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Piezoelectric domain walls in van der Waals
antiferroelectric CuInP2Se6
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Andrew O’Hara 3, Sabine Neumayer 2, Marius Chyasnavichyus2, Eugene A. Eliseev 5, Juras Banys1,

Yulian Vysochanskii 6, Feng Ye 7, Bryan C. Chakoumakos7, Michael A. Susner8,9, Michael A. McGuire10,

Sergei V. Kalinin 2, Panchapakesan Ganesh 2, Nina Balke 2, Sokrates T. Pantelides 3,11,

Anna N. Morozovska12 & Petro Maksymovych 2✉

Polar van der Waals chalcogenophosphates exhibit unique properties, such as negative

electrostriction and multi-well ferrielectricity, and enable combining dielectric and 2D elec-

tronic materials. Using low temperature piezoresponse force microscopy, we revealed

coexistence of piezoelectric and non-piezoelectric phases in CuInP2Se6, forming unusual

domain walls with enhanced piezoelectric response. From systematic imaging experiments

we have inferred the formation of a partially polarized antiferroelectric state, with inclusions

of structurally distinct ferrielectric domains enclosed by the corresponding phase boundaries.

The assignment is strongly supported by optical spectroscopies and density-functional-

theory calculations. Enhanced piezoresponse at the ferrielectric/antiferroelectric phase

boundary and the ability to manipulate this entity with electric field on the nanoscale expand

the existing phenomenology of functional domain walls. At the same time, phase-coexistence

in chalcogenophosphates may lead to rational strategies for incorporation of ferroic func-

tionality into van der Waals heterostructures, with stronger resilience toward detrimental

size-effects.
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L
ayered thiophosphates, with a general composition of
CuInP2Q6 (Q= S, Se)1, have recently gained attention as
candidate materials for two-dimensional2–4 (2D) or few-

layered ferroelectrics2,5. The sulfur6,7 and selenium8–10 com-
pounds have similar structure of individual layers and a
concomitant ferrielectric (FE) ordering, with Cu+ and In3+ ions
counter-displaced within individual layers, against the backbone
of P2Q4-

6 anions. The spontaneous polarization of the sulfide can
range from ~5 μC/cm2 to ~12 μC/cm2 11 vs ~2.5 μC/cm2 12 in the
selenide, in part due to larger off-centric Cu displacement in the
sulfide. Despite the structural similarity, the reported properties of
their phase transitions are quite different10. Other than the dif-
ference in the transition temperatures (~230 K8,9 in the selenide vs
~305 K in the sulfide6,10), CuInP2Se6 exhibits a broader transition
window compared to CuInP2S6, as evidenced by macroscopic
dielectric, caloric and thermal characterization9,10. It was proposed
that this anomaly is evidence for the coexistence of ferrielectric and
antiferroelectric (AFE) ordering, and an incommensurate phase
that precedes ferroelectric ordering9. The properties of the inter-
mixed S–Se compound are even more interesting, possibly invol-
ving a Lifshitz transition as well as polar glassy phases13. The
apparent compatibility of chalcogenophosphates with a variety of
polar orderings signifies comparatively weak dipolar correlations
in the lattice. This property may be particularly pertinent toward
prospective application of these materials as functional compo-
nents of van der Waals heterostructures.

Indeed, recently, Song et al.12 proposed that ultrathin films of
CuInP2Se6 develop an antiferroelectric ground state, with the
ferrielectric-antiferroelectric crossover occurring at a thickness of
~6–8 layers. The primary driving force for the crossover is the
depolarizing field that favors the antiferroelectric with net zero
polarization. This feature is in contrast to perovskite oxides, such
as the canonical BaTiO3, which become non-polar in the ultrathin
limit14. However, at present, most nanoscale polar properties in
both CuInP2S6 and CuInP2Se6 remain to be understood, with
respect to the mechanisms that screen spontaneous polarization
at the interfaces, polarization switching, and the structure of the
domains and their domain walls1 as well as the scalability down
to the single-layer limit. Understanding these behaviors will also
help to identify the possible mechanisms by which these materials
can be functional in van der Waals heterostructures.

