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Abstract. This paper proposes a new approach for the analysis of reconstructed

interference fields in digital holographic interferometry. In the proposed approach

the interference phase to be estimated is conceived as a piecewise polynomial signal;

consequently, each segment of the reconstructed interference field is modeled as a

polynomial phase signal (PPS) with constant or slowly varying amplitude. Unwrapped

phase distribution is then directly computed using the maximum likelihood estimation.

Salient features of the proposed approach are: it provides accurate phase estimation

from a single record of the interference field; it avoids cumbersome and error prone

filtering and 2-D unwrapping procedures; it paves the way to adapt well established

PPS analysis tools available in signal processing literature for the phase estimation in

holographic interferometry.
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1. Introduction

In phase-based techniques in optical metrology, the information on the measurand is

encoded in the phase of the recorded interferogram or the fringe pattern. The automated

analysis of the fringe pattern to estimate the underlying phase distribution thus plays an

important role in many optical measurement techniques. Unlike in classical holographic

interferometry, digital holography is known to directly provide the complex amplitude

of the reconstructed object wave field. Therefore, usually no separate analysis method

is employed for estimating phase in digital holographic interferometry (DHI) [1]. It is

simply calculated using the arctan function from the reconstructed interference field.

However, phase calculated in this manner is always wrapped and often noisy, making it

mandatory to employ filtering and 2-D phase unwrapping procedures [2, 3, 4, 5, 6, 7].

These reasons motivated researchers to develop different strategies or new analysis

techniques [8, 9, 10, 11, 12].

On the other hand, in many technological applications such as radar, sonar

and communications, commonly used signals are often modeled as one-dimensional

polynomial phase signals (PPS). In signal processing literature, during the last two

decades, many tools have been developed for the analysis of PPS [13]. Unfortunately

they are neither directly useful nor have been applied for phase estimation in digital

holographic interferometry. With the approach presented in this paper, we intend to

open the way for the application of the existing tools in signal processing literature

(which were originally developed for the analysis of a particular class of 1-D time signals)

to the phase estimation problem in digital holographic interferometry.

This paper introduces a new approach for phase estimation in DHI that directly

provides an accurate estimation of the continuous phase distribution from a single record

of the interference field. In this approach each row of the reconstructed interference

field is divided into a few non-overlapping segments. The data in each segment is

modeled as a finite-order polynomial phase signal with constant (or slowly varying)

amplitude, embedded in additive complex white Gaussian noise (ACWGN). This

approach is accordingly named as piecewise polynomial phase approximation approach

(PPPAA/P3A2). The polynomial phase coefficients are computed using the maximum

likelihood estimation (MLE) algorithm, reconstruction of which results in the direct

estimation of the unwrapped phase distribution. This procedure is repeated for all

segments and rows.

2. Piecewise polynomial phase approximation approach

Numerical reconstruction of a digital hologram by Fresnel transform results in the direct

recovery of the object wave field, which, in general, is represented as:

Γ(x, y) = a(x, y) exp[jφ(x, y)] (1)

where a(x, y) is the amplitude and φ(x, y) is the estimated phase of the object wave field.

In DHI two digital holograms, one for each state of the object, are recorded (before and
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after deformation). These holograms are reconstructed separately. From the resulting

complex amplitudes, Γ1(x, y) and Γ2(x, y), the interference phase can be calculated by

forming the reconstructed interference field as:

A(x, y) = Γ2(x, y) × Γ∗

1(x, y)

= a1(x, y)a2(x, y) exp {j [φ2(x, y) − φ1(x, y)]}

= b(x, y) exp [j∆φ(x, y)] (2)

where φ1(x, y) and φ2(x, y) are respectively the phases of the object waves before and

after deformation. The complex amplitude of the reconstructed interference field in

real-world conditions can be expressed as:

A(x, y) = A0(x, y) + η(x, y) (3)

where A0(x, y) represents the complex amplitude of the noise-free interference field and

η represents the noise term. Our aim is to estimate the phase of the actual interference

field in equation(3) using P3A2. We propose to divide the reconstructed interference

field signal into Nw number of non-overlapping segments along each row. Without loss

of generality, the problem of interference phase estimation can then be considered as

the phase estimation of the following segment of the 1-D signal:

