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Abstract. Stokes was the first to recognize that the viscosity of many fluids varies

significantly with pressure. Later, several experimental studies showed that such a vari-

ation may be exponential. Here, by using the lubrication theory as revised by Rajagopal

and Szeri, we study the flow of a piezo-viscous fluid down an incline in various flow

regimes.

1. Introduction. At normal operating conditions, the viscosity of an incompressible

liquid is assumed to be independent of the pressure. However, it is well known that the

viscosity of a fluid can change with pressure, and if the pressure range is significantly

large the viscosity can change by several orders of magnitude. In his celebrated paper on

the response of fluids, Stokes [23] notes that the viscosity of a fluid could depend upon the

pressure. However, based on the experiments of Du Buat on the flow of water in canals

and pipes under normal operating conditions, Stokes suggested that the viscosity could

be considered to be a constant for such flows. Stokes is however very careful to delineate

the class of flows wherein the viscosity might be considered to be a constant and he also

remarks that such an assumption would be invalid under other flow conditions. In many

organic liquids, while the density might change by a few percent due to a significant

change in the pressure, the viscosity, on the contrary, could change by many orders of

magnitude (as much as a factor of 108!) (see, for instance, [15] and the references therein).

Thus one could consider such liquids as incompressible fluids with pressure-dependent

viscosities.

As early as 1893, Barus [4] proposed an empirical relationship between the viscosity

and the pressure, namely

μ(p) = μ0 exp[β(p− p0)],
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748 G. SACCOMANDI AND L. VERGORI

where μ0 is the viscosity at the pressure p0 and β is a piezoviscous coefficient that varies

with temperature. Later, Andrade [2] suggested the following expression for the viscosity:

μ(p, ρ, θ) = Aρ1/2 exp
[
(p+ ρr2)

s

T

]
,

based on experiments. In the above expression, ρ denotes the density, T the temperature,

p the pressure, and r, s and A are constants. More recently, Laun [7] has modeled the

viscosity of polymer melts through

μ(p, T ) = μ0 exp[β(p− p0)− γ(T − T0)],

where μ0 is the viscosity at pressure p0 and temperature T0, and β and γ are nonnegative

constants. There have been numerous other experiments by Bair and co-workers that

show that the dependence of the viscosity on the pressure is exponential (see recent

experiments of Bair and Kottke [3]). Mention must be made of the work of Mart́ın-

Alfonso and co-workers [10] wherein an intricate relationship between the temperature,

viscosity and pressure is provided for bitumen. In this context, it ought to be pointed out

that the pressure dependence of the properties of bitumen were recognized very early.

For instance, Saal and Koens [21] not only allowed for viscosity to depend on pressure

(the normal stress), they even allowed it to depend on the shear stresses. Thus, they

had a truly implicit constitutive model relating the stress and kinematical quantities (see

also [11] and [22]).

In recent years there has been a notable interest in piezo-viscous fluids. Rajagopal and

co-workers ([6]–[9], [14]–[20],[24],[26]) have studied in detail several important and basic

problems for such fluids. One example of a physical situation wherein the dependence of

the viscosity on the pressure cannot be ignored is the problem of elastohydrodynamics

[25]. In such a physical situation the dependence of the viscosity on the pressure is

exponential so that the viscosity varies by several orders of magnitude for the range of

the pressure that is relevant.

In this study, we investigate the gravity current resulting from the spread of a fluid

with pressure-dependent viscosity down an incline of constant slope. To this end we

use the well-established lubrication theory that is revised by Rajagopal and Szeri [20]

to include the contributions to the equations of elastohydrodynamic lubrication due to

variations in the viscosity with respect to the pressure. Since the main assumption in

lubrication approximation is that the lengthscale ratio ε is small, i.e.,

ε =
H

L
� 1, (1.1)

and it is clear that if H is too small there is no reason to consider the piezo-viscous

model, we think that our study may be relevant to the geophysical applications of this

theory such as gravity currents under water, ground water motions, lava flows (see for

instance [12] and the references therein). Indeed, in such a framework it may be possible

that the involved lengths L are so important that for depths H of significant thickness

to appreciate pressure variations, ε is small enough.

