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Piezoelectric energy harvesting for
civil infrastructure system applications:
Moving loads and surface strain
fluctuations

Alper Erturk

Abstract

This article formulates the problem of vibration-based energy harvesting using piezoelectric transduction for civil infra-

structure system applications with a focus on moving load excitations and surface strain fluctuations. Two approaches of
piezoelectric power generation from moving loads are formulated. The first one is based on using a bimorph cantilever

located at an arbitrary position on a simply supported slender bridge. The fundamental moving load problem is reviewed

and the input to the cantilevered energy harvester is obtained to couple with the generalized electromechanical equa-
tions for transient excitation. The second approach considers using a thin piezoceramic patch covering a region on the

bridge. The transient electrical response of the surface patch to moving load excitation is derived in the presence of a

resistive electrical load. The local way of formulating piezoelectric energy harvesting from two-dimensional surface strain
fluctuations of large structures is also discussed. For a thin piezoceramic patch attached onto the surface of a large struc-

ture, analytical expressions of the electrical power output are presented for generalized, harmonic, and white noise–type

two-dimensional strain fluctuations. Finally, a case study is given to analyze a small piezoceramic patch for energy
harvesting from surface strain fluctuations along with measured bridge strain data.
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Introduction

Vibration-based energy harvesting has received growing

attention over the last decade (Anton and Sodano,

2007; Beeby et al., 2006; Cook-Chennault et al., 2008;

Sodano et al., 2004). The basic motivation in this

research field is due to the reduced power requirement

of small electronic components, such as the wireless

sensor networks used in passive and active monitoring

applications. If such wireless electronic components can

be powered by the vibrational energy available in their

environment, the maintenance costs for periodic battery

replacement as well as the resulting chemical waste of

conventional batteries can be reduced dramatically.

The basic transduction mechanisms used for

vibration-to-electric energy conversion are the electro-

magnetic (Mann and Sims, 2009), electrostatic (Chiu

and Tseng, 2008), and piezoelectric (Erturk and Inman,

2009) transduction mechanisms. There have been

recent articles focusing on the use of magnetostriction

(Wang and Yuan, 2008) and electroactive polymers

(Aureli et al., 2010) as well. Among these alternative

techniques for converting ambient vibrations into elec-

tricity, piezoelectric transduction has been studied most

heavily (Anton and Sodano, 2007; Cook-Chennault

et al., 2008; Sodano et al., 2004) primarily due to the

ease of application and large power density of piezo-

electric materials (Cook-Chennault et al., 2008). In the

last few years, researchers have investigated various

problems related to modeling (Elvin and Elvin, 2009;

Erturk and Inman, 2009; Renno et al., 2009; Shu et al.,

2007; Stanton et al., 2010a, b) and applications (Anton

and Sodano, 2007; Cook-Chennault et al., 2008;

Sodano et al., 2004) of piezoelectric energy harvesters.

Recent research in the field of vibration-based

energy harvesting has focused on modeling and exploit-

ing nonlinear dynamics (Cottone et al., 2009; Erturk
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et al., 2009a; Erturk and Inman, 2011a; Mann and

Sims, 2009; Stanton et al., 2009, 2010a, b) as well as

stochastic excitation (Adhikari et al., 2009; Daqaq,

2010; Halvorsen, 2008; Litak et al., 2010; Scruggs,

2009) of vibration-based energy harvesters. Although

civil infrastructure systems constitute a unique applica-

tion field for energy harvesting due to the common use

of battery-powered wireless sensors (Elvin et al., 2003,

2006), such as the acoustic emission sensors (Ozevin

et al., 2006; Shigeishi et al., 2001) used for structural

health prognosis in bridges, electromechanical model-

ing of the fundamental civil engineering problems for

vibration-based energy harvesting has not been dis-

cussed in the literature. The aim of this article is to pro-

vide an introduction to formulating such problems by

focusing on piezoelectric energy harvesting for typical

civil infrastructure system applications. The problems

considered in this article are the moving load excitation

of slender bridges and the surface strain fluctuations of

large structures for piezoelectric power generation.

