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Abstract 
The piezoelectric response of silicon diaphragms covered with sputter-deposited PbZr0.45Ti0.55O3 (PZT) 
films has been investigated in view of their application in ultrasonic micro-actuators. The behaviour of 
resonance frequencies and quasistatic deflections has been studied as a function of membrane thickness and 
d.c. bias. The total stress in the films and the piezoelectric constant, d31, have been derived by means of two 
different methods. The results are consistent with direct strain measurements by optical interferometry and 
with bulk ceramic values of identical composition. 
 
Keywords: Piezoelectricity; Thin films; Ultrasonic actuators 

 

1 Introduction 
Thin diaphragms or membranes actuated by piezoelectric thin films are of interest for ultrasonic transducers 

and actuators. Standing deflection waves, travelling waves or Lamb waves have been explored for 

micromotors [1,2] and micro-pumps [3]. Acoustic applications have also been investigated [4]. The first 

demonstrations of such thin film devices have been realized with the piezoelectric material ZnO. In the past 

years  much effort has been expended to integrate the ferroelectric material PZT (PbZrxTi1-xO3) on silicon 

devices. As known from bulk ceramics, PZT is one of the best piezoelectric materials found to date. Its 

relevant  piezoelectric coefficients are an order of magnitude larger than those of ZnO.  

The first working PZT (PbZrxTi1-xO3) thin film micro motor has recently been demonstrated by the authors 

[5]. The application in micromotors is especially interesting since ultrasonic motors are considered to be 

superior to other types of micromotors for down scaling [6]. The motor was a hybrid type with an elastic fin 

rotor, proposed by Kurosawa et al. [7,8] for down scaling, and whose micromechanical version was first 

realized by Racine et al. [2] with ZnO thin films. As expected, the speed of PZT micromotors as compared 

to ZnO micromotors was  higher at a given voltage. An improvement of a factor of 4 to 6 was found. The 

motor could be operated with voltages as low as 1.0 Vrms, which is sufficiently low for standard battery  and 

IC supply voltages. Yield and reliability of the stator membranes turned out to be quite good and first 

degradation tests under operating conditions revealed a decrease in amplitude of 5 % in 100 h [9].  

In this work the membranes with no load are investigated in more detail. For design and simulation of the 

motor, or any other application, the behavior of the membrane should be able to be predicted. The unknown 

parameters are the total mechanical stress of all the constituent films of the membrane, and the relevant 

piezoelectric constant of PZT. It should be possible to extract these parameters from resonance frequency 

shifts and static deflection amplitudes as a function of diaphragm thickness and applied electric field. 

Finally, it is also of interest to relate the so obtained piezoelectric constant to the known bulk ceramic 

values. 
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2 Experimental  

2.1 Fabrication of the diaphragms 

The  piezoelectric thin film diaphragms were micro machined out of 3" silicon wafers. Apart from the 

remaining silicon, the diaphragms consisted of SiO2, Si3N4, electrode and PZT films.  The structure  was 

made as simple as possible and is shown schematically in Fig. 1. The electrode below the PZT film (bottom 

electrode of Pt/Ta) was not structured. Contact pads, conductor lines and top electrodes were patterned 

from the same aluminum film, deposited directly on the PZT layer. Details of the fabrication have been 

reported elsewhere [5]. The sputter deposited PZT film of the present study had a composition of 45/55,  

(100)  texture, a dielectric constant of 870, and a dielectric loss of 4% (at 1 kHz and 100 mV). It was grown 

on a 30 nm PbTiO3 template at about 600°C [10]. 

Three sizes of circular membranes with diameters of 2, 4 and 8 mm have been fabricated. Top electrodes of 

half the diameter of the membrane allowed excitation of the ground mode B00 as well as the B10 mode with 

one circular node.  

