-
parison of the spectra H̃P and H̃S is provided in Fig. 2,
from which it is concluded that the cardinal splines re-
semble the sinc function considerably better than the
piecewise polynomials described in this paper. This
may, in part, be explained from the fact that an nth-
order B-spline is an element of Cn−1 (as can be ap-
preciated from Eq. (6)), while the higher order kernels
described in the previous sections are only in Cn−2.

Another approach to study the spectral behavior of
a kernel as a function of frequency is by means of the
following error measure:

ε(f) = |1 − H̃(f)|2 +
∑

i∈Z\{0}
|H̃(f − iFs)|2 (8)

where H̃ denotes the spectrum of the kernel to be an-
alyzed. This measure—used by Park & Schowengerdt
[16] to study the errors introduced by sampling and
reconstruction operations —accumulates, for every f ,
the square deviation of a kernel’s spectrum from the
spectrum of the sinc function at all repetitions of f .
Note that for the sinc function, ε(f) = 0 for |f | � 1

2Fs

and ε(f) = 2 for |f | > 1
2Fs. The error functions for the

spectra of the interpolation kernels hP , as well as those
of the cardinal B-splines, are shown in Fig. 3, together
with the “error function” of the sinc kernel. From this
figure it is clear that the cubic convolution kernel is
substantially better than the linear interpolation ker-
nel, but the improvements of higher order kernels are
only marginal. It also confirms the statement that car-
dinal splines of corresponding orders are superior.

5. CONCLUSIONS

In this paper we have shown that the concept of cubic
convolution can be generalized to yield a class of piece-
wise nth-order polynomial interpolation kernels. We
have derived kernels of up to ninth order, which were
subsequently compared both mutually and to cardinal
splines of corresponding orders. The spectral analyses
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Figure 2: Logarithmic plots of the magnitudes of the spectra H̃P (solid curves) of the piecewise polynomial kernel
hP as defined in Eq. (1), and H̃S (dotted curves) as defined in Eq. (7), for n = 3 (top-left), n = 5 (top-right),
n = 7 (bottom-left), and n = 9 (bottom-right). In each of the plots, the spectrum of the sinc function is shown for
comparison.

showed consistently that, while the errors made by the
cubic convolution scheme are substantially smaller than
those made by linear interpolation, the higher order
schemes only yield marginal additional improvements
over cubic convolution. The analyses also indicated
that in all cases, cardinal splines are superior.
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