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Abstract

We present a general method for automatic reconstruction of ac-
curate, concise, piecewise smooth surface models from scattered
range data. The method can be used in a variety of applications
such as reverse engineering — the automatic generation of CAD
models from physical objects. Novel aspects of the method are its
ability to model surfaces of arbitrary topological type and to recover
sharp features such as creases and corners. The method has proven
to be effective, as demonstrated by a number of examples using both
simulated and real data.

A key ingredient in the method, and a principal contribution of
this paper, is the introduction of a new class of piecewise smooth
surface representations based on subdivision. These surfaces have
a number of properties that make them ideal for use in surface
reconstruction: they are simple to implement, they can model sharp
features concisely, and they can be fit to scattered range data using
an unconstrained optimization procedure.

CR Categories and Subject Descriptors: I.3.5 [Computer Graphics]:
Computational Geometry and Object Modeling. - surfaces and object rep-
resentations; J.6 [Computer-Aided Engineering]: Computer-Aided Design
(CAD); G.1.2 [Approximation]: Spline Approximation.

Additional Keywords: Geometric modeling, surface fitting, shape recov-

ery, range data analysis, subdivision surfaces.

1 Introduction

In this paper, we present a new representation for piecewise smooth
surfaces of arbitrary topological type,1 and a method for fitting such
surface models to scattered range data, where neither the topological
type of the surface, its geometry, nor the location of its sharp features
are known in advance. We also present examples showing that the
surface representation and fitting method are useful for important
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1The topological type of a surface refers to its genus, the presence of
boundaries, etc.

applications such as reverse engineering — the automatic generation
of CAD models from laser range data.

In previous work [4, 10, 11], we developed a method for fit-
ting compact, accurate piecewise linear surfaces to scattered range
data. The generalization to piecewise smooth surfaces is a natural
and necessary extension. Many objects of interest are piecewise
smooth; their surfaces consist of smoothly curved regions that meet
along sharp curves and at sharp corners. Modeling such objects
as piecewise linear surfaces requires a large number of triangles,
whereas curved surface models can provide both a more accurate
and a more compact representation of the true surface. It is critical,
however, to use a surface representation that is capable of explic-
itly modeling sharp features. Using an everywhere smooth surface
representation to model sharp features either results in a large num-
ber of surface elements, or in a poor geometric fit, as illustrated in
Color Plate 1m. Additionally, the surface representation should be
capable of modeling surfaces of arbitrary topological type.

The most popular smooth surface representations are tensor prod-
uct NURBS. However, NURBS can only represent surfaces of ar-
bitrary topological type by partitioning the model into a collection
of individual NURBS patches. Adjacent patches must then be ex-
plicitly stitched together using geometric continuity conditions [6].
A large number of parameters (the B-spline coefficients) are there-
fore introduced, most of which are constrained by the continuity
conditions. As a consequence, fitting NURBS in general requires
high-dimensional constrained optimization.

Subdivision surfaces, first introduced by Doo/Sabin [5] and Cat-
mull/Clark [3], offer a promising alternative. They are capable of
modeling everywhere smooth surfaces of arbitrary topological type
using a small number of unconstrained parameters.

Our surface representation is a generalization of the subdivision
surface scheme introduced by Loop [13]. Loop’s scheme, like all
subdivision schemes to date, produces tangent plane continuous sur-
faces of arbitrary topological type. A principal contribution of our
work is to show that it is possible to locally modify Loop’s subdivi-
sion rules to model sharp features such as creases and corners. The
modified subdivision rules also model boundary curves, as shown
for instance in the spout of the Utah teapot (Color Plate 2).

Our reconstruction method consists of three major phases, the
first two of which have been described elsewhere:

1. Estimation of topological type [10]: Given an unorganized
set of points (Color Plate 1j) on or near some unknown surface
(Color Plate 1i), phase 1 constructs a triangular mesh consisting of
a relatively large number of triangles (Color Plate 1k). This phase
determines the topological type of the surface and produces an initial
estimate of the geometry.

2. Mesh optimization [4, 11]: Starting with the output of phase
1, phase 2 reduces the number of triangles and improves the fit to



the data (Color Plate 1l). Our approach to this phase is to cast the
problem as optimization of an energy function that explicitly models
the trade-off between the competing goals of concise representation
and good fit. The free variables in the optimization procedure are
the number of vertices in the mesh, their connectivity, and their
positions.

