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Abstract: Alternative sensory systems for the development of prosthetic knees are being 

increasingly highlighted nowadays, due to the rapid advancements in the field of lower 

limb prosthetics. This study presents the use of piezoelectric bimorphs as in-socket sensors 

for transfemoral amputees. An Instron machine was used in the calibration procedure and 

the corresponding output data were further analyzed to determine the static and dynamic 

characteristics of the piezoelectric bimorph. The piezoelectric bimorph showed appropriate 

static operating range, repeatability, hysteresis, and frequency response for application in 

lower prosthesis, with a force range of 0–100 N. To further validate this finding, an 

experiment was conducted with a single transfemoral amputee subject to measure the 

stump/socket pressure using the piezoelectric bimorph embedded inside the socket. The 

results showed that a maximum interface pressure of about 27 kPa occurred at the anterior 

proximal site compared to the anterior distal and posterior sites, consistent with values 

published in other studies. This paper highlighted the capacity of piezoelectric bimorphs to 

perform as in-socket sensors for transfemoral amputees. However, further experiments are 

recommended to be conducted with different amputees with different socket types.  
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1. Introduction 

Advancements in prosthetic knee systems are of increasing importance to assist transfemoral 

amputees perform their different daily activities [1] such as walking, stair climbing, and running [2,3] 

more naturally. Prosthetic knee devices are categorized into passive and active types [4]. In order to 

assist the amputees to replicate such daily movements, active knee devices have to be used to perform 

those functions. Active knee systems imply that the amputee can interact with the device to facilitate 

his/her movements. In other words, improving the sensory system of the active knee device shall assist 

amputees to perform their activities better and more efficiently. Therefore, the development of a 

prosthetic knee control system is related to sensory signals which facilitate the design of the control 

algorithm [3,5]. Different types of sensors are involved in active knee devices, for example, a 

potentiometer acts as an angle sensor to measure the knee joint angle, a load cell is used to measure the 

knee torque, a gyroscope sensor to detect the acceleration of the knee joint, and a force sensing resistor 

(FSR) is utilized as on/off sensor to detect the prosthetic knee phases [6]. Each sensor measures a 

certain parameter. For example the angle sensor (potentiometer) measures the inclination angle of the 

knee joint during the stride, while a torque sensor identifies the amount of torque that is needed for the 

knee to perform the movement [7]. These sensors are called passive sensors [6,8,9], as they are placed 

around the prosthetic knee joint to identify the knee movement. Nevertheless, the interaction between 

the socket and the amputee subjects is not involved in identifying the knee movement. The direct 

contact between the amputee subject and the socket device in the presence of the in-socket sensor 

would be more useful to acquire direct measurements from specific socket locations.  

So far, to receive input signal from the stump muscles, electromyography systems (EMGs) were 

used to detect the muscle activities. An EMG embedded in an active knee system reads the interaction 

from the user as they detect the user’s flexor and extensor muscle activities, generally from the rectus 

femoris, vastus lateralis, vastus medialis, biceps femoris, and semitendinosus. In order to make use of 

the EMG signals, such signals are analyzed to formulate the control algorithm that assists the amputee 

to control the torque in activities such as stair ascent/descent. However, EMG signals measure the 

muscle activity without considering the reaction forces and moments generated from the ground via 

the socket by means of pressure distribution. Considering the measurement of the pressure distribution 

inside the socket that originated from the ground reaction forces to understand the stress distribution 

during stride might be useful for gait phase identification.  

Unlike measuring static pressure distribution such as the interface pressure on the buttocks, the 

pressure characteristics between the prosthetic socket wall and the stump would have a dynamic 

interaction between the socket interface pressure [10]. One example of transducer is the load cell, 

which has different types such as strain gauges to detect force in various applications [11]. Strain 

gauges are also being used in applications such as wind-tunnel balances and force sensors for robot 

linkages [12]. Measurement of the interactive forces between human hand and limb rehabilitation 

devices is achieved using a custom four degree of freedom strain gauge [13]. However, strain gauges 
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show better behavior for static force measurements rather than dynamic investigations, as they show 

some limitations in the transient responses compared to piezoelectric (PVDF) materials [14]. Another 

sensing element that is appropriate for detection of dynamic measurements is the piezoelectric 

material. A piezoelectric bimorph is considered an active element, thus no external power is required 

to activate the sensor [15]. Moreover, one advantages of the piezoelectric bimorph is that it can adapt 

to vibrations in such dynamic applications. Piezoelectric bimorphs are among the most widely used 

sensors in academic research and industrial applications [16].  