In the following sections, first a cantilevered piezoelec-

tric energy harvester model is summarized for harmonic,

arbitrary transient, and white noise excitations. After that,

the fundamental moving load problem is visited for piezo-

electric energy harvesting by considering two scenarios. In

the first scenario, a cantilevered energy harvester is located

at an arbitrary point on the bridge and a systematic

approach is discussed for relating the moving load prob-

lem to the distributed parameter electromechanical equa-

tions of the energy harvester. In the second scenario, a

piezoceramic patch covers a region on the bridge and ana-

lytical derivations are given to relate the piezoelectric

power output delivered from the patch to a resistive elec-

trical load in terms of the moving load excitation. After

the fundamental moving load problem, the focus is placed

on formulating the piezoelectric energy-harvesting prob-

lem from two-dimensional surface strain fluctuations on

large structures. Considering the orthogonal strain fluc-

tuations as the excitation input to a rectangular piezocera-

mic patch, analytical expressions for the electrical power

output are obtained for generalized, harmonic, and white

noise inputs. Finally, a case study is given to analyze a

small piezoceramic patch for power generation from sur-

face strain fluctuations. The power generation potential of

a small piezoelectric patch is discussed based on the strain

measurements for a steel multigirder bridge.

Piezoelectric Energy Harvesting from

Base Excitation of Bimorph Cantilevers

This section summarizes the analytical derivations for a

bimorph cantilever located on and excited by vibrations

of a host civil engineering structure. The governing elec-

tromechanical equations are given for a generalized

base acceleration input, which are then solved for the

steady-state electromechanical response for harmonic

base acceleration. Following the harmonic excitation

case, the governing equations are expressed in the first-

order form for transient base acceleration inputs (which

is the typical case in the moving load problem).

Response to broadband random base vibration is also

covered at the end of this section.

Governing Electromechanical Equations

The cantilevered energy harvester configurations shown

in Figure 1 are geometrically uniform symmetric thin

bimorphs (made of two identical piezoceramic layers

bracketing an elastic substructure layer) and they are

excited under base vibration. The original model

(Erturk and Inman, 2009) assumes the base motion to

be translation in the transverse direction with superim-

posed small rotation while the derivation given here

ignores the base rotation. A tip mass (proof mass) is

attached rigidly at the free end to tune the natural fre-

quencies (usually the focus is placed on the fundamental

natural frequency). The perfectly conductive electrodes

of negligible thickness fully cover the transverse faces of

the piezoceramic layers, and the wiring cases shown in

Figures 1(a) and (b) represent the series and parallel

connections of the electrical outputs (to the external

resistive load), respectively. The problem of interest in

vibration-based energy harvesting is to express the

power delivered to the electrical load in terms of the

base acceleration input.

The linear electroelastic dynamics of a thin bimorph

piezoelectric energy harvester beam under base excita-

tion are governed by the following equations (Erturk

and Inman, 2009):

D
∂
4wrel(x, t)

∂x4
+ cs

∂
5wrel(x, t)

∂x4∂t
+ cm

∂wrel(x, t)

∂t
+m

∂
2wrel(x, t)

∂t2

�qv(t)
dd(x)

dx
� dd(x� L)

dx

� �

= � m+Mtd(x� L)½ �a(t)

ð1Þ

Figure 1. Cantilevered bimorph piezoelectric energy harvester

configurations under base excitation: (a) series connection and

(b) parallel connection.
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Ceq
p

dv(t)

dt
+
v(t)

Rl

+q

ð

L

0

∂
3wrel(x, t)

∂x2∂t
dx= 0 ð2Þ

where a(t) is the translational base acceleration in the

transverse direction, wrel(x, t) is the vibration response

(transverse displacement of the neutral axis relative to

the moving base at position x and time t), v(t) is the

voltage response (across the external resistive load

Rl), D is the bending stiffness of the beam, m is the

mass per unit length of the beam, cm is the external

(air) damping coefficient (mass proportional damp-

ing), cs is the internal (strain rate or Kelvin–Voigt)

damping coefficient of the composite structure (stiff-

ness proportional damping), Mt is the tip mass, Ceq
p is

the equivalent capacitance of the piezoceramic layers,

q is the electromechanical coupling term in the physi-

cal coordinates, and d(x) is the Dirac delta function.