Ayi = byi exp(jφyi) + ηyi (4)

where y, i and η represent the index of the row, the index of the segment and the

ACWGN with zero-mean and variance σ2, respectively; y, i take values from 1 to N

and 1 to Nw, respectively. For a given row, Ai is defined as:

Ai = {A(x)} for [(i − 1) × Ns + 1] ≤ x ≤ i × Ns (5)

where Ns = N/Nw. Since the interference phase to be estimated in DHI is, in general,

a continuous function of the spatial coordinates, it can be approximated arbitrarily

closely, in accordance to Weierstras approximation theorem [14], by a polynomial of a

sufficiently high order. Normally, in presence of rapid variations in phase, the order

of the polynomial required for accurate representation of φ(x) will be high. However,

by conceiving the phase as a piecewise polynomial signal, modeling the phase locally

even by a second-order polynomial can provide quite accurate results. In what follows

we represent each segment of the interference field with a second order PPS. Thus the

signal to be analyzed can be represented in a simplified form as:

g(x) = b(x) exp
[

j(a0 + a1x + a2x
2)

]

+ η(x) (6)

The problem of estimating the phase from the noisy observation in equation(3), thus,

basically amounts to estimating the parameters like polynomial coefficients {a0, a1, a2}

for each segment. We propose to use the maximum likelihood (ML) estimation, an

optimal parametric estimation method, for estimating the polynomial coefficients.

The following are the ML estimators [15] for the parameters of the signal in

equation(6):

(â1, â2) = arg max
a1,a2

∣

∣

∣

∣

∣

Ns
∑

x=1

g(x) exp
[

−j(a1x + a2x
2)

]
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â0 = angle

{

Ns
∑

x=1

g(x) exp
[

−j(â1x + â2x
2)

]

}

(8)

b̂(x) = Re
{

g(x) exp
[

−j(â0 + â1x + â2x
2)

]}

(9)

where â0, â1, â2, and b̂ are the ML estimates of a0, a1, a2 and b respectively.

Equation(7) indicates that one has to perform a 2-D maximization for implementing

the ML algorithm. The estimation is performed in two steps; first, a coarse search,

followed by a fine search. Coarse search is done by performing an exhaustive 2-D

grid search to find the vicinity of the global maximum. Once this vicinity is found,

Nelder-Mead simplex search optimization algorithm [16] is used for refinement. Note

that for the 2-D grid search, a1 is varied from 0 to 2π in steps proportional to 1/Ns,

and a2 is varied from 0 to +2π/Ns in steps proportional to 1/N2
s . The fine search

algorithm is built using the ‘FMINSEARCH’ function in the MATLAB, which performs

multi-dimensional unconstrained nonlinear minimization by implementing Nelder-Mead

simplex search algorithm.

Estimating the coefficient â0 using equation(8) involves the use of angle function,

which will result in wrapping, causing discontinuities at the boundaries of each segment.

This can be avoided if â0 is calculated, for all segments except for the first one, in the

following manner:

â0(i+1) = â0i + â1iNs + â2iN
2
s (10)

This modified estimation directly provides the unwrapped phase distribution over

the entire row, not just over the individual segments. Figure 1a shows the phase

estimated over a segment using the ML estimation procedure; error in estimation

is shown in figure 1b. If â0 is calculated over all segments using equation(8), the

resulting estimated phase of the whole signal is shown in figure 1c. Figure 1d shows the

phase of the same signal obtained by calculating â0 using equation(10). Although the

phase estimated along individual rows is unwrapped, to obtain a continuous 2-D phase

distribution one additional operation of the type needed to weave all the rows to fall in

line one after the other is required. We refer to this operation as phase stitching; this

task is as easy as 1-D unwrapping of an ideal wrapped phase map.

3. Simulation and Experimental Results

Figure 2a shows the simulated fringe pattern with an SNR of 30 dB. Phase estimated

along the middle row using P3A2 with MLE is shown in figure 2b. In these simulations

the signal is divided into four segments (Nw = 4). The estimation procedure is repeated

for all rows. Figure 2c shows the 3-D plot of the estimated phase distribution over the

entire image.