Our results are complementary to those found by Rajagopal and Szeri in [20], where for

the first time a consistent derivation of the equations of lubrication theory that takes into

account the pressure dependence of viscosity has been derived. In [20] only steady state
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PIEZO-VISCOUS FLOWS OVER AN INCLINED SURFACE 749

problems significant in important technical applications (such as the classical problem of

an elastic cylinder rolling on a plane) are considered, whereas here we are interested in

time-dependent problems with a free surface.

The plan of the paper is the following. In Section 2 we derive the basic equations

and the corresponding boundary conditions. In Section 3 we study the nearly steady

regime considering only gravity effects and gravity effects plus surface tension. Section

4 is devoted to the viscous regime. In particular, when surface tension effects can be

neglected, we study the simple one-dimensional flow which is downslope or upslope.

Besides the uniform solutions, various families of traveling wave solutions may be found

by numerical integration. Concerning the gravity effects plus surface tension, we study

the linear stability of the uniform solutions. The last section is devoted to concluding

remarks.

2. Basic equations and boundary conditions. We consider a fluid moving on a

nonhorizontal plane, whose angle of inclination is α. Let Oxyz be a Cartesian frame of

reference with fundamental unit vectors i, j and k, the coordinate z being perpendicular

to the plane, the x and y coordinates lying in the plane, y being horizontal and x

increasing downward. We denote the components of the velocity of the fluid in the

directions x, y and z as u, v and w, respectively.

Let h = h(x, y, t) be the free surface of the current, whose characteristic thickness and

characteristic length along the plane we denote with H and L, respectively. The main

assumption in lubrication approximation is that the lengthscale ratio ε in (1.1) is small;

therefore it is clear that the component of the velocity parallel to the plane is much larger

than the normal component, so that
√
u2 + v2 � |w|.

The equations of momentum balance and the equation of continuity can be written as
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ρu̇ = −px + μ(p)(uxx + uyy + uzz)

+μ′(p) [2uxpx + (uy + vx)py + (uz + wx)pz] + ρg sinα,

ρv̇ = −py + μ(p)(vxx + vyy + vzz)

+μ′(p) [(uy + vx)px + 2vypy + (vz + wy)pz] ,

ρẇ = −pz + μ(p)(wxx + wyy + wzz)

+μ′(p) [(uz + wx)px + (vz + wy)py + 2wzpz]− ρg cosα,

ux + vy + wz = 0,

(2.1)

where ρ is the density of the fluid, p is the pressure, μ(p) is the pressure-dependent

viscosity of the fluid, g is the acceleration due to gravity and

μ′(p) =
dμ

dp
(p).

Here we shall mainly focus on Barus’ law,

μ(p) = μ0e
β(p−p0), μ0 > 0, β > 0, (2.2)
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750 G. SACCOMANDI AND L. VERGORI

where μ0 is the fluid viscosity at the reference pressure p0 and β is the piezo-viscous

coefficient. Other pressure-dependent fluid viscosity models that are largely studied in

the literature (see for instance [17] and the references therein) are of the form

μ(p) = μ0 +A(p− p0)
n, μ0 > 0, A > 0, n > 0, (2.3)

where, as before, μ0 is the fluid viscosity at the reference pressure p0.