3. Piecewise smooth surface optimization: Phase 3 is the sub-
ject of this paper. Starting with the optimized mesh (a piecewise
linear surface) produced in phase 2, this phase fits an accurate, con-
cise piecewise smooth subdivision surface (Color Plate 1o), again
by optimizing an energy function that trades off conciseness and fit
to the data. The phase 3 optimization varies the number of vertices
in the control mesh, their connectivity, their positions, and the num-
ber and locations of sharp features. The automatic detection and
recovery of sharp features in the surface is an essential part of phase
3. Our piecewise smooth subdivision surface scheme is introduced
in Section 3. The optimization problem and algorithm are described
in Section 4.

Phase 2 can in principle be eliminated, but has proven to be
convenient for two reasons: first, it is computationally more efficient
to optimize over a piecewise linear surface in the early stages of
optimization, and second, initial estimates of sharp features are
much more robust when obtained from the phase 2 mesh.

The principal evidence for our method’s success is its application
to a wide variety of data, including simulated and real laser scan-
ner data. A number of examples, shown in the Color Plates, are
discussed in Section 5.

2 Background on subdivision surfaces

A subdivision surface is defined by repeatedly refining an initial
control mesh as indicated in Color Plates 1a–1d. (Formally, a mesh
M is a pair (K�V), where: K is a simplicial complex specifying the
connectivity of the vertices, edges, and faces, and thus determining
the topological type of the mesh; V = fv1� � � � �vmg, vi � R

3 is a

set of vertex positions defining the shape of the mesh in R3.) The
first and most popular subdivision surface schemes, introduced by
Doo/Sabin [5] and Catmull/Clark [3], are based on quadrilateral
meshes, and generalize biquadratic and bicubic tensor product B-
splines, respectively. A subdivision scheme based on triangles is
more convenient for our purposes. We use a generalization of the
triangular scheme introduced by Loop [13], as it is the simplest
known scheme leading to tangent plane smooth surfaces.

2.1 Loop’s subdivision: Loop’s subdivision scheme is a gen-
eralization of C2 quartic triangular B-splines. The refinement step
proceeds by splitting each triangular face into four subfaces. The
vertices of the refined mesh are then positioned using weighted av-
erages of the vertices in the unrefined mesh. Formally, starting with
the initial control mesh M = M0, each subdivision step carries a
mesh Mr = (Kr�V r) into a refined mesh Mr+1 = (Kr+1�V r+1) where
the vertices Vr+1 are computed as affine combinations of the vertices
of Vr. Some of the vertices of Vr+1 naturally correspond to vertices
of Vr — these are called vertex points; the remaining vertices in
V r+1 correspond to edges of the mesh Mr — these are called edge
points. Let vr denote a vertex of Vr having neighbors vr

1� ����v
r
n as

shown in Figure 1a. Such a vertex is said to have valence n. Letvr+1
i

denote the edge point of Vr+1 corresponding to the edge vrvr
i , and

let vr+1 be the vertex point of Vr+1 associated with vr. The positions
of vr+1 and vr+1

i are computed according to the subdivision rules
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Figure 1: The neighborhood around a vertex vr of valence n (left);
Loop’s vertex mask (center); Loop’s edge mask (right).

where subscripts are taken modulo n, and where �(n) = n(1�a(n))

a(n)

with a(n) = 5
8
� (3+2 cos(2��n))2

64
. Affine combinations such as those

in Equation 1 can be nicely visualized by diagrams called masks, as
shown in Figure 1.

2.2 Computing surface points and tangent vectors: Loop’s
surfaces in particular, and subdivision surfaces in general, are de-
fined only as the limit of an infinite refinement process. In most
cases closed form expressions for the limit surfaces are not known,
but somewhat surprisingly, various properties of subdivision sur-
faces, such as exact points on the surface and exact tangent planes,
can nonetheless be computed.

To study the properties of subdivision surfaces, it is convenient
to write Equation 1 in matrix form as

(v
r+1�vr+1

1 � ����vr+1
n )

T
= Sn(v

r�vr
1� ����v

r
n)

T

= S
r+1
n (v

0�v0
1� ���� v

0
n)

T
(2)

where superscript T denotes matrix transpose. The matrix Sn is
called the local subdivision matrix [5].