Piezoelectric materials with a bimorph configuration are used as sensors/actuators in many fields 

including industrial, aerospace, and medical systems [17–19]. Upon applying a load to the surface of 

the bimorph, an electrical charge is produced. The relation between the applied force versus the 

piezoelectric bimorph and the output deflection is essential in surgical applications and micro-gripping 

of fragile objects [16,19]. The charge generated inside the bimorph is measurable in volts, which is 

proportional to the load applied across its surface [16]. Because of the ability of the piezoelectric 

bimorph to be used as both the sensor/actuator element [19], current research aims to leverage the 

advantage of using the piezoelectric bimorph as a sensing element to detect the distribution of the 

pressure in transfemoral amputees’ stump/sockets. In addition, the approach presented in this paper 

should provide better understanding of the gait characteristics of transfemoral amputees and assist the 

fabrication process of various socket types [20]. The appropriate location of the sensor inside the 

socket’s wall would provide flexibility to the amputee while wearing the socket and improve the 

interaction during different activities. On the other hand, researchers in the lower prosthesis field are 

searching for alternative techniques to improve the sensory system of prosthetic knee devices. Such 

techniques shall assist the amputee to interact with his/her prosthesis via the sensory system. Thus, 

sensory system selection may assist the implementation of the control algorithm of the prosthetic knee 

and could provide alternative solutions for measurement of the interface pressure inside the stump. 

Another challenge nowadays is how to find new methods of measuring the interface pressure for 

transfemoral amputees. Measuring the interface forces between the socket and the stump could provide 

information about the socket fabrication in the lower amputation field [21,22]. To date, the interface 

pressure for transfemoral amputees has not been clearly investigated, due to the shape of the stump that 

may vary from one amputee to another. Researchers have attempted to predict the amount of forces 

generated inside the stump of transtibial and transfemoral amputees. One study on interface pressure 

inside the stump measured it for transtibial amputees using F-socket transducers 9811E (Tekscan, Inc., 

South Boston, MA, USA) in which the transducers were attached to the posterior, anterior, lateral, and 

medial compartments of the stump to obtain better insights into the pressure between the stump and 

socket. The trials were conducted for the amputees during stair ascent and descent, and the study 

revealed that a high interface pressure exists between the stump and socket with the Seal-In X5 

interface system [23]. A Flexforce network sensor made up of five Flexforce elements was used to 

measure the pressure inside the stump for transfemoral amputees, in which the study reported the 

amount of forces that can be measured at the x-direction which was about 26 N [24]. Another attempt 

was performed by using a Fiber Bragg grating (FBG) sensor that was developed to measure the 

interface pressure between stump and interface socket for transtibial amputees [25], where the range of 

measurement of the FBG was reported to be about 30 N. The study reported acceptable behavior of the 

FBG in terms of linear relationship between the shift in the peak wavelength and the applied force. The 
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piezoelectric bimorph can be easily embedded inside the socket to measure the interface pressures at 

specific regions of the lower limb where high pressure is expected, such as at the posterior, posterior 

distal, or interior regions [26]. In this paper an investigation of the usage of piezoelectric bimorphs in 

the field of prosthesis is reported. More specifically, the current approach aims to determine the static 

and dynamic behavior of the piezoelectric bimorphs in order to utilize them as a sensory system inside 

a transfemoral amputee’s prosthesis socket. Moreover, transient and frequency response analysis were 
performed to provide information about the response time and the frequency response which would 

provide useful information during dynamic applications. To validate the piezoelectric bimorph 

performance in a real situation, an experiment with a single transfemoral amputee subject was 

conducted while wearing a socket embedded with piezoelectric bimorphs that were placed at different 

socket sites. The experiment aimed to identify the variation of piezoelectric bimorph performance at 

different socket sites during the amputee’s stride. 