The electromechanical coupling term is q=�e31bhpc if

the layers are connected in series, whereas it is

q= 2�e31bhpc if the layers are connected in parallel

(where �e31 is the plane-stress piezoelectric stress con-

stant, b is the width of the layers, and hpc is the dis-

tance from the neutral axis to the center of each

piezoceramic layer: hpc = (hp + hs)=2, where hp is the

thickness of each piezoceramic layer and hs is the

thickness of the substructure layer).

Based on the standard modal analysis procedure

(Meirovitch, 2001), that is, assuming the system to be a

normal-mode system,1 the vibration response is

expressed in terms of the modal coordinates hr(t) and

the mode shapes (mass-normalized eigenfunctions)

fr(x) as

wrel(x, t) =
X

‘

r = 1

fr(x)hr(t) ð3Þ

where the eigenfunctions of a cantilevered Euler–

Bernoulli beam with a tip mass attachment can be

expressed for the r-th vibration mode (of the undamped

problem) as

fr(x) =Cr cos
lr

L
x� cosh

lr

L
x+ §r sin

lr

L
x� sinh

lr

L
x

� �� �

ð4Þ

Here, §r is obtained from

§r =
sinlr � sinh lr + lr

Mt

mL
coslr � cosh lrð Þ

coslr + cosh lr � lr
Mt

mL
sin lr � sinhlrð Þ

ð5Þ

and Cr is a modal amplitude constant that is evaluated

by normalizing the eigenfunctions according to either

one of the following orthogonality conditions:

ð

L

0

fs(x)mfr(x)dx+fs(L)Mtfr(L) +
dfs(x)

dx
It
dfr(x)

dx

� �

x= L

= drs

ð

L

0

fs(x)D
d4fr(x)

dx4
dx� fs(x)D

d3fr(x)

dx3

� �

x= L

+
dfs(x)

dx
D
d2fr(x)

dx2

� �

x= L

=v2
rdrs ð6Þ

Here, It is the mass moment of inertia of the tip mass

Mt about the free end of the elastic beam and drs is the

Kronecker delta.2 Furthermore, vr is the undamped

natural frequency of the r-th vibration mode in the

short-circuit conditions (i.e., Rl ! 0) given by

vr = l
2

r

ffiffiffiffiffiffiffiffi

D

mL4

r

ð7Þ

where the eigenvalues of the system (lr for mode r) are

obtained from the following transcendental equation:

1+ cosl cos hl+ l
Mt

mL
cosl sin hl� sin l cos hlð Þ

� l3It

mL3
cosh l sinl+ sinhl coslð Þ

+
l4MtIt

m2L4
1� cosl cosh lð Þ= 0 ð8Þ

The electromechanically coupled ordinary differen-

tial equations in the modal coordinates can be given by

the following equations (Erturk and Inman, 2009):

d2hr(t)

dt2
+ 2zrvr

dhr(t)

dt
+v2

rhr(t)� ~urv(t) =sra(t) ð9Þ

Ceq
p

dv(t)

dt
+
v(t)

Rl

+
X

‘

r = 1

~ur
dhr(t)

dt
= 0 ð10Þ

where zr is the modal mechanical damping ratio, ~ur is

the modal electromechanical coupling (~ur and Ceq
p are

read from Table 1 depending on the series or parallel

connection of the piezoceramic layers), and sr is the

modal forcing term expressed as

Table 1. Modal electromechanical coupling and equivalent

capacitance of a bimorph energy harvester for the series and

parallel connections of the piezoceramic layers

Series connection Parallel connection

~ur �e31bhpc
dfr(x)

dx

�

�

�

x = L
2�e31bhpc

dfr(x)

dx

�

�

�

x = L

C
eq
p

�e
S
33
bL

2hp

2�eS
33
bL

hp
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sr = � m

ð

L

0

fr(x)dx�Mtfr(L) ð11Þ

In Table 1, for a beam-like thin cantilever, the plane-

stress piezoelectric stress constant �e31 can be given in

terms of the more commonly used piezoelectric strain

constant d31 as �e31 = d31=s
E
11

(where sE
11

is the elastic com-

pliance at constant electric field) and the plane-stress per-

mittivity constant at constant strain is �es
33
= eT

33
� d2

31
=sE

11

(where e
T
33

is the permittivity component at constant

stress). Note that, in Figure 1, the directions 1 and 3 are

coincident with the directions x and z, respectively.