As r ��, each point vr approaches a point on the limit surface.
Equation 2 suggests that the limit point can be obtained by analyzing
the eigenstructure of the local subdivision matrix. Indeed, the limit
point can be expressed as an affine combination of the initial vertex
positions [8]:

v
�

=
�1v

0 + �2v
0
1 + � � � �n+1v

0
n

�1 + �2 + � � � �n+1

where (�1� ���� �n+1) is the dominant left eigenvector of Sn . For Loop’s
surfaces this affine combination can be expressed as the position
mask shown in Figure 2 [13].

Eigenanalysis of the local subdivision matrix can also be used to
establish smoothness. It can be shown, for instance, that Loop’s
surfaces are indeed tangent plane continuous [13, 19]. Moreover,
Halstead et al. [8] show that the tangent vectors to the limit sur-
face at v� can be computed using the two left eigenvectors of Sn

corresponding to the second largest eigenvalue (this eigenvalue has
multiplicity 2). For Loop’s surfaces the vectors

u1 = c1v
0
1 + c2v

0
2 + � � � + cnv

0
n

u2 = c2v
0
1 + c3v

0
2 + � � � + c1v

0
n�

(3)

with ci = cos(2�i�n) span the tangent plane of the surface. Their
cross product therefore gives an exact normal vector to the surface
which is useful, for example, to create Phong-shaded renderings
such as those shown in the Color Plates. The formulas given in
Equation 3 can be visualized as the tangent masks shown in Figure 2.

Eigenanalysis will again be used in Section 3.2 to study the prop-
erties of piecewise smooth subdivision surfaces.
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Figure 2: Masks for computing positions and tangents to Loop’s
surfaces, where �(n) = 3n

8a(n)
, and where ci = cos(2�i�n).

3 Piecewise smooth subdivision surfaces

Fitting smooth surfaces to non-smooth objects often produces un-
acceptable results. As an example, fitting an everywhere smooth
subdivision surface to the points in Color Plate 1j produces the
surface shown in Color Plate 1m.

In this section we develop new subdivision rules to accurately
model objects with tangent discontinuities. These subdivision rules
produce commonly occurring sharp features that we call creases,
corners, and darts, as illustrated in Color Plate 1e–h. A crease is a
tangent line smooth curve along which the surface is C0 but not C1;
a corner is a point where three or more creases meet; finally, a dart
is an interior point of a surface where a crease terminates. Although
this list of sharp features is not exhaustive (for instance, we cannot
model a cone or two coincident darts), it has proven sufficient for
the examples we have encountered.

Subdivision surfaces produced by the new rules are tangent plane
smooth everywhere except along creases and at corners. A detailed
theoretical analysis of the behavior along creases and at corners is
beyond the scope of this paper and will be presented in subsequent
work. In Section 3.2 we summarize the relevant results of the
analysis.

3.1 Subdivision rules: To model creases, corners, and darts
using subdivision surfaces, a subset L of edges in the simplicial
complex K is tagged as sharp. We refer to the pair (K� L) as a tagged
simplicial complex. The subdivision masks are modified so that
tangent plane continuity across sharp edges is relaxed. Boundary
curves are produced by tagging all boundary edges of the mesh as
sharp.2 In the subdivision process, edges created through refinement
of a sharp edge are tagged as sharp.

Subdivision rules at crease vertices must be chosen carefully in
order for the surface on each side of the crease to have a well-defined
tangent plane at each point along the crease. Similar considerations
apply to corners and darts. It should be noted that the specific
subdivision masks we use are by no means unique. Indeed, there
is considerable flexibility in selecting them. The masks we present
here are simple and have worked well in practice, but further research
should be done to explore other alternatives.

We classify vertices into five different types based on the number
and arrangement of incident edges. A smooth vertex is one where
the number of incident sharp edges s is zero; a dart vertex has s = 1;
a crease vertex has s = 2; and a corner vertex has s � 2. Crease
vertices are further classified as regular and non-regular depending
on the arrangement of smooth edges. An interior crease vertex is
regular if it has valence 6 with exactly two smooth edges on each
side of the crease; a boundary crease vertex is regular if it has
valence 4. All other crease vertices, whether interior or boundary,
are non-regular.