To system (2.1) we append the boundary conditions

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

u = v = 0 at z = 0,

w = 0 at z = h,

uz = vz = 0 at z = h,

wzz = 0 at z = h,

p = p0 + γdiv(n) at z = h,

(2.4)

where γ is the surface tension and

n =
1√

1 + h2
x + h2

y

(−hxi− hyj+ k)

is the unit normal to the free surface of the current z = h(x, y, t). The local curvature

may thus be readily computed:

div(n) = −
hxx + hyy + hxxh

2
y + hyyh

2
x − 2hxyhxhy

(1 + h2
x + h2

y)
3/2

,

and hence the boundary condition (2.4)4 becomes

p = p0 − γ
hxx + hyy + hxxh

2
y + hyyh

2
x − 2hxyhxhy

(1 + h2
x + h2

y)
3/2

at z = h. (2.5)

There are many ways of transforming these governing equations and boundary con-

ditions into dimensionless expressions. Here we introduce a scaling which is similar to

that introduced by Ancey [1]:

⎧
⎪⎪⎨
⎪⎪⎩

x∗ =
1

L
(xi+ yj) +

z

H
k, v∗ =

1

U‖
(ui+ vj) +

w

W
k,

W =
H

L
U‖, t∗ =

U‖
L

t, p∗ =
p− p0

ρg cosαH
, μ∗ =

μ

μ0
,

(2.6)

where μ0 = μ(p0) is the viscosity of the fluid evaluated at the reference pressure p0. Sub-

stituting the dimensionless quantities (2.6) into equations (2.1) and boundary conditions
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PIEZO-VISCOUS FLOWS OVER AN INCLINED SURFACE 751

(2.4) and (2.5) leads to (omitting all asterisks)
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

εReu̇ =
εRe

Fr2

(
tanα

ε
− px

)
+ μ(p)

[
ε2(uxx + uyy) + uzz

]

+μ′(p)
[
ε2 (2uxpx + uypy + vxpy + wxpz) + uzpz

]
,

εRev̇ = −εRe

Fr2
py + μ(p)

[
ε2(vxx + vyy) + vzz

]

+μ′(p)
[
ε2 (uypx + vxpx + 2vypy + wypz) + vzpz

]
,

ε3Reẇ = −εRe

Fr2
(1 + pz) + μ(p)

[
ε4(wxx + wyy) + ε2wzz

]

+μ′(p)
[
ε2(uzpx + vzpy + 2wzpz) + ε4(wxpx + wypy)

]
,

ux + vy + wz = 0,

(2.7)

with boundary conditions

u = v = 0 at z = 0, (2.8)

w = 0 at z = h, (2.9)

uz = vz = 0 at z = h, (2.10)

wzz = 0 at z = h, (2.11)

p = − ε2

Bo

hxx + hyy + ε2(hxxh
2
y + hyyh

2
x − 2hxyhxhy)[

1 + ε2(h2
x + h2

y)
]3/2 at z = h, (2.12)

where

Re =
ρU‖H

μ0
, Fr =

U‖√
g cosαH

and Bo =
ρg cosαH2

γ

are the Reynolds, Froude and Bond numbers, respectively. The dimensionless version of

the viscosity functions introduced in (2.2) and (2.3) takes the form

μ(p) = eλp with λ = βρg cosαH (2.13)

and

μ(p) = 1 + λpn with λ = A(ρg cosαH)n, (2.14)

respectively. Observe that the dimensionless viscosity tends to unity1 as the dimension-

less pressure tends to zero.

Depending on the values considered for the characteristic scales, different types of flow

regime occur. In this paper we shall focus on the following two types of flow regime:

i) Nearly steady uniform regime, where the viscous contribution matches gravity

acceleration. In this case, we have

U‖ =
ρg sinαH2

μ0

and Fr2 = O(Re). Inertial terms and pressure gradient terms must be negligible,

which means that εRe � 1.

1In the classical case in which the fluid viscosity is a constant, the dimensionless viscosity is μ(p) = 1.
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752 G. SACCOMANDI AND L. VERGORI

ii) Viscous regime, where the pressure gradient is balanced by viscous stresses within

the bulk. In this case, we have

U‖ =
ρg cosαH3

μ0L

and consequently Fr2 = εRe. Inertial terms must be low compared to the pressure

gradient and the slope must be gentle (tanα = O(ε)). This imposes the following

constraint: εRe � 1.