2. Materials and Methods 

A piezoelectric bimorph (T220-A4-503X, Piezo Systems, Inc., Woburn, MA, USA) was selected as 

the sensory element in this work. Its static and dynamic characteristics were investigated. The 

piezoelectric bimorph was intended to be utilized as a sensing element inside the socket of 

transfemoral amputees. Detailed procedures for investigating the static and dynamic characteristics of 

the piezoelectric bimorph are presented in the following sections.  

2.1. Piezoelectric Bimorph Characteristics 

In order to assess the overall characteristics of the piezoelectric bimorph, a calibration procedure 

was conducted to estimate the static and dynamic behavior of the piezoelectric bimorph. The 

piezoelectric bimorph consists of two layers sandwiched by brass layer as shown in Figure 1. 

Figure 1. (a) Basic dimensions of the piezoelectric bimorph in a simple supported  

beam configuration; (b) Piezoelectric bimorph consists of two layers sandwiched with  

supporting layer. 

  

(a) (b) 

A series of input signals were applied to the input of piezoelectric bimorph and its corresponding 

outputs were recorded. In the current approach, static and dynamic calibrations were performed on the 

piezoelectric bimorph. Figure 2a shows a simple schematic of the calibration experimental setup. Also, 
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an Instron machine (Instron Worldwide Headquarters®, Norwood, MA, USA) was used to perform the 

calibration of the piezoelectric bimorph as illustrated in Figure 2b. The machine consists of two lower 

and upper heads, while the bimorph was fixed on the lower head with the force exerted from the upper 

head. The purpose of the bimorph calibration is to set the static and dynamic behaviour of the bimorph that 

is used in development and fabrication of the active amputee’s socket [21]. The calibration procedure was 

conducted by applying specific loads to the piezoelectric bimorph in both static and cyclic form to 

mimic the real situation of pressure dynamics inside the socket.  

Figure 2. Overall diagram of the sensor calibration. (a) Simple schematic illustrating the 

calibration experimental setup; (b) Experimental setup. 

 

(a) 

 

(b) 

2.2. Calibration Procedure  

2.2.1. Static Characteristics 

In this section the static characteristics of the piezoelectric bimorph were investigated. To predict 

the static characteristics, a series of independent-time input values were sent to the piezoelectric 

bimorph and the output will increase to a level that is proportional to that input. Independent-time 

values mean that values of inputs do not change with time. The output will remain at that level until 
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the input level is changed. Static characteristics such as sensitivity, hysteresis, range, linearity, and 

repeatability were referenced in the current work to evaluate the piezoelectric bimorph’s response. The 
benefit of the calibration is to get the characteristics of the sensor, one of the calibration techniques 

that can provide accurate measurements and collect data in short time is the motion and shape 

approach [12]. However, one of the limitations of that technique appear in the dynamic measurements 

as the sensor should be moved with minimum acceleration to make the measurements quasistaic. In 

addition, the common calibration method of the force sensor is performed by loading input forces on 

the sensor element. Afterwards the output voltage is recorded [27,28]. The common calibration 

procedure uses a loading device such as a loading plate, weights, and such a base. Here, the calibration 

technique that was adopted uses a standard calibration machine in which, a known force value from an 

Instron (Microtester 5848) strain machine was produced. The corresponding voltage output from the 

bimorph was recorded simultaneously. The calibration was done in the range of interest, because 

measurements within the range of interest will assist to enhance the bimorph’s sensitivity and 
resolution. A schematic view of the piezoelectric bimorph that was placed between the machine’s 
heads is shown in Figure 2b. The applied compressive force started at 0 N and increased up to 100 N. 

The rated deflection and force were recorded versus the corresponding output voltage of the 

piezoelectric bimorph. Data were acquired with both increasing and decreasing loads steps to highlight 

the hysteresis characteristics. The sensitivity of the piezoelectric bimorph was determined by 

calculating the slope of the static calibration curve. 

2.2.2. Dynamic Characteristics 

One of the significant characteristics of the bimorph is the capability to measure different 

parameters such as force or displacement while the input varies with time. Dynamic characteristics 

show the behavior of the bimorph during dynamic applications. Each bimorph has the ability to 

measure static and dynamic movements up to a specific range. Basically, the piezoelectric bimorph 

was evaluated to predict its behavior when exposed to a family of variable dynamic input waveforms 

such as a sinusoidal function to obtain the frequency response and a square signal to find out the 

response time and the damping [29].  