Figure 3 shows our vertex and edge subdivision masks. As indi-

2In related work, Nasri [15, 16] developed a method to model boundary
curves in a Doo-Sabin subdivision procedure by augmenting the control
mesh rather than by modifying the subdivision masks.
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Figure 3: Vertex and edge subdivision masks. Double lines denote
sharp edges.

dart reg non-reg corner
crease crease

dart 1 1 1 1

reg crease 1 2 3 3

non-reg crease 1 3 2 2

corner 1 3 2 2

Table 1: Assignment of sharp edge subdivision masks as a function
of the types of the two incident vertices. Masks are numbered as
shown in Figure 3.

cated in the figure, vertex subdivision masks are chosen based on
the type of the vertex.

We use three different types of edge subdivision masks. A smooth
edge (one not tagged as sharp) is subdivided using the smooth edge
mask. The mask used to subdivide a sharp edge depends on the
types of the incident vertices as shown in Table 1. When applying
edge subdivision mask 3, the regular crease vertex incident to the
edge receives the weight 5.

Those familiar with B-spline curve subdivision may recognize
that the crease subdivision masks have been designed so that the
sharp edges converge to uniform cubic B-splines except near non-
regular crease and corner vertices. The zeros in the crease subdivi-
sion masks completely decouple the behavior of the surface on one
side of the crease from the behavior on the other side.

3.2 Computing surface points and tangent vectors: As ex-
plained in Section 2.2, limiting points and tangent planes can be
computed using masks. These masks are determined by the eigen-
structure of local subdivision matrices, which depend on the type
of the vertex (smooth, dart, regular and non-regular crease, and
corner).

Smooth and dart vertices: At smooth and dart vertices, our
local subdivision matrix is identical to Loop’s matrix. The position
and tangent masks are therefore as in Figure 2.

Crease vertices: Since the zeros in the crease subdivision masks
(Figure 3) decouple the behavior of the surface on one side of the
crease from the behavior on the other side, we can decouple the
analysis, focusing on a local subdivision matrix that describes the
behavior on one side of the crease. As indicated earlier, boundary
curves are modeled as one-sided creases.
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In the following, we assume that the vertices v0
1� ����v

0
n surround-

ing one side of a crease vertex v0 of valence n are indexed as shown
in Figure 4d.

At a regular crease vertex, the dominant left eigenvector of the
local subdivision matrix yields the position mask shown in Figure 4a,
meaning that

v
�

=
1

6
(4v

0
+ v

0
1 + v

0
n)

is a point on the limit crease. Similarly, when the crease vertex is
non-regular, we obtain the position mask shown in Figure 4b.

For crease vertices of valence 4 or higher, the subdivision rules
described in the previous section give rise to well-defined tangent
planes on both sides of the crease.3 As for smooth vertices, tangent
masks are again determined by the two left eigenvectors corre-
sponding to the 2nd and 3rd largest eigenvalues. For both reg-
ular and non-regular crease vertices, a tangent along the crease
is obtained by the tangent mask shown in Figure 4c. To com-
pute a tangent vector transverse to the crease, we use the tan-
gent mask shown in Figure 4d, where the weights are defined
as follows. At a regular crease vertex, the valence is 4 and the
mask is given by (w0� ���� w4) = (�2��1� 2� 2��1). At a non-
regular crease vertex, for n � 4, w0 = 0, w1 = wn = sin �,
and wi = (2 cos � � 2)(sin(i � 1)�) for i = 2� � � � � (n � 1) where
� = ��(n � 1); for n = 3, (w0� ���� w3) = (�1� 0� 1� 0); finally, for
n = 2, (w0� w1� w2) = (�2� 1� 1).

Corner vertices: The subdivision masks at a corner vertex are
much like those at a crease vertex. If the corner vertex has s sharp
edges, the local subdivision matrix decouples into s separate matri-
ces (or s� 1 matrices if the corner vertex lies on a boundary), each
describing a smooth region of the surface. Since the corner vertex
does not move during subdivision, it is itself a point on the surface
(equivalently, (1� 0� ���� 0) is the dominant left eigenvector). The tan-
gent masks in this case reduce to simple differences: (1��1� 0� ���� 0)
and (1� 0� 0� �����1).

4 Fitting piecewise smooth subdivision surfaces

In this section, we describe an algorithm for phase 3 of the recon-
struction problem as outlined in Section 1.

The input to phase 3 is an unstructured collection X =
fx1� � � � �xng of data points scattered in three dimensions, together
with the mesh obtained from phase 2. Edges are initially tagged as
sharp if the dihedral angle of the faces incident to the edge is above
a threshold (e.g. 40 degrees). The output of phase 3 is a concise
piecewise smooth surface that accurately fits the data.