2.2 Deflection measurements by optical interferometry 

The deflections of the membranes have been analyzed by means of a Michelson interferometer [5,11] 

working with a He-Ne laser. In order to measure the deflection in the linear range of the interferometer, the 

ac  excitation voltage was only a few mV. The resonance spectrum was measured by scanning through the 

frequencies between 1 and 100 kHz [5]. Resonance amplitudes of  up to 1.1 µm/V have been found (ground 

mode (B00) at 53 kHz with a 16 µm thick, 2 mm wide membrane covered with 0.6 µm PZT). The symmetry 

of the modes has been determined by mapping the nodal lines with quartz powder (Chladni figures).  

For not too small thicknesses, the membranes are in principle well approximated by the model for thin 

clamped circular disks, for which exact values of the resonance frequencies are available [12]. In the limit 

of zero thickness, pure membrane behavior should be observed. Also in this case the resonance frequencies 

are tabulated [12]. In order to study  the intermediate behavior and to quantify the film stress contribution,  

the spectrum of the same 2 mm membrane was measured for different silicon thicknesses. After each 

measurement the silicon was thinned down further by back side etching in KOH. A crossover from 

membrane to disk behavior could indeed be observed (see Fig. 2), that is, the (h)
-1/2

 slope for a small silicon 

thickness, h, changes to a slope proportional to h for greater thicknesses. The diaphragm is obviously under 

a small tension, leading to the frequency increase at small thicknesses. The curve fitting  is explained in 

section 3.  

When a dc field (E3) parallel to the polarization (i.e. E3 > 0) is added to the ac field, the resonance 

frequency is shifted to higher frequencies. The effective piezoelectric stress coefficient !e
31

 is different from 

the e
ik
= −∂σ

k
∂E

i
of the fully clamped sample, as is shown in the appendix. The in-plane piezoelectric 

stress, now written as σ
p
= − !e

31
⋅E

3
, which is tensile in this case, adds to the stretching forces of the film 

stresses.  For anti parallel fields (smaller than the coercive field) the resonance frequency decreases. Due to 

the hysteresis of polarization a "butterfly" figure is obtained (see Fig. 3). As a small perturbation,  the 

piezoelectric stress shifts   the resonance frequency in a linear manner: 
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Figure 1.  Schematic drawing of the membrane with 

view onto the top side of the wafer and a schematic 

cross section through the films. 

Figure 2. Resonance frequencies as a function of the 

silicon thickness of 2 mm diameter diaphragms with 

sputtered PZT films. The curve fit is discussed in the 

text. 

 

 

 

 
 

Figure 3. Frequency vs. dc bias loops for two 

thicknesses of 2 mm diameter diaphragms with 

sputtered 0.6 µm thick PZT films. The center 

frequencies are 42.3 and 71.6 kHz for the 13 and 

22 µm membranes respectively. The same samples 

as for Fig. 2 have been used. 

Figure 4. Interferometric measurements of membrane 

deflections as a function of dc bias applied to the 0.6 µm 

thick sputtered PZT film. Sample as used in Figs 2 and 3. 
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Δω∝− !e
31
(E

3
) ⋅E

3
 (1)  

Note that the effective piezoelectric coefficient !e
31  is negative. The derivation of the proportionality factor 

is explained in section 3. The experiment was performed with two thicknesses of the same sample as used 

for the stress determination described above. 

An alternative way to determine the piezoelectric constant consists in calculating the static deflection. The 

latter is reduced by the tensile stresses in the films. However, these are known from the first experiment and 

can be taken into account. Fig. 4 shows the deflection as a function of dc bias at 1 kHz for the 13 µm 

sample, normalized for a voltage of 1 V. This result should be very close to the static response, since there 

is no longer any dispersion at this low frequency. The static response is proportional to the effective 

piezoelectric coefficient !e
31

: 

deflection amplitude

ac voltage amplitude

∝ !e
31
(E

3
)  (2) 

Finally, a comparison with the piezoelectric strain ε
3

= !d
33
⋅E

3
  perpendicular to the substrate plane  has 

been made. This strain and the piezoelectric stress σ
p

 in the plane should exhibit a similar behaviour as a 

function of the applied field. Fig. 5 shows that this is indeed the case. ε
3

was determined by a double beam 

interferometer, which measures  the thickness change of the film on a standard 0.5 mm thick silicon 

substrate [11, 13].  