Concerning the boundary condition for the pressure we observe that the surface tension

effects can be neglected whenever Bo is of order ε or greater, whereas they must be

retained if Bo = O(ε2). Therefore, in the former case, the boundary condition (2.12)

approximates to

p = 0 at z = h, (2.15)

whereas in the latter case, by virtue of assumption (1.1), (2.12) reduces to

p = −Δh

B̄o
at z = h, (2.16)

where B̄o =
ε2

Bo
.

3. Nearly steady uniform regime. In this case the approximated governing equa-

tions are given by ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂[μ(p)uz]

∂z
+ 1 = 0,

∂[μ(p)vz]

∂z
= 0,

pz + 1 = 0,

ux + vy + wz = 0.

(3.1)

In the following two subsections we shall study the gravity effects and the gravity effects

plus surface tension on the nearly steady uniform flow regime.

3.1. Gravity effects only. It is easy to check that system (3.1) with boundary condi-

tions (2.8)-(2.10) and (2.15) admits the solution
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

u =

∫ z

0

h− ζ

μ(h− ζ)
dζ,

v = 0,

p = h− z,

w = hx

[
h

μ(h)
(h− z)−

∫ h

z

h− ζ

μ(h− ζ)
dζ

]
.

We define the average u as

ū =
1

h

∫ h

0

udz.
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Fig. 1. Breaking time as a function of the nondimensional piezo-
viscous coefficient λ when the dimensionless pressure-dependent vis-
cosity is of the form (2.13) (solid line) and of the form (2.14) with
n = 1 (dashed line). The initial profile considered is h(x, 0) = 1−x2.

In both cases, in the limit as λ → 0, tB tends to 3
√
3/8, that is, the

breaking time in the classical case μ(p) = 1.

Then

hū =

∫ h

0

ξ2

μ(ξ)
dξ. (3.2)

The mass conservation equation can be written in the form

ht + (hū)x + (hv̄)y = 0. (3.3)

Inserting (3.2) in equation (3.3) and noticing that hv̄ = 0 yield that

ht + a(h)hx = 0, (3.4)

where

a(h) =
h2

μ(h)
.

Equation (3.4) is a quasilinear first-order partial differential equation whose general so-

lution can be found by the method of characteristics. If f(ξ) is an initial profile, then

the corresponding solution is given by

h = f(x− a(h)t). (3.5)

The wave (3.5) could break at time tB = −1/a′(f(ξB)) at the point xB = ξB+a(f(ξB))tB,

where ξB has to be determined by means of the conditions
{

a′(f(ξB)) < 0,

|a′(f(ξB))| = max |a′(f(ξ))|.
In Figure 1 the breaking time is expressed as a function of the nondimensional piezo-

viscous coefficient λ when the dimensionless viscosity is given by (2.13) and by (2.14)

with n = 1 under the initial condition h(x, 0) = 1− x2.
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Fig. 2. Solutions of equation (3.4) with an initial profile f(x) =
(1 − x2) for t = 0, t = 0.5, t = 1. The dashed line represents
the solution in the classical case μ(p) = 1, whereas the solid line
represents the solution in the case in which the dimensionless fluid
viscosity depends on the pressure according to (2.13) with λ = 1.

3.2. Gravity and surface tension effects. If surface tension effects must be retained (if

Bo = O(ε2)), then system (3.1) with boundary conditions (2.8)-(2.10) and (2.16) admits

the solution⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

u =

∫ z

0

h− ζ

μ
(
h− ζ −Δh/B̄o

)dζ,
v = 0,

p = h− z − Δh

B̄o
,

w = hx

[
h

μ(h−Δh/B̄o)
(h− z)−

∫ h

z

h− ζ

μ(h− ζ −Δh/B̄o)
dζ

]
.