As in phase 2 (mesh optimization), we cast the problem as one of
minimizing an energy function that captures the competing goals of
conciseness and accuracy.

3The techniques we use to prove smoothness do not apply to vertices of
valence 2 and 3, although numerical experiments suggest that tangent planes
are well-defined in these cases, too.

4.1 Definition of the energy function: The energy function is
given by

E(K�L� V) = Edist(K� L� V) + crepm + csharpe

where Edist is the total squared distance from the data points to the
subdivision surface; crepm is a penalty on the number m of vertices;
and csharpe is a penalty on the number e of sharp edges.

The parameter crep controls the trade-off between conciseness and
fidelity to the data and should be set by the user. The parameter
csharp controls the trade-off between smoothness of the surface and
fidelity to the data. Setting csharp = crep�5 has worked well in all our
examples.

We minimize the energy function over the space M of tagged
meshes M = (K� L� V) where K is of the same topological type as
the phase 2 mesh, and L is the subset of sharp edges of K. The goal
is to find the tagged mesh inM that minimizes E.

The reader familiar with Hoppe et al. [11] will notice the absence
of a “spring energy” term, which was introduced to guide the mesh
optimization algorithm into a good local energy well. For the type
of examples shown in the Color Plates, that energy term has been
unnecessary in phase 3.

4.2 Minimization: Our algorithm for energy minimization
closely parallels the one presented in Hoppe et al. [11]. We decom-
pose the problem into two nested subproblems: an inner, continuous
optimization over the control vertex positions V for fixed (K� L), and
an outer, discrete optimization over (K� L).

4.2.1 Optimization over V for fixed (K� L): We want to deter-
mine

E(K�L) = min
V

Edist(K� L� V) + crepm + csharpe �

the minimum energy for fixed (K� L). Since m and e are fixed,
this is equivalent to minimizing the distance energy over the vertex
positions V . In the following, V is treated as an m�3 matrix whose
rows contain the (x� y� z) coordinates of the vertices.

Computing the distance energy Edist involves projecting the data
points xi onto the subdivision surface S. This is not feasible in
practice as the surface is defined only as the limit of an infinite
process. Instead, we project onto a piecewise linear approximation
�S to S obtained by subdividing the original mesh r times to produce
a refined mesh Mr, then pushing all the vertices of Mr to their limit
positions using the position masks. (Typically we use r = 2.) Since
each of the vertices of Mr can be written as an affine combination of
the vertices V of M (using the subdivision rules), and since the limit
position of any vertex can be obtained using the position masks,
each of the vertices of �S can be written as an affine combination
of the vertices V . That is, each vertex �v of �S can be written as
�v = yV , where the entries of the row vector y can be computed by
combining the effects of r-fold subdivision followed by application
of a position mask. Moreover, since �S is piecewise linear, every
point on �S — not just the vertices — can be written as an affine
combination of the vertices V .

For each data point xi, letwi be the closest point on�S. As argued
above,wi can be written as yiV , meaning that Edist can be expressed
as

Edist =

nX

i=1

kxi � yi Vk2 �

This expression for Edist is quadratic in V . Hence, for fixed yi,
optimizing over V is a linear least squares problem. Moreover, the
vectors yi are sparse since the subdivision rules are local.

This suggests an iterative minimization scheme alternating be-
tween the following steps:
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Figure 5: Elementary mesh transformations.

1. For fixed V , compute the projections yiV of the data points xi

onto �S.

2. For fixed y1� � � � �yn, optimize Edist over V .

Step 2, which is a sparse linear least squares problem, can be solved
as described in [11].

4.2.2 Optimization over (K� L): Our algorithm for solving the
outer minimization problem, minimizing E(K�L), again closely par-
allels the algorithm of [11].

We define a set of four elementary mesh transformations, edge
collapse, edge swap, edge split, and edge tag, taking a tagged sim-
plicial complex (K� L) to another tagged simplicial complex (K�� L�),
as shown in Figure 5. The first three transformations are discussed
in [11]. The fourth transformation, edge tag, is a toggle that either
adds an edge to the set L of sharp edges, or removes one from it.
These four transformations are complete in the sense that they form
a transitive set of transformations on the set of tagged simplicial
complexes (of a given topological type).