Here, we report the structure of polarization domains in bulk
CuInP2Se6 utilizing quantitative imaging of nanoscale piezo-
electric properties. Contrary to the expectation of ferrielectric
ordering analogous to CuInP2S6, we reveal a fundamentally dif-
ferent domain structure, with two markedly different values of
piezoresponse. Moreover, the domain boundaries exhibit the
strongest piezoelectric response, with up to fourfold enhancement
compared to domain surfaces. CuInP2S6, on the other hand,
features an expected domain structure, with nearly uniform value
of piezoresponse within domains, alternating polarization orien-
tation and domain walls with vanishing piezoresponse15–17.
Despite the more complex polar structure of CuInP2Se6, the
domains can be flexibly manipulated with applied fields. We
explain the phenomena observed in CuInP2Se6 by considering the
real-space domain structure of an antiferroelectric that is partially
polarized in finite electric field. Our arguments are supported by
Raman spectroscopy and DFT calculations indicating the possible
coexistence of ferrielectric and antiferroelectric states. FE/AFE
coexistence presents an intriguing opportunity for few-unit-cell
thiophosphates, particularly within van der Waals hetero-
structures. At the same time, piezoelectric domain walls, which
are polar phase boundaries in this case and can be readily
manipulated by applied electric fields, present a new functional
element for the domain-wall electronics paradigm18,19.

Results and discussion
Piezoresponse force microscopy does not exhibit any significant
signal on the surface of CuInP2Se6 at room temperature in the
paraelectric state, as expected. On a crystal cooled below 200 K,
the piezoresponse phase and amplitude images (Fig. 1a, b) reveal
domains of various forms and sizes (the measured response is
defined by the normal components of the piezoelectric coefficient
d3j ¼ 2ε0ε33Qj3P3, where the Qj3 are components of electrostric-
tion tensor, P3 is the normal polarization component, and ε33 is
the normal component of the dielectric constant). Despite
structural similarity, however, there is a stark contrast between
CuInP2Se6 and Cu0.4In1.2P2S6 as shown in Fig. 1. In
Cu0.4In1.2P2S6, the contrast of the piezoelectric signal.

comprises the non-polar dielectric phase In4/3P2S6, with neg-
ligible piezoresponse, and the ferrielectric phase CuInP2S6, whose
piezoresponse is comparable to a ferroelectric: domains of
opposite polarization have opposite signs of piezoresponse, with
nearly zero signal at the domain wall in between (Fig. 1b, d)20,21.
Cancellation of piezoresponse at the domain wall is a mutual
consequence of nearly zero polarization at the wall, and possibly
the mechanical cancellation effect due to opposite direction of
surface deformation in the adjacent domains separated by the
domain wall.

In CuInP2Se6, extended regions of negligible piezoresponse and
extended regions of uniform piezoresponse also exist. However,
in contrast to Cu0.4In1.2P2S6, CuInP2Se6 crystals studied here are
nearly stoichiometric, excluding the existence of a non-
ferroelectric phase, such as In4/3P2S6 in Cu0.4In1.2P2S6. More-
over, the regions of finite piezoresponse appear only below the
transition and can be flexibly manipulated with applied fields
(shown below in Fig. 2j). At the same time, the piezoresponse
signal across a boundary separating the two distinct regions in
CuInP2Se6 has maximum rather than minimum piezoresponse
signal. These observations imply that CuInP2Se6 below the ferroic
transition intrinsically exhibits at least two distinct structural
phases. The imaging results are reproduced for a variety of tips,
cleaved surfaces and are also observed irrespective of the
underlying topography (Supplementary Fig. 1). By using PFM in
ultrahigh vacuum on freshly cleaved and nearly atomically flat
surfaces, as well as invoking the band-excitation methodology for
piezoresponse22, we have further ruled out simple experimental
artifacts such as the underlying topography23, electrochemistry24,
or mechanical properties of the contact25.