Then

hū =

∫ h

0

ξ2

μ
(
ξ −Δh/B̄o

)dξ,

hv̄ = 0 and the mass conservation equation (3.3) is given by

ht +
∂

∂x

∫ h

0

ξ2

μ
(
ξ −Δh/B̄o

)dξ = 0. (3.6)

We observe that when surface tension effects can be neglected, i.e. whenever Bo is of

order ε or greater, μ = μ(ξ) in the second term at the left-hand side of equation (3.6) so

that equation (3.6) reduces to equation (3.4). We have already seen that the solution of

(3.4) yields waves that travel in the direction of the shear and they steepen as they go.

No instability is present. When surface tension is present we investigate the behaviour
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of small disturbances to the uniform solution h = h0 of equation (3.6). We perturb the

solution h = h0 with a small disturbance h̃, periodic in x: h = h0 + h̃. Sustituting this

into equation (3.6) yields

h̃t +
h2
0

μ(h0)
h̃x − 1

B̄o

[∫ h0

0

ξ2
d

dξ

(
1

μ(ξ)

)
dξ

]
h̃xxx = 0. (3.7)

Since this equation has coefficients independent of t and x, we seek separable solutions

of the form

h̃ = h̃0 exp(ikx+ st), (3.8)

which is a complete set of normal modes that can be used to represent any disturbance.

By substituting these into equation (3.7) we obtain the following characteristic equation

for s:

s = −ik

[
h2
0

μ(h0)
+

k2

B̄o

∫ h0

0

ξ2
d

dξ

(
1

μ(ξ)

)
dξ

]
.

Therefore any normal mode of the form (3.8) represents a wave which translates along

the x-axis with nondimensional phase speed

Im
( s
k

)
= −

[
h2
0

μ(h0)
+

k2

B̄o

∫ h0

0

ξ2
d

dξ

(
1

μ(ξ)

)
dξ

]
. (3.9)

From (3.9) we deduce that, in the classical case, the nondimensional phase speed is

constant (= −h2
0) (see also [12]), whereas for fluids whose viscosity is pressure-dependent

it depends quadratically on the dimensionless wave number k. Finally, each normal mode

(3.8) is neutrally stable as Re(s) = 0 so that the amplitude of any small disturbance h̃

will remain small at any time.

4. Viscous regime. In this case, the approximated governing equations are given

by

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂[μ(p)uz]

∂z
+

(
tanα

ε
− px

)
= 0,

∂[μ(p)vz]

∂z
− py = 0,

pz + 1 = 0,

ux + vy + wz = 0.

(4.1)

In the following two subsections we shall study the gravity effects and the gravity effects

plus surface tension on the viscous flow regime.
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4.1. Gravity effects. It is easy to check that system (4.1) with boundary conditions

(2.8)-(2.10) and (2.15) admits the solution

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

u =

(
tanα

ε
− hx

)∫ z

0

h− ζ

μ (h− ζ)
dζ,

v = −hy

∫ z

0

h− ζ

μ (h− ζ)
dζ,

p = h− z,

w =

∫ h

z

∇ ·
[∫ ζ1

0

h− ζ2
μ(h− ζ2)

dζ2

(
tanα

ε
i−∇h

)]
dζ1.

Then

hū =

(
tanα

ε
− hx

)∫ h

0

ξ2

μ(ξ)
dξ,

hv̄ = −hy

∫ h

0

ξ2

μ(ξ)
dξ

and consequently the mass conservation equation (3.3) is given by

ht +∇ ·
[∫ h

0

ξ2

μ(ξ)
dξ

(
tanα

ε
i−∇h

)]
= 0. (4.2)

Now we assume that the flow depends only on the x coordinate. Then hy = 0 (so that

v = 0) and equation (4.2) reduces to

ht +
∂

∂x

[∫ h

0

ξ2

μ(ξ)
dξ

(
tanα

ε
− hx

)]
= 0. (4.3)

To find traveling wave solutions we assume that h depends on the single variable s ≡
x− ct, where c is a constant which represents the wave speed. Then equation (4.3) can

be integrated once to obtain

dh

ds
=

tanα

ε
− c1 + ch∫ h

0

ξ2

μ(ξ)
dξ

, (4.4)

c1 being an integration constant. We observe that

∫ h

0

ξ2

μ(ξ)
dξ � h3

3
as h → 0.
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Fig. 3. Profiles of traveling waves moving upward in the classical
case μ(p) = 1 (dashed line), in the presence of a linear dependence
of viscosity upon pressure, μ(p) = 1 + p (dotted line), and in the
presence of the nondimensional Barus’ law μ(p) = ep (solid line).
Here we have assumed that c = −1, tanα = ε and c1 = c2 = 0.

