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ABSTRACT

A Pierce-type dispersion relation is derived from field theory which describes the

interaction of an intense relativistic electron beam with a cylindrical slow-wave structure

of arbitrary corrugation depth. It is shown that near a resonance the Pierce parameter can

be expressed in terms of the vacuum dispersion function and the space-charge parameter

is proportional to a fill factor. The dispersion relation is valid in both the low-current

(Compton) regime and the high-current (Raman) regime. The dispersion characteristics

of the interaction, such as the linear instability growth rate and bandwidth, are analyzed

in both regimes.

PACS numbers: 41.60.Cr, 41.75.Ht, 52.75.Ms, 52.25.Wz
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I. INTRODUCTION

There has been much growth in theoretical and experimental research on the rela-

tivistic traveling-wave-tube (TWT) amplifier and the relativistic backward-wave oscilla-

tor (BWO) since the work by Nation [1] in 1970. The operation principle of this class of

high-power microwave devices is based upon the stimulated interaction of a relativistic

electron beam with a slow-wave structure. Extensive studies of these devices have been

motivated, to a large extent, by their potential applications in the development of high-

gradient, radio-frequency (rf) accelerators and high-power radar. Although the nonlinear

regime of the interaction is the primary focus of recent investigations, the linear regime of

the interaction is still being explored, particularly in situations where effects associated

with time-dependent space charge play an important role in determining the dispersion

characteristics of the interaction.

In this paper, we derive from field theory a Pierce-type [2] dispersion relation de-

scribing relativistic TWT and backward-wave-tube (BWT) interactions in both the low-

current (Compton) regime and the high-current (Raman) regime. In particular, making

an expansion to leading order in the coupling constant, we show that near a resonance

the Pierce parameter can be expressed in terms of the vacuum dispersion function and

the space-charge parameter is proportional to a fill factor. Hence, the present dispersion

relation is readily used to determine analytically the linear instability growth rate and

bandwidth, provided that the vacuum dispersion characteristics are known from either

cold-test measurements or analytical/numerical calculations. The present analysis is car-

ried out in a configuration consisting of a periodically corrugated cylindrical waveguide

and thin annular electron beam.

In contrast to the analysis by Kurilkov, et al. [3] and Belov, et al. [4] which has

resulted in an approximate dispersion relation for small corrugation depth, the present

dispersion relation is applicable for arbitrary corrugation depth. As a generalization
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of the analysis by Swegle [5] which has led to a Pierce-type dispersion relation in the

Compton regime, the present dispersion relation describes in both the Compton regime

and the Raman regime. Furthermore, the present analysis provides a clear physical

interpretation of the coupling of an relativistic electron beam with a slow-wave structure

from the point of view of field theory.

II. BASIC FORMULATION

In this section we review the basic formulation of the problem given by Swegle, Poukey

and Leifeste [6]. For present purposes, we consider a thin annular relativistic electron

beam propagating at axial velocity Ve-, through an infinitely long cylindrical waveguide

whose radius is given by the periodic function

b(z) = b(z + d) , (1)

where d is the fundamental period. For future references, we express the function b(z) as

b(z) = bo + bi(z) , (2)

where bo = const is the average radius of the waveguide and f0 bi(z)dz = 0. The beam is

confined radially by a strong axial magnetic field Boe,. The assumptions in the present

analysis are: (1) the beam is infinitely thin and is described by the equilibrium charge

density

po(r) = -eno(r) = 2 6(r - a) (3)27rVrSr a

with -e the electron charge and Ib = 27reV f0' n(r)rdr the beam current, (2) the axial

magnetic field is infinite (Bo -+ oo), (3) the waveguide is a perfect conductor, and (4)

the perturbations are azimuthally symmetric transverse-magnetic (TM) modes.