Further insight as well as confirmation of the above assign-
ments is evidenced from the electric-field dependence of the
measured piezoresponse (Fig. 2). It was previously pointed out
that it is essential to check local electromechanical measurements
for possible artefacts, such as the contribution of extrinsic elec-
trostatics24. As seen in Fig. 2, the dominant effect of applied bias
is to impose an offset on the measured signal in both
Cu0.4In1.2P2S6 and CuInP2Se6, while keeping the contrast between
entities largely unchanged.

This conclusion is further confirmed by analysis of select 1D
profiles from the data in Fig. 2, as shown in Fig. 3. Indeed, relative
enhancement of piezoresponse is maintained irrespective of
applied field (Fig. 3a, c), while domain walls in Cu0.4In1.2P2S6
reveal approximately average signal between up and down-
oriented domains (Fig. 3b). At the same time, at both −3V
(Fig. 2f) and +2 V (Fig. 2j), the domain structure of CuInP2Se6
begins to evolve in applied field, respectively shrinking and
growing the regions of finite piezoresponse.

Given all of the above measurements, we propose that
CuInP2Se6 exhibits coexistence of antipolar and polar regions,
identified, respectively, by zero and finite piezoresponse signals.
The domain walls are then the boundaries separating these
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regions. Given the propensity of CuInP2Se6 toward antiferro-
electric ordering (12 and see below), the polar and antipolar
regions would correspond to ferrielectric and antiferroelectric
phases, respectively.

This scenario of phase separation can be rationalized by con-
sidering the real-space structures underpinning the hallmark
property of antiferroelectrics—a double-hysteresis switching loop
(Fig. 3d)26–28. Double hysteresis corresponds to the switching of
antiferroelectric configuration with net zero polarization to fer-
roelectric structure with nonzero polarization. Uniform anti-
ferroelectric structure is, therefore, expected only in a very small

range of applied fields27. At finite field, the system exhibits a state
of finite polarization. In the real space, the structure with finite
polarization can manifest as two distinct states: either the system
is uniformly polarized in an applied field, or it exhibits non-
uniform distribution of polarization (schematically shown in the
inset of Fig. 3d), such that local regions of ferrielectric and
antiferroelectric phases emerge. We believe the second case is the
appropriate representation of CuInP2Se6 in our measurements.

Our argument for the coexistence of ferrielectric and anti-
ferroelectric phases in CuInP2Se6 is supported by Raman spec-
troscopy and DFT calculations. Both Raman and SHG
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spectroscopy, carried out on freshly cleaved crystalline flakes of
CuInP2Se6, clearly detect the transition below ~250 K (Fig. 4a, d).
The peaks at 203 and 219 cm−1 in Raman spectrum appear first
at around 250 K (Fig. 4a, b) and their integrated intensity con-
tinues to grow, eventually saturating below ~180 K (Supplemen-
tary Fig. 3). Simultaneously measured SHG intensity (Fig. 4d)
shows a rapid increase below 220 K. Notably, SHG detects
breaking of the inversion symmetry, therefore implying the
development of either ferri- or ferroelectric ordering in the pro-
bed volume of the technique.

Further, we compared the experimental Raman spectra to
those calculated by DFT in the ferrielectric and antiferroelectric
ground states, as shown in Fig. 4c. The AFE state in these cal-
culations corresponds to an alternating displacement of Cu atoms
along the b (or a) crystallographic direction, between opposite
sides of each layer (Supplementary Fig. 4b), consistent with the
prior work12. The In3+ in this case is located near the equatorial
plane of each layer. In contrast, in the ferrielectric state, the Cu1+

and In3+ are offset in opposite directions relative to the midplane
of the layers, but the offsets of each are identical within each
cation sublattice.