Steady-State Response to Harmonic Base

Acceleration

If the base acceleration is harmonic of the form

a(t) =A0e
jvt (where A0 is the base acceleration ampli-

tude, v is the excitation frequency, and j is the unit

imaginary number), the steady-state analytical solution

for the voltage-to-base acceleration frequency response

function (FRF) is obtained from Equations (9) and

(10) as follows:

a(v) =
v(t)

A0e
jvt

=

X

‘

r = 1

�jv~ursr

v2
r � v2 + j2zrvrv

1

Rl

+ jvCeq
p +

X

‘

r = 1

jv~u2r
v2
r � v2 + j2zrvrv

ð12Þ

and the steady-state vibration response-to-base accel-

eration FRF is

b(v, x) =
wrel(x, t)

A0ejvt

=
X

‘

r = 1

sr � ~ur

P

‘

r = 1

jv~ursr

v2
r�v2 + j2zrvrv

1

Rl
+ jvC

eq
p +

P

‘

r = 1

jv~u2r
v2
r�v2 + j2zrvrv

0

B

B

@

1

C

C

A

fr(x)

v2
r � v2 + j2zrvrv

2

6

6

4

3

7

7

5

ð13Þ

For excitations close to a natural frequency, that is,

v’vr, the multimode Equations (12) and (13) reduce to

the following single-mode equations:

â(v) =
v̂(t)

A0ejvt

=
�jvRl

~ursr

1+ jvRlC
eq
pð Þ v2

r � v2 + j2zrvrv
� 	

+ jvRl
~u2r

ð14Þ

b̂(v, x) =
ŵrel(x, t)

A0ejvt

=

1+ jvRlC
eq
p


 �

srfr(x)

1+ jvRlC
eq
pð Þ v2

r � v2 + j2zrvrv
� 	

+ jvRl
~u2r

ð15Þ

where r = 1 for the frequently investigated case of exci-

tation around the fundamental vibration mode to

obtain the largest power output.

Response to Generalized Base Acceleration

In order to formulate the problem of piezoelectric

energy harvesting for generalized or transient accelera-

tion inputs, Equations (9) and (10) can be given in the

first-order form as

_u(1)r

_u(2)r

_u(3)

8

<

:

9

=

;

=

u(2)r

�2zrvru
(2)
r � v2

ru
(1)
r + ~uru

(3) +sra(t)

�u(3)

RlC
eq
p
�

P

‘

r = 1

~uru
(2)
r

C
eq
p

8

>

>

<

>

>

:

9

>

>

=

>

>

;

ð16Þ

where the overdot represents differentiation with

respect to time while the state variables are

u(1)r (t) =hr(t), u
(2)
r (t) =

dhr(t)

dt
, u(3)(t) = v(t) ð17Þ

Note that the energy harvester beam has infinitely

many vibration modes (i.e., r = 1, 2,.). Depending on

the frequency content of the base acceleration input

and the modal frequencies of the harvester beam, it is

sufficient to consider a few vibration modes (say N

modes), hence the dimension of the first-order repre-

sentation reduces to 2N + 1.

If the initial displacement and velocity distributions

of the harvester beam are denoted by k(x) and m(x),

respectively, and the initial voltage across the load is

v0, the following summarizes the initial conditions in

the physical coordinates:

wrel(x, 0) = k(x),
∂wrel(x, t)

∂t

�

�

�

�

t = 0

=m(x), v(0) = v0 ð18Þ

The first orthogonality condition given by Equation

(6) can be used to obtain the initial conditions for two

of the state variables as

u(1)r (0) =hr(0)

=

ð

L

0

k(x)mfr(x)dx + k(L)Mtfr(L) +
dk(x)

dx
It
dfr(x)

dx

� �

x= L

ð19Þ

u(2)r (0) =
dhr(t)

dt

�

�

�

�

t = 0

=

ð

L

0

m(x)mfr(x)dx+m(L)Mtfr(L) +
dm(x)

dx
It
dfr(x)

dx

� �

x= L

ð20Þ
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and the initial condition for the third state variable is

simply

u(3)(0) = v(0) = v0 ð21Þ

Having the first-order form of the electromechanical

equations and the initial conditions of the state vari-

ables (the initial conditions are often zero), an appro-

priate ordinary differential equation solver can be

employed to solve for the response to arbitrary accel-

eration inputs.