Under the above assumptions, a normal-mode analysis is readily carried out by ex-

pressing all perturbing field components in terms of a Floquet series as
00

60 (r, z, t) = E 60,(r)ei(knz-wt) (4)
n=-oo
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where kn = k + 27rn/d and 0 < k < 27r/d. Details of such an analysis can be found in

[6], and the main result is given by the following dispersion relation

det D(w, k) = 0. (5)

The elements of the matrix D(w, k) in Eq. (5) are defined by

Dmn(w, k) = D()(Lo, k) 1 - aIo(pna) Ko(pna) _ Komn c2  (6)mn fnaj 1 Io(pna) IOmn ](w - kn V) 2

where n, m = 0, i1, ±2, ---. The vacuum dispersion function is defined by

D ()(w, k) = I2!nkmkn - , (7)
mnp2 c 7

with p2 = k -w 2/c 2 and c the speed of light in vacuum. The coupling constant is defined

by

a - 2(8)

with # = V/c, _y = (1 _-2)1/2, and IA ~ 17 kA the Alfv6n current. The Fourier integrals

of the first- and second-kind modified Bessel functions of order zero, Io(x) and Io(x),

are defined by

Iomn = Id dzIo[pnb(z)]ei2x(n-m)z/d (9)

and

Komn = 1 d dzKo[nb(z)]ei2 ~(nm)z/d , (10)

respectively.

The earlier analysis [6] of the dispersion relation (5) relies on a proper truncation

of the infinite matrix D(w, k) to some finite, numerically manageable size. While the

analysis yields accurate dispersion characteristics such as the linear instability growth

rate and bandwidth and the linear frequency and wave number shifts, it is difficult to

grasp the basic physics of the interaction in such a numerical analysis. The purpose

of the remainder of the paper is to show that equation (5) can be approximated by a
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Pierce-type [2] dispersion relation, thereby allowing us to gain a better understanding

of the interaction process, and to characterize different interaction regimes, namely, the

low-current (Compton) regime and the high-current (Raman) regime.

It is instructive to examine several limiting cases before deriving expressions for the

Pierce and space-charge parameters. First, for a constant waveguide radius [b(z) = bo =

const], the integrals in Eqs. (9) and (10) are given by Iomn = Io(pbo)6mn and Komn =

Ko(pbo)8mn, where bmn is the Kronecker delta. By setting m = n = 0, it is readily shown

that the dispersion relation (5) reduces to [7]

Io(pbo) = 0 or w2 =c 2 k2 +W (11)

for a = 0, and that it reduces to [8],[9]

(F)Ko(poa) _Ko(pobo) 1 c2pg
DO) (w, k) = 1 - aIo(poa) I 0 (12)

Io(poa) ~o(pobo) (w - koV)2

for a / 0. Note that the dispersion relation (11) describes the vacuum TMo1 mode in a

constant-radius waveguide with w = cv,/bo being the cutoff frequency of the mode and

vi being the l-th zero of Jo(x), and that the dispersion relation (12) describes fast and

slow space-charge waves on the electron beam propagating through a constant-radius

waveguide.

Second, the dispersion relation describing electromagnetic (structural) waves propa-

gating through the vacuum corrugated waveguide can be obtained from Eq. (5) by setting

a = 0 but b, 5 0. This yields [6]

det D(0)(w, k) = 0 , (13)

where the elements of the matrix D(O)(w, k) are defined in Eq. (7). The dispersion char-

acteristics of structural waves can be determined numerically with a proper truncation

of D(0)(w, k). They can also be determined experimentally from cold-test measurements.
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III. PIERCE AND SPACE-CHARGE PARAMETERS

We now make an expansion of Eq. (5) to leading order in the coupling constant a,

and derive an approximate Pierce-type dispersion relation describing the coupling of the

relativistic electron beam with the slow-wave structure. For present purposes, we rewrite

Eq. (6) as

Dm(w, k) = D()(w, k) D(SC)(w, k) - a&Fmn(w, k)
Tnn n (w - kn V)2

where the dielectric function

D *)(L, k) = - aIO2(Pna) Ko(pna) _ Ko(p.bo) c2 p2 (15)
n Io(pna) Io(pbo) 1(w - k.V) 2

is a generalization of the dielectric function D*sc)(w, k) defined in Eq. (12) and describes

fast and slow space-charge waves of the n-th spatial harmonic on the electron beam

propagating through the waveguide of the average radius bo. The function

Fmn(w, k) = c2pIo22(pna) [K 0(pnbO) _Komn (16)

is related to Pierce's parameter defined later in Eq. (27).