A legal move is the application of one of these elementary trans-
formations to an edge of K that leaves the topological type of K
unchanged. The criterion for determining whether a move is legal
is given in [11]. Our goal is to find a sequence of legal moves
taking us from an initial tagged simplicial complex (K0� L0) to one
for which a minimum of E is achieved.

This is accomplished via a variant of random descent: We form
a candidate set, initially consisting of all edges of K. We randomly
select an edge from the candidate set and try the four elementary
transformations in turn until we find a legal move (K� L) � (K�� L�)
with E(K�� L�) 	 E(K�L). If none is found, we remove the edge
from the candidate set; otherwise, we accept the move and expand
the candidate set to include edges whose vertices were affected by
the transformation. The process is repeated until the candidate set
is empty.

Due to the expense of computing E(K�� L�) for each speculative
move, the idealized algorithm just described is too inefficient to
be of practical use. We therefore replace the exact computation of
E(K�� L�) by an approximate one.

Our approximate computation of E is based on the observation
that the effect of an elementary transformation on the geometry of
the subdivision surface is localized to a neighborhood of the affected
edge. Thus, when speculating upon an elementary transformation,
we only optimize over the positions of control vertices in a neigh-
borhood of the affected edge, and recompute projections of data
points originally projecting onto the neighborhood of �S supported
by these control vertices. For details, see [9, 12].

5 Results

The main motivation for moving from piecewise linear to piecewise
smooth surfaces is to obtain more accurate and concise models of
point sets. The last row of Color Plate 1 and the first 2 rows of
Color Plate 2 show results of our experiments with range data. The
leftmost column shows the original point sets; the second column
shows the optimized piecewise linear surfaces obtained from phase
2 (mesh optimization); the third column shows the optimized tagged
meshes resulting from phase 3 (subdivision surface optimization),
with sharp edges L highlighted in yellow; finally, the rightmost
column shows the subdivision surfaces associated with these control
meshes. Modeling surfaces such as the one shown in Color Plate 1t
using NURBS would be very cumbersome and would likely require
significant user intervention. In contrast, our subdivision surface
approach is both simple and automatic.

Our method can also be used for the approximation of known
surfaces. To this end, we first generate a set of points on the
surface to be approximated, and then run the three phases of the
reconstruction procedure. The lower three rows of Color Plate 2
show the resulting approximations of a dense triangular mesh, a
swept surface, and a NURBS surface. Since the NURBS teapot
was defined as a set of mutually intersecting patches, we had to
manually remove some of the sample points. Note how this teapot
is modeled as a single subdivision surface of genus 1 (the handle
of the teapot makes it homeomorphic to a torus), without resort to
explicit continuity constraints or trimming curves.

Another advantage of optimizing using a piecewise smooth model
is that the resulting surface not only fits the data more accurately
than a piecewise linear model, but also is a better predictor of the
true underlying surface. As a validation, we sampled a different
set of 10,000 points from the swept surface (knot). As shown in
Table 2, even though the subdivision control mesh has a fifth as
many vertices as the mesh from phase 2, the subdivision surface fits
the new set of points with one fourth the distance energy.

crep m Edist

# vertices original points new points

phase 2 10�5 975 .00308 .00934

phase 3 10�5 363 .00042 .00054

10�4 207 .00216 .00251

Table 2: Validation results

Color n crep m (#vertices) Edist Time

Plate ph2 ph3 ph2 ph3
ph2

ph3
ph2 ph3

ph2

ph3
hrs

1j 4,102 10�5 10�5 163 112 1.5 4�86 10
�4 1�53 10

�4 3.2 0.9

1q 30,937 10�5 10�5 891 656 1.4 4�93 10
�3 4�14 10

�3 1.2 7.7

2.1 16,864 10�5 10�5 262 156 1.7 2�19 10
�3 1�33 10

�3 1.6 2.8

2.2 12,745 10�5 10�5 685 507 1.4 4�05 10
�3 3�85 10

�3 1.1 4.1

2.3 16,475 10�5 10�4 184 87 2.1 9�68 10
�4 1�65 10

�3 0.6 2.2

2.4 10,000 10�5 10�4 975 205 4.8 3�08 10
�3 2�32 10

�3 1.3 2.2

2.5 26,103 10�5 10�4 623 152 4.1 3�17 10
�3 2�62 10

�3 1.2 5.3

Table 3: Parameter settings and optimization results

In most examples, the representation constant crep was set to 10�5,
the same value that was used in phase 2. As indicated in Table 3,
the control meshes obtained from phase 3 are more concise than
those of phase 2, and at the same time, the subdivision surfaces
fit the points more accurately than the triangular meshes of phase
2. Because the point sets for the swept surface and the NURBS
teapot are sampled without error from piecewise smooth surfaces,
we could afford to raise crep in order to produce very concise control
meshes, while still reducing Edist.