Response to Broadband Base Acceleration of White

Noise Type

For a linear random process (Newland, 1993), if the

power spectral density (PSD) of the base acceleration

a(t) is Sa(v), the PSD of the voltage output is obtained

from

Sv(v) = a(v)j j2 Sa(v) ð22Þ

where a(v) is given by Equation (12). The inverse

Fourier transform of the PSD of the voltage output is

its autocorrelation function:

Rv(t) =

ð

‘

�‘

Sv(v)e
jvtdv=

ð

‘

�‘

a(v)j j2 Sa(v)ejvtdv ð23Þ

For the case of ideal white noise excitation

(Newland, 1993), the input PSD covers the entire fre-

quency band with constant amplitude, yielding

Rv(t) = S0

ð

‘

�‘

a(v)j j2 ejvtdv ð24Þ

where S0 is the constant PSD of the base acceleration

a(t).

The mean square value of the voltage output is

related to its autocorrelation function based on the fol-

lowing expression:

E v2(t)
� 


=Rv(0) =

ð

‘

�‘

a(v)j j2 Sa(v)dv= S0

ð

‘

�‘

a(v)j j2dv

ð25Þ

where the ideal white noise spectral density is substi-

tuted. Recalling that the electrical power output is sim-

ply v2(t)=Rl, the expected value of the power output

becomes

E P(t)½ �= S0

Rl

ð

‘

�‘

a(v)j j2dv ð26Þ

Therefore, the exact analytical solution for the

expected value of the power output is obtained from

E P(t)½ �= S0

Rl

ð

‘

�‘

P

‘

r = 1

�jv~ursr

v2
r�v2 + j2zrvrv

1

Rl
+ jvC

eq
p +

P

‘

r = 1

jv~u2r
v2
r�v2 + j2zrvrv

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

2

dv ð27Þ

which can be simplified dramatically by considering

only the fundamental vibration mode (based on the rea-

soning that the highest energy is around the first natu-

ral frequency):

E P̂(t)
� 


=
S0

Rl

ð

‘

�‘

�jvRl
~u1s1

1+ jvRlC
eq
pð Þ v2

1
� v2 + j2z1v1v

� 	

+ jvRl
~u2
1

�

�

�

�

�

�

�

�

�

�

2

dv

ð28Þ

Using the integration relations in Newland’s appen-

dix (Newland, 1993) gives

E P̂(t)
� 


=
pS0Rl

~u2
1
s2

1

Rl
~u2
1
+ 2z1v1 1+R2

l
~u2
1
C

eq
p

� 	

+ 2z1 +RlC
eq
p v1ð Þ RlC

eq
p v1ð Þ

� 


ð29Þ

which is analogous to the lumped parameter derivations

given by Halvorsen (2008) and Adhikari et al. (2009).

Piezoelectric Energy Harvesting from

Moving Load Excitation

The problem of piezoelectric power generation from

moving load excitation is formulated for two scenarios

by focusing on a slender bridge3 configuration (for pos-

sible applications to high-span highway bridges). The

problems considered in the following are (1) energy

harvesting from the vibrations of a piezoelectric cantile-

ver located at an arbitrary point on the bridge and (2)

energy harvesting using a thin piezoceramic patch cov-

ering an arbitrary region on the bridge.

Cantilevered Piezoelectric Energy Harvester Located

on a Slender Bridge

The uniform slender bridge shown in Figure 2 is under

the excitation of a transversely applied constant-

amplitude point load P (representing a vehicle) moving

at a constant speed �v. The equation of motion govern-

ing the vibrations of the bridge is

�D
∂
4
�w(�x, t)

∂�x4
+�cs

∂
5
�w(�x, t)

∂�x4∂t
+�cm

∂�w(�x, t)

∂t
+ �m

∂
2
�w(�x, t)

∂t2
=Pd(�x� �vt)