Therefore at the wave front the slope of the free surface becomes infinite and, if c1 = 0,

as h → 0 the solution of equation (4.4) can be approximated by

s =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ε

tanα

⎛
⎜⎜⎜⎝h+

√
3cε

tanα
ln

√√√√√√√

∣∣∣∣∣∣∣∣

h−
√

3cε

tanα

h+

√
3cε

tanα

∣∣∣∣∣∣∣∣

⎞
⎟⎟⎟⎠+ c2 if c > 0,

ε

tanα

[
h−

√
3|c|ε
tanα

arctan

(√
tanα

3|c|ε h
)]

+ c2 if c < 0,

(4.5)

where c2 is another integration constant. The approximated solution (4.5) is the solution

of (4.4) with c1 = 0 and dimensionless viscosity μ(p) = 1 and coincides with that found

by Perazzo and Gratton [13] in the Newtonian case.

Let c1 = 0 in Eq. (4.4). In order to discuss the integrability of Eq. (4.4) we consider

the following equation:

tanα

ε

∫ h

0

ξ2

μ(ξ)
dξ − ch = 0. (4.6)

It is easy to check that Eq. (4.6), with c < 0, does not admit a positive root so that Eq.

(4.4) may be integrated numerically over the range (0, h̄) for all h̄ > 0. In this case the

general solution is an increasing function defined over the interval (c2,+∞), c2 being an

integration constant, tends to +∞ as s → +∞, and its profile near the front (s = c2) is

given by Eq. (4.5)2 (see Figure 3).

On the contrary, Eq. (4.6), with c > 0, may admit positive roots. If the pressure

dependence of the viscosity upon pressure is of the form (2.14) with n ∈ ]0, 2], then Eq.

(4.6) admits only one positive root that we call hm (see Figure 4). If viscosity depends

on pressure according to (2.14) with n > 2 or according to (2.13), then Eq. (4.6) admits

two positive roots for some values of the nondimensional piezo-viscous coefficient λ (we
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hm

Fig. 4. Positive root hm of Eq. (4.6) as a function of the nondimen-
sional piezo-viscous coefficient λ. Here we have assumed tanα = ε,
c1 = 0, c = 1 and μ(p) = 1 + λpn, with n = 0.5 (dotted line),
n = 1 (solid line), n = 2 (dashed line). It is easy to check that

hm → (3cε/ tanα)−1/2, the unique positive root of Eq. (4.6) in the
classical case μ(p) = 1, as λ → 0. Furthermore, for n = 2, hm → +∞
as λ → tanα(εc)−1.

call hm the least positive root and hM the other), whereas it does not admit a positive

root for other values of λ (see Figure 5).

According to the number of positive roots of Eq. (4.6) one, two or three families of

solutions to Eq. (4.4) may arise.

If Eq. (4.6) does not admit a positive root, then equation (4.4) may be numerically

integrated over the range (0, h̄) for all h̄ > 0. In this case the general solution is a

decreasing function defined over the interval (−∞, c2), c2 being an integration constant,

tends to +∞ as s → −∞, and its profile near the front (s = c2) is given by Eq. (4.5)1
(see Figure 6).

If Eq. (4.6) admits only one positive root hm, then two families of solutions to (4.4)

arise. The first is formed by bounded decreasing functions defined over the range (−∞, c2)

satisfying the inequality 0 ≤ h ≤ hm. For these solutions we have h → hm as s → −∞.