3 Theory  and calculations 
In this section  analytical calculations are presented. They allow  a derivation of  the  static membrane 

deflection and the resonance frequencies as a function of size, film thicknesses, applied electric field and 

film properties. The film stresses have a strong influence on  deflection and resonance frequencies. It is 

clear that the silicon part has no stress, since it is part of the single crystal substrate. In order to derive the 

piezoelectric constant from deflection data it is necessary  to study and measure the stress contribution from 

the thin films on top of the silicon. 

3.1 The eigenfrequencies of stretched thin clamped disks 

It is assumed that the membranes are perfectly circular (radius a), that the silicon thickness (h) and the film 

thicknesses (tfi) are homogeneous and that the clamping of the diaphragm is perfect for all thicknesses 

considered. The deflection w(r,t) of the diaphragm out of the wafer plane is described by 

w(r,t) = F(r)·sin ωt, where r is the distance from the center of the diaphragm and ω is the excitation 

frequency. It is further assumed, that the deflection is smaller than the thickness of the diaphragm. Non-

linear effects are thus neglected. The obvious boundary condition F(a) = 0 must hold. 
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Figure 5. Double interferometric measurement of the 

film strain perpendicular to the substrate plane,  

compared with the stress sensing shift of the resonance 

frequency (13 µm diaphragm of Fig. 3).  

Figure 6. Calculated amplitude of the static 

deflection according to Eq. 15 for the case of the 

response of an unpoled film at zero dc bias and 

5 mV ac electric excitation at 1 kHz. The 

experimental points have been obtained by a series 

of etching steps at the same device.  

 

For the resonance behavior one can distinguish two limiting cases: 

(1) Disk approximation: The diaphragm is rather  thick and the stresses can be neglected. This is the well 

known thin clamped disk situation, which has  the additional boundary condition: 

dF

dr
r=a

= 0  

 The eigenfrequencies are determined by the elastic energy term Uel [12]: 

U
el
=
1

2
D 2πr dr×

0

a

∫
d
2
F

dr
2
+
1

r

dF

dr

!

"
#

$

%
&

2

− 2(1−ν )
1

r

dF

dr

d
2
F

dr
2

!

"

#
#

$

%

&
&
 (3) 

where 

D =
Y ⋅h

3

12(1−ν 2 )
 

D is given for a single layer diaphragm with the Young's modulus and ν the Poisson ratio. The solutions 

FDk(r) of the k
th

 resonance are known [12]: 

FD
k
(r) = c

1
⋅ J

0
(λ

k
⋅
r

a

)+ c
2
⋅ J

0
(iλ

k
⋅
r

a

)  (4) 

J0 is the Bessel function of order 0. For the first two modes B00 and B10 (adopting the usual notation with 

the first index being the number of circular nodes) c2/c1 amounts to 0.056 and -0.025 respectively. The 

coefficients λk are 3.190 and 6.306, respectively [12]. The eigenfrequencies are obtained as [12]: 
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ω
k

2 =
λ
k

4

a
4
⋅
D

µ

"
#
$

%
&
'

 (5)  

where µ is the mass density per unit area of the diaphragm. It follows that the resonance frequencies 

increase linearly with the thickness of the diaphragm.  

(2) Membrane approximation: The diaphragm is thin,  and the stretching forces caused by film stresses are 

dominating. The stretching force per unit length S is acting on the border of the membrane in radial 

direction. The potential energy is in this case:  

U
S
=
1

2
S 2πr dr ⋅

dF

dr

"

#
$

%

&
'

0

a

∫
2

, S = S
f
+ S

p
, S

f
= σ

fi
⋅ t
fi∑  (6) 

Sf originates from film stresses, Sp from the piezoelectric effect. σfi is the stress in the i
th

 thin film of 

thickness tfi. The solutions FMk(r) at resonance are simply  the Bessel functions J0 with zero values at r = a: 

FM
k
(r) = c ⋅ J

0
(x
0k
⋅
r

a
)  (7) 

For B00 and B10 the x0k amount to 2.405 and 5.52. The eigenfrequencies are then obtained as: 

ω
k

2
=
x
0k

2

a
2
⋅
S

µ

"
#
$

%
&
'

 (8) 

In this case the eigenfrequencies drop with increasing the membrane thickness as (h)
-1/2

.  