The transfer function can be derived to attain a relation between input and output of the 

piezoelectric bimorph. The piezoelectric bimorph element can be modeled as a simple vibratory 

system (spring-mass-damper system) [30,31], that presents the analytical dynamic behavior of the 

piezoelectric. The output voltage versus the input force can be provided in terms of damping 

coefficient and frequency. The dynamic response of the bimorph was described as a second-order 

system a Laplace form as in Equation (1) [24]:  

C(s)
R(s) =

ωn
2

s2+2ξωns+ωn
2 (1) 

where C(s), the output of the system, R(s), input to the system, 𝜔𝑛, natural frequency of the system, ξ, 

Damping of the system. 

The behavior of the second order system is described by 𝜉 and 𝜔𝑛; as an assumption damping of  

ξ = 1 is considered. Therefore, C(s) for R(s) = 1/s was expressed as in Equation (2): 
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V(s)
F(s) = ωn

2(s+ωn)2s
 (2) 

where V(s), the output voltage, F(s), applied force to the bimorph. 

The inverse Laplace transform of Equation (1) may be written in the time domain as in Equation (3): 

c(t)=1 − e−ωnt(1+ωnt), for t ≥ 0 (3) 

Equation (3) is essential to characterize the dynamics of the piezoelectric bimorph, that is useful at 

the overall closed loop system control.  

The dynamic input wave forms were generated by the 5800 series Instron machine, that includes 

Advanced Cyclic WaveMaker Software®, that could generate sine and square waveforms [32]. The 

response was acquired by a DAQ system (NI USB 9221, National Instruments®, Austin, TX, USA) for 

further processing. The dynamic characteristics namely the frequency response, response time, and 

damping have been highlighted to evaluate the bimorph behavior [33]. In order to estimate the 

operating frequencies of the piezoelectric bimorph, a sinusoidal wave was chosen as an input to 

validate the transient characteristics of the bimorph. Then, the frequency response curves due to the 

change of the input frequencies were plotted. The diagram to perform the frequency response is shown 

in Figure 3. The frequency response was tested with different force levels to predict the bandwidth of 

the bimorph. 

Figure 3. Block diagram shows the procedure of measuring the frequency response of the 

piezoelectric bimorph. 

 

Labview software was utilized to process the acquired data from the NI USB 9221 DAQ system. 

The overall procedure of acquiring the data was established. To obtain the whole set of data during the 

calibration procedure, an interface was developed using Labview software to save the data for  

post-processing. 

2.3. Theoretical Calculation of Loads at the Knee Joint  

To measure the interface pressure at the lower limb prosthesis, the mechanical concept of forces and 

moments were calculated. Basically, forces and moments that are present at a prosthetic device are 

generated due to the contact with the ground. These forces and moments transferred to interface the 

amputee. The dynamic analysis is basically based on Newton’s second law, with the calculation of  
the forces and moments [34]. Figure 4 shows the diagram of forces and moments relative to the  

x, y, z axes.  

Equation (4) shows the knee rotation by the sum of moments with respect to the origin O (Figure 4): 

Moz − m1g1l1sin(b) − m2g2l2sin(b) − m3g3l3sin(b)+Fgxyg+Fgyxg= Iof (4) 

 
Test machine Piezoelectric bimorph 

Data log out Data log out 

F (t) V (t) 
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where, b is the angular displacement on sagittal plane; mi (i = 1, 2, 3) are the stump masses, socket with 

the tube and prosthetic foot respectively; li (i = 1, 2, 3) are the distances from the center of mass to the 

origin O. Equation (5) shows the sum of moments x regarding O: 

Mox+Fgzyg+Fgyzg= 0 (5) 

Figure 4. Free body diagram of forces and moments during prosthetic leg heel strike [34]. 