The characteristic calculated signature of the AFE state appears
to be a peak around 300 cm−1. It is negligible for the calculated
spectra for the FE configurations, while prominent in the
experiment (Fig. 4c). Meanwhile, the three-peak structure between
400 cm−1 and 500 cm−1 is best captured by a combination of the
FE and AFE states. The probing volume of piezoresponse force
microscopy measurements are comparable to the radius of the
tip, ~20–50 nm, while that of optical spectroscopies ~ 1μm; thus,
both are still probing near-surface regions. Note, the X-ray dif-
fraction study of CuInP2Se6 across the phase transition, on the
other hand, shows that the structure of

CuInP2Se6 belongs to the non-centrosymmetric space group
P31c (No. 159) at 100 K and 180 K (Supplementary Table 1a),
Supplementary Fig. 5). At 250 K, the best fit is to the cen-
trosymmetric space group P�3 1c (No. 163) (Supplementary

Table 1c)). These results largely agree with previous work8,
indicating order-disorder type ferrielectric ordering in CuInP2Se6.
Bulk-averaging measurements are therefore most consistent with
ferrielectric ordering (Supplementary Fig. 5, Supplementary
Fig. 6). However, in light of the similar energies between ferro-
electric and antiferroelectric states (Supplementary Fig. 4), it is
likely that uniform states of either kind can be preferred
depending on specific experimental conditions.

Further insight into the structure and energetics of the AFE
and FE phases and the AFE/FE domain walls has been gained
using DFT calculations of large supercells, which accommodate
such boundaries. The energetics and structures of several possible
AFE configurations are shown in Supplementary Fig. 4. Con-
sistent with prior work12, under zero strain, all bulk AFE struc-
tures have a higher energy than the bulk FE structure.
Meanwhile, calculated energies of all three types of AFE/FE
boundaries are small, within 2 meV/nm2 of each other, while the
energy of a FE/FE domain wall is much higher, 21 meV/nm2

(Fig. 5). This result indicates that the formation of the observed
mixed AFE/FE state is largerly governed by the energetics of the
respective domains and that there is a high likelihood of forma-
tion of AFE/FE boundaries.

Discussion
The complete analysis of phase coexistence CuInP2Se6 falls out-
side the scope of this manuscript. However, we have carried out
analytical modeling of the mixed free energy functional within the
Landau–Ginzburg–Devonshire framework (Supplementary Dis-
cussion). The functional incorporates the contributions to the free
energy from ferroelectric, antiferroelectric, antiferrodistortive
order parameters, as well as coupling and striction terms.
Importantly, although the coexistence of antiferroelectric and
ferroelectric order parameters is intuitively simple, its detailed
functional is very complicated. The variation of the order para-
meter across the domain wall is opposite for the ferroelectric and
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antiferroelectric end-states: in ferroelectrics, polarization drops to
zero at the domain wall (x= x0 in Supplementary Eq. (18)), while
the antiferroelectric order parameter A increases at the domain
wall (x= y0 in Supplementary Eq. (19)). Our experimental
observable is strain, and specifically piezoresponse measured as a
voltage derivative of strain. In the case of the FE/AFE boundary
we do indeed predict a maximum strain at the wall within the
approximations of the model (Supplementary Fig. 7). This
behavior can be rationalized by analogy with double-hysteresis
strain loops in macroscopic antiferroelectric switching (schematic
in Fig. 3d). Upon onset of polarization (transition from AFE to
FE phase), the lattice experiences maximum deformation
(expansion in perovskite oxides29,30) that exceeds subsequent
deformation in the ferroelectric state (due to piezoresponse). In
our interpretation, the AFE–FE domain boundary in CuInP2Se6 is
precisely the region of phase separation. The result of the LGD
modeling, showing maximum strain at the boundary, supports
the analogy between AFE/FE transition due to electric field (in
macroscopic double-hysteresis loops) and due to phase separation
in real-space (in our measurements). Although we cannot yet
model the piezoresponse (dynamic strain), it is also maximized in
the macroscopic hysteresis loops at the AFE/FE switching, and
could therefore be maximum in our measurements in Fig. 1 and
2. Based on these results, piezoelectric domain walls should also
be generally found in partially polarized antiferroelectrics.