Then they represent traveling waves behind a front running downslope, that far behind

the front (s → −∞) tend to the steady downslope flow h = hm, and whose profile near

the front (s = c2) is given by Eq. (4.5)1. The other family is formed by increasing

functions bounded from below for which h ≥ hm. These solutions represents downslope

traveling waves with no front for which h → hm as s → −∞ and h → +∞ as s → +∞.

Finally, if Eq. (4.4) admits two positive solutions, hm < hM , as well as the down-

slope traveling waves behind a front, then the other two families of solutions to (4.4)

representing downslope traveling waves with no front arise. The former is formed by

bounded increasing functions satisfying the inequality hm ≤ h ≤ hM and for which we

have h → hm as s → −∞ and h → hM as s → +∞. The latter is formed by decreasing
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Fig. 5. Positive roots of Eq. (4.6), with tanα = ε, c1 = 0 and
c = 1. Here we have assumed the viscosity to depend on the pressure
according to (2.14) with n = 2.1 (dotted line), n = 3 (dashed line),
and according to (2.13) (solid line). In such a case hM → +∞ as
λ → 0+. On assuming an exponential dependence of the viscosity
upon the pressure, in the case at hand, Eq. (4.6) does not admit a
positive root for λ > 0.60216121.

-5 -4 -3 -2 -1
s

1

2

3

4

h

Fig. 6. Profiles of downslope traveling waves behind a front in the
classical case μ(p) = 1 (dashed line), in the presence of a linear
dependence of the viscosity on the pressure, μ(p) = 1 + p (dotted
line), and in the presence of the nondimensional Barus’ law μ(p) =

ep. Here we have assumed c = 1, tanα = ε and c1 = c2 = 0.

functions that are bounded from below as they satisfy the inequality h ≥ hM and for

which we have h → +∞ as s → −∞ and h → hM as s → +∞.
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4.2. Surface tension effect. If surface tension effects are included, then system (4.1)

with the boundary conditions (2.8)-(2.10) and (2.16) admits the solution
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

u =

[
tanα

ε
− ∂

∂x

(
h− Δh

B̄o

)]∫ z

0

h− ζ

μ
(
h− ζ −Δh/B̄o

)dζ,

v = − ∂

∂y

(
h− Δh

B̄o

)∫ z

0

h− ζ

μ
(
h− ζ −Δh/B̄o

)dζ,

p = h− z − Δh

B̄o
,

w =

∫ h

z

∇ ·
{∫ ζ1

0

h− ζ2
μ(h− ζ2 −Δh/B̄o)

dζ2

[
tanα

ε
i−∇

(
h− Δh

B̄o

)]}
dζ1.

Then

hū =

[
tanα

ε
− ∂

∂x

(
h− Δh

B̄o

)]∫ h

0

ξ2

μ(ξ −Δh/B̄o)
dξ,

hv̄ = − ∂

∂y

(
h− Δh

B̄o

)∫ h

0

ξ2

μ(ξ −Δh/B̄o)
dξ

and consequently the mass conservation equation (3.3) becomes

ht +∇ ·
{∫ h

0

ξ2

μ(ξ −Δh/B̄o)
dξ

[
tanα

ε
i−∇

(
h− Δh

B̄o

)]}
= 0. (4.7)

It can be verified that in the classical case, viz. when the nondimensional viscosity

μ(p) = 1, equation (4.7) differs from that studied by Brenner [5] only for the different

nondimensionalization adopted.