 

Equation (6) shows the sum of moments y regarding O: 

Moy+Fgzxg+Fgxzg= 0  (6) 

Equations (7)–(9) show the sum of forces on the different coordinated axis (x, y, z): 

Fox+Fgx=(m1+m2+m3) (rfcos(b)-rp2sin(b)) (7) 

Foy+Fgy-(m1+m2+m3)g=(m1+m2+m3) (rfsin(b)-rp2cos(b)) (8) 

Foz+Fgz= 0  (9) 

where p is the angular velocity, f is the angular acceleration and r is the distance from the origin to the 

center of mass of the entire model. The interface pressure is described according to the previous 

equations. According to Equations (7)–(9), the maximum exerted force was 26.1 N. Based on the 

calculated values of the maximum exerted force, a sensor that can be used to measure the generated 

pressure was selected. Therefore, an experimental case of using the piezoelectric bimorph to measure 

the stump/socket pressure for transfemoral amputees were undertaken. 

Transfemoral Subject Trials 

To investigate the approach of using a piezoelectric bimorph to detect the stump/socket pressure for 

a transfemoral amputation subject, an experiment with a single amputee was conducted. The 

piezoelectric bimorphs were placed in particular socket regions to acquire the maximum amount of 
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pressure from the lower limb that would provide an indication about the gait characteristics. Three 

piezoelectric bimorphs were embedded to transfemoral amputee’s socket as shown in Figure 5. 

The session was started by asking a transfemoral amputee subject (age 29 years old, male, 75 kg, 

height 182 cm) who had been wearing an above knee prosthetic leg for the past 10 years, to perform 

walking movements at self-selected speed. Piezoelectric bimorphs were inserted in three different 

locations inside the socket at the anterior proximal, anterior distal, and posterior positions in which the 

maximum stresses are generated from those sites [22,31,35]. The bimorphs were tethered and the 

output signals were transmitted via wires to the workstation.  

Figure 5. Piezoelectric bimorph sensors embedded to the transfemoral amputee’s socket. 

 

3. Results and Discussion  

3.1. Results and Discussion of the Static Test 

The static characteristics such as range, linearity, hysteresis, and repeatability were presented to 

show the bimorph behavior and the operating range at static measurements. Figure 6 shows the output 

force versus the vertical deflection at z-direction in reference to Figure 2a. A hysteresis effect was also 

determined by measuring forces in the upward and downward directions (Figure 6). Figure 7 shows the 

relation between the input force versus the output voltage and the deflection at different values of 

forces that ranged from 0 to 120 N.  

Figure 6. Relation between applied force versus the deflection of the piezoelectric bimorph. 

 

 

Piezoelectric bimorphs embedded with transfemoral socket 

At anterior and posterior sites 

Transfemoral amputee’s socket  
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The bimorphs’ output voltage and deflection can be calculated against the input force value 

within the range of measurements (Figure 7). The full scale output (FSO) hysteresis of the 

piezoelectric bimorph at the applied forces during upscale and downscale was calculated and is 

shown in Figure 8. The sensitivity and linearization can be figured out by plotting the regression 

line of the piezoelectric bimorph data as shown in Figure 9. The static validation of the 

piezoelectric bimorph shows a capacity of measuring forces up to 100 N under static operation 

conditions (Figure 8). 

Figure 7. Force versus output voltage and deflection. 

 

Figure 8. Output voltage from the sensor versus the applied force in upward and 

downward directions. 

 

Figure 9. Output voltage of the piezoelectric bimorph versus the applied force showing the 

regression line. 

 

Further comparison between the adopted piezoelectric bimorph and the other existing sensors would 

be useful to show the differences in terms of the linearity and the range of measurement. Figure 10 

shows a comparison that was conducted between the piezoelectric bimorph, FBG sensor, and Flexforce 
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sensors [24,25]. The FBG sensor can measure force and produce s wave length shift that predicts the 

amount of force. As shown in Figure 10, FBG exhibits an acceptable linearity along the scale of 

measurements. However, the range of force was smaller compared to the piezoelectric bimorph and 

Flexforce units. The piezoelectric bimorph has a range of static force measurements of 0–100 N as 

shown in Figure 10, which is almost same as the Flexforce that has a range of 0–98 N. While both the 

piezoelectric bimorph and Flexforce have almost a similar range in terms of static force, the 

piezoelectric bimorph has better dynamic characteristics in terms of dynamic range and operating 

bandwidth, 0–77 N and 0–35 Hz, respectively (Table 1). However, The Flexforce has a limitation in 

the dynamic range when it is placed on curved surfaces, as the effective area is bent and this affects the 

dynamic response of the device [36].  