Using quantitative piezoelectric microscopy, combined with
DFT calculations and optical spectroscopy, we have revealed
unusual domain-wall properties in polar CuInP2Se6, where
domain walls exhibit maximum piezoresponse at the domain
walls in contrast to the expectations for ferroelectrics. Whereas

polar walls were previously detected in in antiferroelectric
PbZrO3

31 and in ferroelastic CaTiO3
32,33, we have inferred that in

CuInP2Se6 the domain walls separate regions of antiferroelectric
and ferrielectic ordering. These domain walls should be general
for antiferroelectrics while being distinct from domain walls in
either ferroelectric or antiferroelectric phases, thus emerging as a
new entity in the context of domain-wall electronics19. Mean-
while, the observation of antiferroelectric state confirms theore-
tical modeling of very small energy differences between
ferrielectric and antiferroelectic states in CuInP2Se6. The ability to
define and control locally polarized, mesoscale regions in an
otherwise non-polar matrix may provide a path to integrate fer-
roic and electronic functionality via van der Waals interfaces,
which is complementary to ferroelectric materials and that may
persist down to single layer12.

Methods
Crystal growth. The single crystal CuInP2Se6 was grown from gas phase by che-
mical transport reactions. Iodine has been used as transport agent with con-
centration of 4–5 mg/cm3. The temperature of evaporation zone was 870 K, and for
the crystallization zone temperature equals 850 K. The duration of the growth
process was 350 h. The resulting product was thin single crystal plates with
dimensions near 10 × 5 × 0.1 mm3. Cu0.4In1.2P2S6 single crystals were synthesized
through the vapor transport method. Starting materials, sealed in fused silica
ampules, were heated to 750–775 °C at a rate of 30 °C/h and held at that tem-
perature for 4 days and then cooled at a rate of 20 °C/h.

PFM imaging. Ultrahigh vacuum contact PFM imaging and polarization switching
were performed on an Omicron AFM/STM, interfaced with a Nanonis controller
package. The chamber pressure was 1 × 10−10mbar or better. The samples were
mounted on a standard Omicron sample plate and affixed with a silver conductive
epoxy (Epo-Tek EJ2189-LV). A clean surface was prepared by Scotch tape method
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Fig. 4 Phase transition in CuInP2Se6 detected by optical spectroscopies. a Temperature dependent Raman spectroscopy of a CuInP2Se6 crystal,

represented as a heat map. The phase transition below ~250 K is clearly visible (yellow arrow). b Individual Raman spectra at several measured

temperatures. c Comparison of the Raman spectrum at 7 K to the DFT calculations for the ferroelectric (FE) and antiferroelectric (AFE) configurations.

d The intensity of second harmonic generation (SHG) across the phase transition at 200 K.
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in UHV. Images of CuInP2S6 shown in this paper were acquired in an Ar-filled
glove-box using Bruker-Icon AFM. The freshly cleaved surface was likewise pre-
pared shortly before the measurement.

Single crystal XRD. The structure of single crystals was characterized by using a
Rigaku XtalLAB PRO diffractometer with graphite monochromatized Mok-alpha
radiation (lambda = 0.71073 Angstrom) equipped with a Dectris Pilatus 200 K and
an Oxford Cryosystems N-HeliX cryocooler for temperature ranging from 100
to 293 K.