If the surface tension effects are neglectable, equation (4.7) reduces to equation (4.2),

that is, a nonlinear (forward) diffusion equation, and it is easy to show that no disturbance

to the uniform solution h = h0 grows in time. Surface tension acts through a fourth-order

(forward) term so that no instabilities would occur. If equation (4.7) is linearized about

h = h0, one can seek periodic solutions of the resulting equation with periods 2π/kx and

2π/ky in the x and y directions (kx > 0, ky > 0) of the form

h̃ = exp[i(kxx+ kyy) + st]. (4.8)

Denoting by k =
√
k2x + k2y the two-dimensional wave number, the characteristic equation

is given by

s =− i
tanα

ε
kx

[
h2
0

μ(h0)
+

k2

B̄o

∫ h0

0

ξ2
d

dξ

(
1

μ

)
dξ

]
(4.9)

− k2
(
1 +

k2

B̄o

)∫ h0

0

ξ2

μ(ξ)
dξ,

by which we deduce that the growth rate

Re(s) = −k2
(
1 +

k2

B̄o

)∫ h0

0

ξ2

μ(ξ)
dξ (4.10)
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Fig. 7. Growth rate of the small perturbations to the uniform so-
lution h = 1 in the classical case μ(p) = 1 (dashed line) and in the
presence of Barus’ law μ(p) = ep (solid line). We have assumed that
the normalized Bond number B̄o = 1. The positive value of sr cor-
responds to the growth of a perturbation whereas the negative value
of sr indicates decay. Therefore in both cases the unstable domain
is 0 < k < B̄o.

is negative. Therefore, if at time t = 0 a small bump is imposed to the free surface of

the fluid, equation (4.10) governs how it will relax to h = h0.

We now briefly examine the case in which the fluid moves on the underside of an

incline. Here we replace g with −g in equation (2.1)3 and find that the mass conservation

equation is

ht +∇ ·
{∫ 0

−h

ξ2

μ(ξ −Δh/B̄o)
dξ

[
tanα

ε
i+∇

(
h+

Δh

B̄o

)]}
= 0. (4.11)

If equation (4.11) is linearized about h = h0, the growth rate of the periodic solutions

(4.8) of the resulting equation satisfies the following relation:

sr = Re(s) = k2
(
1− k2

B̄o

)∫ 0

−h0

ξ2

μ(ξ)
dξ, (4.12)

by which we deduce that the layer is linearly unstable if

k2 < k2c = B̄o,

i.e., the perturbations are so long that the two-dimensional wave number is smaller than

the normalized Bond number B̄o (see Figure 7). In such a way we have generalized the

result found by Oron et al. [12] for a fluid with constant viscosity to a fluid with a

pressure-dependent viscosity.

5. Concluding remarks. A complete analysis of lubrication theory in the frame-

work of piezo-viscous fluids has been considered. As a first step of our analysis a clear

derivation of the governing equations and the boundary conditions has been provided.

These equations may find interesting applications in geophysical shallow and slow flow,

where the fluid depth is still important enough to allow significant variations of the
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pressure, but in any case the depth of the fluid is small with respect to the involved

length.

To study these equations we have analyzed several flow regimes. In the quasi-steady

regime, it is clear that the dependence of the viscosity on the pressure delays the breaking

time of the flow pattern and therefore enhances the stability properties of the material

flowing down the incline. This is an important finding which shows how the dependence

of viscosity upon pressure is a fundamental point to understand the geophysical flows.

In the viscous regime, we have considered the propagation of traveling waves. In this

case it is clear that the properties of the front of the wave are not influenced by the

dependence of the viscosity on the pressure. This is because when h → 0 the piezo-

viscosity law reduces to the classical one. The profiles of the traveling wave in the piezo-

viscous case may differ not only quantitatively but also qualitatively from the classical

profiles. These phenomena also tell us that very compact geophysical flows may have

unstable fronts, since in the front the piezo-viscous stabilizing effects disappear.

With respect to the stability of the uniform solution we find that the critical thresholds

are the same as for the classical viscous theory, but in the interesting case of a flow in the

bottom of the incline the amplitude of the perturbation grows in a much more consistent

way when we consider a piezo-viscous fluid.

The next step is to investigate the effect of the dependence of constitutive parameters

with respect to the pressure in a non-Newtonian framework, in such a way that a direct

comparison of our findings with experimental data will be possible. This is because in

geophysical applications the fluids involved have a complex rheology.
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