The phase 3 execution times listed in Table 3 were obtained on a



DEC Alpha workstation. In all test cases we set csharp = crep�5 and
the number of subdivision iterations (referred to in Section 4.2.1) to
r = 2.

6 Related work

There is a large body of literature on reconstructing surfaces of fixed
topological type. Bolle and Vemuri [1] review methods for fitting
embeddings of a rectangular domain. Schudy and Ballard [22, 23],
Brinkley [2], and Sclaroff and Pentland [24] fit embeddings of a
sphere. Schmitt et al. [20, 21] fit embeddings of a cylinder to data
from cylindrical range scans. Goshtasby [7] works with embeddings
of cylinders and tori.

There is also extensive literature on smooth interpolation of trian-
gulated data of arbitrary topological type using parametric surface
patches; see Lounsbery et al. [14] for a survey. These schemes are
designed to interpolate sparse data, rather than to fit dense, noisy
point sets of the type obtained from range scanners.

Two recent articles describing methods for fitting either piecewise
linear or everywhere smooth surfaces of arbitrary topological type
are Veltkamp [27] and Szeliski et al. [26].

We are not aware of any previous method for fitting piecewise
smooth surface models of arbitrary topological type to dense, noisy
data, although one could imagine developing such a procedure
based on a piecewise smooth triangular patch method such as Niel-
son’s side-vertex patch [17], or Shirman and Séquin’s split domain
scheme [25].

In many respects, our work can be considered a generalization
to surfaces of the parametric curve fitting method of Plass and
Stone [18]: they cast the fitting process as non-linear optimization,
and they also produce piecewise smooth, rather than everywhere
smooth models.

7 Summary and future work

We have described a piecewise smooth surface reconstruction pro-
cedure that produces concise and accurate surface models from
unorganized points. Our method automatically determines the topo-
logical type of the surface, and the presence and location of sharp
features. A key ingredient of the method is a new subdivision sur-
face scheme that allows the modeling of surface features such as
corners, boundaries, creases, and darts. Finally, we have demon-
strated the effectiveness of the subdivision surface optimization pro-
cedure in recovering piecewise smooth models from range data, and
in approximating other surface forms such as swept surfaces and
NURBS.

There are a number of areas for future research, including:

1. Development of subdivision rules that can model a wider vari-
ety of sharp features such as cones, multiple darts meeting at a
smooth vertex, and darts meeting at a corner.

2. Development of alternative optimization algorithms that allow
direct control over maximum error.

3. Speedup of the algorithm and implementations on parallel ar-
chitectures.

4. Development of an on-line algorithm for use in real-time data
capture.

5. Experimentation with sparse, non-uniform data.
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(a-d) Loop’s subdivision scheme: control mesh, meshes after 1 and 2 subdivision steps, and smooth limit surface

(e-h) Our piecewise smooth subdivision scheme: tagged control mesh, meshes after 1 and 2 subdivision steps, and piecewise smooth limit surface

(i) Original object to reconstruct (j) Sampled points X (n = 4� 102) (k) Initial reconstruction (phase 1) (l) Optimized mesh (phase 2)

(m) Optimized smooth surface (n) Optimized tagged control mesh (o) Subdivision surface (phase 3) (p) Close-up of a dart

(q) Cross section data (n = 30� 937) (r) Optimized mesh (phase 2) (s) Optimized control mesh (t) Subdivision surface (phase 3)

Color Plate 1: Examples of Loop’s subdivision scheme, our piecewise smooth subdivision scheme, phases 1–3 of surface
reconstruction on a simulated data set, and surface reconstruction with real scanned data.



Sample points Optimized mesh (phase 2) Optimized control mesh Subdivision surface (phase 3)

Color Plate 2: Top two rows show examples of surface reconstruction from range data; bottom three rows show subdivision surface
approximations to existing surfaces (a dense mesh, a swept surface, and a NURBS surface).