In order to obtain an expression for the intermediate case, the Rayleigh-Ritz method was applied. The 

kinetic energy  term is written as: 

E
kin,max

=ω 2 ⋅ I
kin

I
kin
=
µ

2
2πrF 2 dr

0

a

∫    (9) 

At resonance the maximum kinetic energy is equal to the maximum potential energy and one arrives at:  

ω
k

2
=
U
el
(F

k
)

I
kin
(F

k
)
+
U
S
(F

k
)

I
kin
(F

k
)

 (10) 

 

The exact solution Fk yields the exact resonance frequency. With an approximate solution, respecting the 

symmetry of the mode k, an approximate value is obtained.  

Taking FD as the deflection function one obtains good values for ωk in the case where D/a
2
 >> S. This was 

done for calculating the frequency shift by the piezoelectric stress (Fig. 3). The parameters D and µ have 

been calculated for the three layer situation with (1) silicon, (2) SiO2-Si3N4-Pt and (3) PZT. The formulas 

for D in the multi layer situation are given in Ref. [16]. 

For covering the whole range of thicknesses  a further approximation was made. The functions FD and FM 

are rather similar, and therefore they also yield about the same values for the  integrals Uel, US and Ekin (US 

(FD) , for instance, differs indeed only by 10 % from US (FM)). The left side of the sum in E. 8 is evaluated 

with FD, the right side with FM. The following is thus obtained: 
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ω
k

2 ≈
λ
k

4

a
4
⋅
D

µ

#
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&
'
(

+
x
k

2

a
2
⋅
S

µ
 (11) 

which is exact for very thin (D = 0) and for very thick diaphragms (D/a
2
 >> S).  For the curve fit in Fig. 2 

the multilayer values for D and µ have been applied. The only free parameter was S. For a perfect fit , 

though, λ00 had to be slightly increased  by 3%, probably due to inaccurate geometry.   

3.2 The piezoelectric energy  terms 

The piezoelectric stress σp in the PZT film acts in two ways on the diaphragm. First, it creates a bending 

moment with respect to the neutral plane of the diaphragm. Second, it contributes to the stretching forces S. 

The bending moments cause the deflection of the diaphragm, the stretching effect shifts the resonance 

frequency. It is therefore possible to deduce the piezoelectric constant from the deflection and the frequency 

shift.  

The piezoelectric film is clamped to the substrate (the diaphragm in this case) in the film plane (directions 

with indices 1, 2) and is free  to move perpendicular to it (index 3), i.e. σ3 = 0. The stresses in the plane, 

σ1 and σ2, are equal by symmetry and obtained as (see appendix): 

σ
p
(E

3
) =σ

1
(E

3
) =σ

2
(E

3
) = − !e

31
⋅E

3
 (12)

 

where 

!e
31
=

d
31

s
11

E
+ s

12

E
= e

31
+
s
13

E ⋅e
33

s
11

E
+ s

12

E

"

#
$$

%

&
''  

Note that the effective constant !e
31

is larger than e31, which is defined for full clamping. This compensates 

the fact that the effective !d
33

 is smaller than the d33 of the free bulk sample [14]. Since !e
31

 is negative, one 

obtains a tensile stress if E3 is positive, i.e. parallel to the polarization. The stretching force imposed by the 

piezoelectric  stress is: Sp = σp·tp/2 (tp  is the PZT film thickness) . The factor 1/2 originates from the fact 

that the electrode has only half the circumference of the membrane. The bending moment is obtained as:  

M
x
=M

y
=M =σ

p
(E

3
) ⋅ t

p
⋅
h
eff

2
 (13) 

where heff/2 is the distance between the center of the piezoelectric film and the neutral plane of the 

diaphragm, and was calculated according to Ref. [16].  In the case of the measured 13 µm membrane 

(Fig. 4) heff is close to h.  The potential energy due to M is given by [15]: 

U
M
=
1

2
M 2πr dr ⋅

d
2
w

dr
2
+
1

r

dw

dr

"

#
$

%

&
'

0

a/2

∫  (14) 

The integral covers the area of the electrode only. 