Figure 10. Static force characteristics of piezoelectric bimorph and two different available 

force sensors. 

 

Table 1. Overall characteristics of piezoelectric bimorph. 

Characteristic Value 

Average sensitivity 0.3 (V/N) of reading 

Linearity error 16.8% FSO 

Repeatability 1.1% FSO 

Static range 0–100 N 

Hysteresis 0.4% FSO 

Dynamic range 0–77 N 

Operating bandwidth 0–35 Hz 

Response time at 95% and 98% 0.22 s at 95% and 0.27 s at 98%  

Damping Overdamped 

Overall instrument error and uncertainty 1.9% 

Where FSO, full-scale operating range. 

A simulation was conducted using Comsol Software® to illustrate the show the deflection behavior 

of the bimorph under different applied forces (Figure 11a). The bimorph was deflected according to 

the amount of load that was applied to the surface area. The forces were applied at 60, 80 and 100 N, 

respectively, and the bimorph’s corresponding deflection along the length was recorded and plotted. 
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The bimorph showed variations of the deflection values along with different loads, with a maximum 

deflection of 0.73 mm at 100 N applied force. The maximum values of the deflected bimorph occurred 

at the middle of the bimorphs length as shown in Figure 11b, thus, the current simulation will assist to 

better understand the behavior of the bimorph when the real interface pressure of the amputee subject 

is considered. Furthermore, the surface area of the piezoelectric bimorph (0.001085 mm2) as shown in 

Figure 11b provided a wide range of pressure measurement. 

Figure 11. Performance of the piezoelectric bimorph, (a) Bimorph deflection when load 

applied at both faces; (b) Piezoelctric bimorph’s deflection at different applied loads, 
simulation performed using Comsol software. 

 

(a) 

 

(b) 

3.2. Results and Discussion of the Dynamic Tests 

The dynamic characteristics basically show the capability of the piezoelectric bimorph under certain 

dynamic conditions. In this section, the dynamic behavior of the piezoelectric bimorph is represented. 

The methods adopted to define the piezoelectric bimorph are namely the frequency response, response 

time, and damping. These methods were adopted to estimate the dynamic behavior of the piezoelectric 

bimorph in order to determine the functionality of the device in the field of prosthetic knee development. 

3.2.1. Frequency Response 

The frequency response is a technique to measure the dynamic response of the piezoelectric 

bimorph. To obtain the frequency response, a harmonic test function (sinusoidal function) was used as 

an input signal to the piezoelectric bimorph. The sinusoidal input forces selected were 9 N, 26 N and 
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77 N, to check the functionality of the bimorph under dynamic conditions. The output was monitored 

and plotted as shown in Figure 12, presented as the frequency response graph of different applied 

harmonic forces. In addition, it illustrates the operating frequencies and bandwidth of the piezoelectric 

bimorph. The frequency investigation shows the capability of the bimorph up to 77 N at dynamic 

region (Figure 12). 

Figure 12. Dynamic response of the piezoelectric bimorph. 

 

3.2.2. Response Time and Damping of the Piezoelectric Bimorph 

Response time is another means to define the bimorph’s dynamic response. Response time is 

calculated while the bimorph’s output reaches a specific percentage of output value when a step 

change is applied to its input. The step input function is applied to the system to determine the 

behavior and speed of the system in response to a change in input. Figure 13 shows the transient 

response of the voltages that were measured at different levels of 1, 3 and 5 V. Particularly, the  

5 V response delivered from the piezoelectric bimorph was selected to calculate its response time at 

95% and 98%, respectively. The 5 V response produced response times of about 0.22 s and 0.27 s, 

respectively, which shows an acceptably rapid response for such a level of voltages.  

Figure 13. Sample step responses of the piezoelectric bimorph due to different step inputs. 

 

Damping is a sensor’s characteristic that defines both how energy from a rapid change in input is 
dissipated within the bimorph and how it affects the dynamic response characteristics. A critical 

damping behavior was noticed for the piezoelectric bimorph as can be seen in Figure 13, as it has no 
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overshoot, it is delayed until it reached the final value. An increase in damping in a bimorph may cause 

the response time and the upper limit of the frequency response to fall. The overall static and dynamic 

characteristics of the adopted piezoelectric bimorph were obtained and are listed in Table 1. 