Regularized phase tracking (RPT) of Servin [10] and windowed Fourier ridge (WFR)

of Kemao [12, 11] are among the well noted methods in literature which can provide

accurate phase estimation from the exponential phase fields. In [17] Kemao et al.
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Figure 1: (a) Estimated phase over a segment using MLE at SNR of 30 dB (b) Error

in estimation (c) Estimated phase of the whole signal when â0 is calculated using

equation(8)(Nw = 4), (d) Estimated phase of the same signal when â0 is calculated

using equation(10).

have provided an elegant comparative analysis of five effective wrapped phase filtering

techniques which included RPT and WFR. Here we compare the results of the proposed

P3A2 with WFR. Figure 3 shows 3-D mesh plots of error distributions when continuous

phase distribution corresponding to the pattern shown in figure 2a is estimated with both

the methods. Root mean square errors (RMSE) produced by WFR method (window

size of 5 pixels) and P3A2 are given by 0.1325 and 0.0367, respectively.

The experimental results shown in figure 4 substantiate the effectiveness of the

proposed method for the phase estimation in DHI.

On the other hand, the phase map obtained using the arctan function from the

reconstructed interference field is shown in figure 5a. For the sake of comparison, the

wrapped phase map generated from the continuous phase distribution obtained using

the proposed P3A2 method (Nw = 4) is shown in figure 5b. A notable improvement

in the quality of the phase pattern obtained using the P3A2 method is observed. In

order to verify the significance of the piecewise approximation, the wrapped phase map

generated from the phase estimated with Nw = 1 (i.e., the entire row is considered

as one segment) is shown in figure 5c. It is evident that the estimated phase in this

case is having considerable deviation from the actual phase, as the actual phase can be

accurately approximated with only 4th or higher order polynomial. This confirms that

the proposed P3A2 method, i.e., with Nw > 1, promises to provide accurate estimation
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Figure 2: (a) Simulated fringe pattern at SNR of 30 dB (b) Phase estimated along the

middle row using the middle row using P3A2 (Nw = 4) (c) 3-D plot of the estimated

phase over the whole image

(a) (b)

Figure 3: Error plots when continuous phase distribution of Fig. 2a is estimated with

(a) WFR method (b) P3A2 method (Nw = 4).
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(a) (b)

Figure 4: (a) Experimentally recorded fringe pattern for a circularly clamped object

with central loading (b) Phase calculated using the proposed P3A2 method (Nw = 4).

(a) (b)

(c)

Figure 5: (a) Phase calculated using the arctan function (b) Wrapped phase generated

from Fig. 4b for the sake of comparison (c) Wrapped phase map generated from the

estimated phase with Nw = 1.
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even with the lower order polynomial approximation.

An interesting feature of P3A2 is that its performance is unaffected by the absence

or the presence of spatial carrier (be it local or global). In applications where the spatial

frequency varies strongly within a single image, it only results in the increased value of

the coefficient a1 (See equation(6)). Therefore, the presented approach can effectively

handle the situation without any modifications. But if there are rapid variations in the

rate of phase modulation, taking more number of windows (i.e., segmenting the signal

into higher number of pieces) will allow P3A2 to accurately approximate, within each

segment, the phase of the signal with a polynomial of second-order. The price to be

paid for this is additional computational cost. Nevertheless, by developing an adaptive

windowing concept that will on-the-fly determine the window length depending on the

rate of variations in phase of the data, will allow the proposed approach to make an

optimum trade-off between the computational time and the accuracy of estimation in

an automated manner.

4. Conclusions

To conclude, we have presented a new approach for phase estimation in digital

holographic interferometry. Simulation and experimental results have validated the

ability of the proposed P3A2 method coupled with the MLE in providing an accurate

estimation of the continuous phase from a single record of the reconstructed interference

field. Further it does not require 2-D phase unwrapping or any filtering steps. In this

paper the implementation of P3A2 is realized with MLE; but in principle any other

parametric PPS analysis method can be adapted to expedite the processing. Thus,

the proposed approach paves the way to adapt well established PPS analysis tools

available in signal processing literature for the phase estimation in digital holographic

interferometry.
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