3.3 The static deflection 

The static problem was solved by the so called energy method, i.e. by minimizing the potential energy with 

suitable test functions [15]. The energy consists of three parts: Uel is the elastic energy due to the bending of 

the disk, UM is the work done by the piezoelectric moment M, and US is the stretching energy due to the 

(tensile) film stresses. The following function was taken as a test function: 
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w(r) =
γ ⋅ 2ln2 ⋅a2 −3⋅ r2( )

γ (r2 − a2 − 2 ⋅a2 ⋅ ln(r / a)

!

"
#

$#

%

&
#

'#

,r ≤
a

2

,r ≥
a

2

 (15) 

The two parts obey the differential equation for disks with zero lateral forces (∆∆w = 0), have a constant 

∆w, and have the correct boundary conditions for clamping at r = a. The minimum condition dU/dγ = 0 

yields the optimal value for γ and the deflection in the center w(0) is obtained: 

w(0) =
3ln(2) ⋅a2 ⋅M

2.55a2 ⋅ S + 48D
 (16) 

According to this equation a maximum deflection is expected at an intermediate thickness, depending on 

the stress level. It was indeed observed  that the piezoelectric response first increased and then diminished 

with reducing the silicon thickness (see Fig. 6). The film in this experiment was not poled. Piezoelectricity 

is due to self poling during the fabrication process. The calculated amplitude w(0) displayed in Fig. 6 was 

obtained with the stress parameter S derived from Fig. 2 and with a piezoelectric coefficient !e
31

 of 

2.6 C/m
2
. It turns out that the maximum of deflection occurs at about the same diaphragm thickness where 

the resonance frequency has its minimum (see Fig. 2). 

4 Results and discussion 
The curve fitting in Fig. 2 yielded an average film stress of 80 MPa (tensile), which is a rather low  value. 

The Si3N4/SiO2 part was indeed designed to have a low stress of 100 MPa (tensile) for pyroelectric 

applications, where the silicon is completely etched away [17]. The contribution of platinum and PZT is 

thus also  tensile and amounts to about 60 MPa.  

The effective piezoelectric coefficient !e
31

 has been derived from the resonant method (Fig. 3) and the static 

deflection  method (Fig. 4). The first yielded values of 5.0 C/m
2
 (13 µm) and 4.7 C/m

2
 (22 µm), the latter 

yielded  values of  3.7 C/m
2
 at zero field and 4.2 C/m

2
 at saturation for the 13 µm diaphragm. Without 

taking into account the film stress, 20 % smaller values would have been obtained. A larger membrane with 

4 mm diameter and 20 µm thickness, with the same sputtered film, was also evaluated for its static 

deflections. The poled film yielded a !e
31

 of 4.1 C/m
2 at zero field. The agreement between different 

membranes and thicknesses, and between the two methods is thus satisfying. 

How do these values compare with PZT bulk ceramics? Unfortunately no values are available for the 

composition 45/55 of Zr/Ti. !e
31

 decreases from 9.6 C/m
2 at 52/48 composition, which shows the largest 

piezoelectric activity, to 5.8 C/m
2
 at 48/52 composition [18]. Extrapolating these data, the obtained !e

31
 

values seem to be reasonable. In spite of using PZT of non optimized composition, the relevant 

piezoelectric coefficient is 4 times higher than in ZnO with a calculated !e
31

 of 1.1 C/m
2
  (single crystal 

data: d31 = -5 pm/V , s11 = 7.9·10
-12

 Pa
-1

 and s12 = -3.4·10
-12

 Pa
-1

 [19]).  