As seen below, the separation of Dmn into two terms in Eq. (14) is a useful trick

because it allows us to interpret, in a natural way, the coupling of an intense relativistic

electron beam with a slow-wave structure as that of the space-charge waves on the beam

[described in Eq. (15)] with the structure waves [described in Eq. (13)]. The coupling

strength is proportional to aFmn, which vanishes as the corrugation b1 approaches zero.

Let A and B be matrices with the elements

Amn = D(O) D() (17)

and

Bmn = Fmn (18)
(W - knV) 2

respectively. Assuming det A 5 0, we can express the matrix D as

D = A(I - aA-1 B) , (19)
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where I is the identity matrix and A-' is the inverse of A. Since det A : 0 and det D = 0

is equivalent to det(I - aA-'B) = 0, we can approximate Eq. (5) to leading order in the

coupling constant a by

1 = aTr(A- 1 B), (20)

where Tr( ... ) denotes the trace. As shown later in Sec. IV, due to the resonance denom-

inator in Bmn defined in Eq. (18), the expansion in Eq. (20) is correct to order a", where

a" < 1 and 1 < r7 < }

It is readily shown from Eq. (17) that the elements of A- 1 are given by

(A-)m - 1 (adj D(0))m2
mA- - det D(O) D$,sc) 1 (21)

where the matrix (adj D(0)) is the adjoint of the matrix DO). Substituting Eq. (21) into

Eq. (20) yields

det D( 0)=a = D Z m 1(adj D(0))nmD(O Fmny (22)
') (E - k V) 2 

'(2

which involves an infinite number of resonance denominators associated with the gen-

eralized dielectric functions D3c). In the vicinity of the n-th spatial harmonic of the

space-charge wave mode, because D(c) ~ 0, equation (22) can be further approximated

by

det D(0)(w, k) x D (")(w, k) = a 1 (adj D(0))nmD(0 ) Fmn (23)
M=-0 (m - knV) 2  (

which shows explicitly the coupling of the structural waves with the space-charge waves.

To obtain expressions for the Pierce and space-charge parameters in Pierce's TWT

theory, we let (w,, k,) denote the intersection of a structural wave, det D(O)(w, k) = 0,

and the n-th spatial harmonic of the space-charge wave, D(30 )(w, k) = 0, in the dispersion

diagram. Expanding det D(0)(w, k) about det D(0 )(wc, kc) = 0, it is readily shown that the

dispersion relation (23) can be expressed in the same form as Pierce's TWT dispersion

relation, i.e.,

[w - we - v,(k - kc)][(w - k.V) 2 - (QC).] = C,1 (24)
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where k = k + 27rn/d and

v. = (0 det D(0) / 8 det D(0) (25)
a k 19W )W=Wek=ke'

is the group velocity of the structural wave. In Eq. (24), the space-charge parameter is

defined by

2 2 Ko(paa) KO (Pnbo)
(QC), = ac p n(2(pa) ,Io(pb) (26)

and the Pierce parameter Cn is defined by

8 det D(0) -100
Cn = a 4k (adj D(0))nm D*)Fn. (27)aw )W=wc,k=k, m=-oo

Similar expressions for (QC)n and C can be obtained for the case of a solid beam [10].

It should be stressed that the group velocity v,, the space-charge parameter (QC),,

and the Pierce parameter Cn can be evaluated using Eqs. (25)-(27) and the dispersion

diagram of the structural waves which can be obtained from cold-test measurements or

numerical calculations. Therefore, the dispersion relation (24) is readily used to deter-

mine the stability properties of the relativistic TWT and BWT interactions.