Raman spectroscopy. The Raman spectra were measured in a custom-built
micro-Raman setup. The samples were excited with a continuous wave (cw) diode-
pumped solid-state laser (Excelsior, Spectra Physics, 532 nm, 100 mW) through an
upright microscope using a ×50 long-working distance objective with NA (numeric
aperture) = 0.5. The typical incident laser power on a sample was maintained at ~
100 μW to reduce possible laser heating and damaging of the samples during
Raman spectra acquisition. The scattered Raman light was analyzed by a spec-
trometer (Spectra Pro 2300i, Acton, f = 0.3 m) that was coupled to the microscope
and equipped with a 1800 groves/mm grating and a CCD camera (Pixis 256BR,
Princeton Instruments). The low-temperature Raman spectra were measured using
a liquid He-cryostat (MicrostatHiResII, Oxford Instruments) with a temperature
controller (MercuryiT, Oxford Instruments) that allowed precise control from 3.6
to 300 K. Raman spectra were sampled with 10 K step from 100 to 250 K, and also
at 4, 7, and 20 K. The cryostat was mounted on a motorized XY microscope stage
(Marzhauser) under the microscope of the micro-Raman setup. The cryostat was
evacuated to the base pressure of 7 × 10−7mbar prior to cool down.

Second harmonic measurements. Second harmonic generation (SHG) mea-
surements were conducted using a 50 fs Ti:sapphire laser (Micra, Coherent) at 800
nm and 80MHz repetition rate. The laser beam was passed through a half-wave
plate mounted in a rotation stage and was directed into an upright microscope
(Olympus) and focused onto a sample surface using a ×50 microscope objective

(Numerical Aperture: NA= 0.5) to a few micron spot. The laser energy at the
sample surface was ~0.1W. The SHG light was collected in backscattering con-
figuration using the same objective and was directed to a monochromator (Spectra
Pro 2300i, Acton, f = 0.3 m) that was coupled to the microscope and equipped with
a 150 grooves/mm grating and a CCD camera (Pixis 256BR, Princeton Instru-
ments). Before entering the monochromator, the SHG light was passed through a
short-pass cutoff filter (650 nm) and a polarizer to filter out the fundamental
excitation light at 800 nm and select the SHG polarization parallel to that of the
excitation light. The low-temperature SHG measurements were conducted using
the same liquid He-cryostat, which was used for Raman measurements.

DFT calculations. The DFT calculations (relaxations and Γ-point phonon fre-
quencies) in this study use the VASP 5.3.5 computational package34 and are carried
out under the Perdew–Burke–Ehrenhof generalized gradient approximation
(GGA) and the the DFT-D2 method as developed by Grimme35. The recom-
mended VASP PAW pseudopotentials were used. All calculations used a 600 eV
energy cutoff. Raman frequencies and intensities are calculated using the package
developed by Fonari and Stauffer36. The calculations were performed on two
phases of CuInP2Se6: a 20-atom ferroelectric (FE) phase, and a 40-atom 1 × 2 × 1
antiferrolectric (AFE) phase. The setup for the Cu atoms in the AFE unit cell is the
same as that found by Song et al.12 For phonon calculations, both structures were
relaxed so that the forces are less than 5e−8 eV/Å to eliminate residual spurious
forces. The FE/FE and FE/AFE domain-wall calculations are performed using 8 ×
2 × 1 supercells containing 160 atoms. These calculations use a Γ-centered Mon-
khorst-Pack (MP) k-point grid of 1 × 4 × 2. All atoms were relaxed until all forces
were smaller than 0.02 eV/Å. The domain boundary energy per unit area is cal-
culated as

Eboundary ¼ ðEtotal � Ephase2 Þ=2S; ð1Þ

where Etotal is the supercell energy, Ephase1 and Ephase2 are the energies for the
requisite number of atoms in those phases, and S is the cross-sectional area of the
boundary.

Data availability
Source data for the scanning probe images, results of optical spectroscopy and first
principles calculations presented in this manuscript will be shared upon reasonable
request.

Code availability
The data analysis was carried out with widely accepted commercial and open source
software without any significant code customization.
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