3.3. Results and Discussion of the Case Study 

The results of the pressure distribution inside the socket during the subject trials were presented in 

Figure 14. Three tests were performed while the subject was wearing a prosthetic knee device. In each 

gait test, the pressure at the three locations (anterior, proximal, anterior distal, and posterior) was 

measured. In Figure 14, the pressure distribution was plotted against a time interval of 450 ms each. 

The average pressure in the anterior proximal region shows a higher amount of pressure during the tests 

compared to the anterior distal and posterior regions. This agrees with the results of Dumbleton et al. [37], 

although Dumbleton et al., conducted their study on transtibial amputee subjects who wore the socket 

for daily use for at least 6 months. Zhang et al. [32] considered the pressure interface between the 

stump and the socket by using finite element analysis. Their research revealed that the distribution of 

the pressure at the anterior region is higher than the posterior region which emphasised the results of 

the current study. The maximum pressure that was measured at the anterior region was about 25 kPa as 

can be seen in Figure 14a,b. However, the piezoelectric showed distortion at the measurement level of 

30 kPa during the anterior proximal measurement. Due to the internal properties of the piezoelectric 

material which affect the hysteresis effect, the coupling effect between the mechanical and electrical 

parameters became saturated during that level of measurements [14,27].  

Figure 14. Stump/socket pressure distribution of transfemoral amputee subject during  

gait, (a); (b) and (c). 
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Figure 14. Cont. 

 

(c) 

In this work, the overall characteristics of piezoelectric bimorphs were investigated in order to 

apply them in lower prosthesis development and interface pressure measurement. A case study was 

considered to present their capability in that field. More specifically, a preliminary measurement of 

stump/socket pressure of a transfemoral amputee was considered. Gait socket/stump pressure 

measurements were conducted because of their significant role in prosthesis research.  

4. Conclusions 

This study was performed to validate the application of piezoelectric bimorph in the prosthetics 

field. Static and dynamic characteristics of the piezoelectric bimorph were conducted. The dynamic 

behavior of the bimorph in terms of the response time and bandwidth of operation was investigated. 

According to the determined characteristics of the piezoelectric bimorph, an assessment of its use as an 

in-socket sensor was presented. The piezoelectric bimorph sensor was compared to the current 

Flexforce and FBG sensors in terms of force range and linearity. The piezoelectric bimorph showed 

similarity to the fFexforce sensor in terms of the static operating range, however the bimorph presented 

a more suitable dynamic measuring range compared to both the Flexforce and FBG sensors. 

Furthermore, the current study discussed the usage of the bimorph to measure the interface pressure 

inside the socket for transfemoral amputee subjects at three different sites. The experiment was 

conducted with a transfemoral amputee to validate the concept of using the bimorph as a sensing 

element inside the socket. The results showed that the maximum distribution of the pressure occurs at 

the anterior region compared to the posterior region. On the other hand at a certain amount of pressure 

(30 kPa) the signal was truncated due to the saturation of the bimorph’s material properties. Thus it can 

be concluded that the bimorph showed acceptable results for pressure measurements up to 27 kPa and 

has some limitations for measuring pressures higher than that value. It is recommended to conduct more 

experiments with subjects of different body weights and pathological considerations to come up with a 

better understanding of the current approach. Specifically, the measurement of the interface pressure is 

quite complex due to the combination of normal and shear stress which requires further investigation.  

Overall, the preliminary results gathered from the experiments reported in this paper were 

promising at this stage of research and provided indication about the consistency of the piezoelectric 

bimorph signals under real measurement conditions. However, more clinical trials utilizing the 

approach presented in this paper should be performed to validate the capability of the bimorph to 
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measure the shear stresses for both transtibial and transfemoral amputees. Also, more clinical trials 

with subjects of different weight and level of amputation are recommended. In addition, different 

activity movements such as sit to stand, slope climbing, and stair ascent/descent could provide further 

validation of the current concept. Finally, collecting data during clinical experiments could be easier 

by using a wireless system that facilitates the movement of the subject and provides better handling of 

the collected data. 
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