IV. DISPERSION CHARACTERISTICS IN

THE COMPTON AND RAMAN REGIMES

In the Compton regime, the condition I(QC),, < 1w - knV 2 holds. The dispersion

relation (24) can be approximated by

6w2 (8w - AGn) = Cn, (28)

where Sw = w - knV and AQ, = wC + v,(k - kc) - knV. The Compton-regime dispersion

relation results in instability whenever

3(A )' > [C n + 2(AQ )3 . (29)
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The maximum temporal growth rate,

JImbWlmax = -2CI oc a/3 (30)

occurs at Afl = 0. Substituting Eqs. (28) and (30) into Eq. (20), we find that the

expansion in Eq. (20) is correct to order a1/3 in the Compton regime. Indeed, for the

Compton-regime approximation to be valid, the inequality I(QC).l < 1w - k.V12 must

be satisfied at maximum growth. This criterion can be expressed as

8 -detD(O) ) -1 2/3

1/3 ('f '1/3 \OW EM_ =-oo(adj D(0 ))nmD() Fmn
< )Ww~~,(31)

I 2 1222( Ko(pna) _ Ko(pnbo)
IpA~pa [ Io(pna) IO(Pnbo) J1

where lb is the beam current and IA ~ 17 kA is the Alfv6n current.

In the Raman regime, on the other hand, the condition I(QC)n11/ 2 > 1W _ knV +

(QC)1/ 2 holds. The dispersion relation (24) can be approximated by

bw(S - )=- (32)
2(QC)11 2(32

where 6w = w - k,,V + (QC)1/ 2 and Ank = wC + v,(k - kc) - k.V + (QC)1/ 2. The

Raman-regime dispersion relation results in instability whenever

(Afn)2 < 2C. (33)
(QC)V2

The maximum temporal growth rate,

1 C3/2
|ImSWImax = a 1/4 , (34)

,/2 (QC)V4

occurs at An, = 0. Substituting Eqs. (32) and (34) into Eq. (20), we find that the

expansion in Eq. (20) is correct to order a1/2 in the Raman regime. The criteria

a1/2 < 1 (35)

and

a(_ ) -_1 1/2

)I 1/4 1# 1/4 w _ Lm*--oo(adj D(,))nmD( Fmn

I> K I ---- 3/4 (36)

Ic1 2 I(Pna) [ 10(Pna) 1o(pnbo)J
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must be satisfied to assure the validity of the Raman-regime approximation.

Finally, we estimate the linear gain bandwidth of the interaction in the Raman regime

to illustrate the applicability of our theory. Substituting Ann : (v, - V)(w - W,)/vg into

Eq. (33), we find that the linear gain bandwidth is given by

Rebw = 2E1/211 - V/vj-1m&wlmx. , (37)

where use has been made of Eq. (34) and c < 1 is an arbitrary parameter. For example,

the estimated gain bandwidth is ReSw = 0.01 w, for the choice of parameters corre-

sponding to a BWO: jImowma, = 0.04 w, E = 0.05, and V/v, = -0.8; the estimated gain

bandwidth is Re6w = 0.1 w, for the choice of parameters corresponding to a TWT ampli-

fier: IImowjma, = 0.04 w, E = 0.05, and V/v, = 0.82. These estimates indicate that the

bandwidth of a TWT amplifier can be broad, whereas the bandwidth of a backward-wave

oscillator is intrinsically narrow due to the negative group velocity of the wave.

V. SUMMARY

A Pierce-type dispersion relation has been derived from field theory which describes

small-amplitude, relativistic traveling-wave-tube and backward-wave-tube interactions

involving a relativistic electron beam and infinitely long, cylindrical slow-wave structure

with arbitrary corrugation. In particular, the present Raman-regime dispersion relation

has not been reported in earlier studies. The dispersion characteristics of the interactions,

such as the linear instability growth rate and bandwidth, have been analyzed in both the

Compton regime and the Raman regime.
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