Since usually the dij coefficients are given as material parameters, it makes sense to derive here also d31, 

taking tabulated bulk ceramic values for the compliance coefficients (s11 = 10.8·10
-12

 Pa
-1

 and s12 = -

3.35·10
-12

 Pa
-1

 for PZT 48/52 [18]). One has to keep in mind, however, that the values given below are only 

as precise as the elastic constants used for their derivation. The so obtained d31 values scatter between 31 

and 37 pm/V in saturation. These values seem to be correct for the 45/55 composition (d31 = 43 pm/V for 
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PZT 48/52 [18]). One would expect that the ratio d33/d31, which amounts to 0.40 in PZT 50/50 ceramics, 

would apply also for thin films. The effective piezoelectric coefficient !d
33

 was derived from the slope of 

ε
3

 vs. E3 in Fig. 5 and obtained as 49 pm/V.  Again, the measured !d
33

 is not equal to the coefficient d33 of 

the free sample due to clamping effects. The correction is given in ref.14 and is calculated as 

!d
33
/ d

33
 = 0.66, applying elastic compliance coefficients of bulk ceramic PZT 48/52. With the corrected 

d
33

 of 74 pm/V in saturation, a value 0.42 to 0.50 is obtained for d33/d31 in the thin film.  

The best operating conditions can be derived from Figs 3 and 4. Obviously, the PZT films applied had a 

built-in asymmetry: the poling with negative top electrode yielded a much larger piezoelectric response 

than the poling in opposite direction. After fabrication, the films were already polarized to about 60% of 

their response achieved by poling at room temperature. The best operating conditions were found to lie 

between -8 and +2 V, where polarization switching was avoided. This asymmetry might be helpful, since it 

enables a larger piezoelectric (and also pyroelectric) response at low  fields, i.e. the remanence is improved 

for one polarization direction. 

For an optimal application of  the membrane as a vibrating stator, an ideal relationship between the 

thickness of PZT film and the thickness of the silicon part has to be found. Equation 15 gives an 

approximate solution for the case of an unloaded membrane out of resonance without air damping or other 

forces. It shows that the film stresses are of importance and shift the ideal silicon thickness to larger values. 

Analogously, external forces, such as the load of a rotor, are  expected to shift the optimal thickness  to 

higher values.  

5 Conclusions 
 PZT activated membranes could be characterized with respect to resonance frequencies, total thin film 

stress, and piezoelectric coefficients. The behavior was analyzed by means of analytical calculations. It 

turned out that film stress needs to be taken into account for optimal design of the membrane. The different 

experiments show consistent results of the derived piezoelectric coefficients, which seem to agree with bulk 

ceramics data. For precise comparison, however, the exact values of  the elastic compliance tensor would 

be required. The PZT films  showed an effective stress piezoelectric coefficient which was a factor four 

larger than that for  ZnO single crystals. Optimization of film composition still may increase this coefficient  

by another factor two.  
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Appendix 

The stress components σ1 and σ2 are in the plane of the diaphragm, σ3 out of plane. The same notation is 

given to the strain components ε1, ε2, ε3. Since the film is free to move in the 3-direction the stress 

component σ3 must be zero.  

Equations of state: 

ε
1
= s

11

Eσ
1
+ s

12

Eσ
2
+ d

31
E
3

ε
2
= s

12

Eσ
1
+ s

11

Eσ
2
+ d

31
E
3

 

The sum of  these two equations yields the average in plane stress: 

σ
1
+σ

2( )
2

=
ε
1
+ε

2
− 2d

31
⋅E

3

2(s
11
+ s

12
)

 

Directions 1 and 2 are equivalent, since the PZT film is isotropic  in the plane, and since membranes and 

electrodes have  cylindrical symmetry. With perfect clamping (i.e. no strain in the plane due to 

piezoelectricity)  the final result becomes: 

σ
1
= −
d
31
⋅E

3

s
11
+ s

12

= − !e
31
⋅E

3
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