ð30Þ

where �w(�x, t) is the vibration response of the bridge

(transverse displacement of the neutral axis at posi-

tion �x and time t), �D is the bending stiffness, �m is the

A. Erturk 1963



mass per length, �cs and �cm represent the stiffness pro-

portional and mass proportional damping compo-

nents, respectively, and d(�x) is the Dirac delta

function. The reference frame of the cantilevered

piezoelectric energy harvester located at �x= Lh is the

xz-frame (as in Figure 1) while the reference frame of

the bridge is the �x�z-frame as shown in Figure 2 (there-

fore, x is the axial position on the harvester beam,

whereas �x is the axial position on the bridge). The

governing electromechanical equations of the canti-

levered bimorph energy harvester located on the

bridge are given by Equations (1) and (2). The basic

assumption in the following derivation is that the

effect of the small harvester beam and its dynamics

on the bridge is negligible. As the load travels on the

bridge, the energy harvester is excited and electrical

power is generated but the bridge dynamics is not

affected; therefore, no electrical term exists in

Equation (30). The structural dynamics of the energy

harvester beam can be affected by piezoelectric power

generation (Lesieutre et al., 2004), which is taken into

account in Equations (1) and (2).

The systematic approach is, therefore, to solve for

the vibration response of the bridge to use it as the exci-

tation term in the governing equations of the energy

harvester. The base acceleration of the energy harvester

in the first-order representation given by Equation (16)

is therefore due to the vibration response of the bridge

at �x= Lh through

a(t) =
∂
2
�w(�x, t)

∂t2

�

�

�

�

�x= Lh

ð31Þ

The following derivation provides the solution of

�w(�x, t) for 0<t<T (where T = Lb=�v is the time of tra-

verse of the moving load over the bridge), so that it

can be used in the electromechanical equations of

the energy harvester to obtain the electrical response

for a given resistive electrical load and a mechanical

moving load. The analytical treatment of the

undamped version of Equation (30) can be found in

many texts and articles (Fryba, 1972; Olsson, 1991;

Rao, 2007; Timoshenko et al., 1974). The damped

problem results in rather lengthy expressions but the

analytical modal analysis procedure is applicable

since the system is assumed to be proportionally

damped.

The vibratory response of the slender bridge can be

expressed as

�w(�x, t) =
X

‘

r = 1

�fr(�x)�hr(t) ð32Þ

where �fr(�x) is the mass-normalized eigenfunction and

�hr(t) is the modal coordinate for the r-th vibration

mode of the bridge. The mass-normalized eigenfunc-

tion for simple end conditions is

�fr(�x) =

ffiffiffiffiffiffiffiffiffi

2

�mLb

r

sin
rp�x

Lb

� �

ð33Þ

Equation (33) satisfies the orthogonality conditions

ð

Lb

0

�fs(�x)�m
�fr(�x)d�x= drs,

ð

Lb

0

�fs(�x)
�D
d4�fr(�x)

d�x4
d�x= �v2

rdrs

ð34Þ

where the undamped natural frequency for the r-th

vibration mode of the bridge is

�vr = rpð Þ2
ffiffiffiffiffiffiffiffiffi

�D

�mL4b

s

ð35Þ

Following the standard modal analysis procedure

(Meirovitch, 2001), the modal equation of motion is

obtained as

d2�hr(t)

dt2
+ 2�zr �vr

d�hr(t)

dt
+ �v2

r �hr(t) =P

ffiffiffiffiffiffiffiffiffi

2

�mLb

r

sin
rp�vt

Lb

� �

ð36Þ

where �zr is the modal mechanical damping ratio

(�zr =�cs�vr=2�D +�cm=2�m�vr).

For zero initial conditions of the bridge (in terms of

the displacement and velocity fields), the total solution

to Equation (36) is obtained in view of the initial condi-

tions and the orthogonality conditions as

�hr(t) =Fr sin
rp�vt

Lb
� ur

� �

+ e�
�jr �vr t

�

sinur cos �vrt + �jr sin ur �
rp�v

�vrLb
cos ur

� �

sin �vrt

� ��

ð37Þ

where

Figure 2. Schematic of the moving load problem for a slender

bridge with a cantilevered bimorph energy harvester (the size of

the cantilever is exaggerated).
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Fr =P

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2

�mLb �v2
r � rp�v

Lb


 �2
� �2

+
2�zr �vrrp�v

Lb


 �2

( )

v

u

u

u

u

t

,

ur = tan
�1

2�zr �vrrp�v

Lb

�v2
r � rp�v

Lb


 �2

0

B

@

1

C

A
ð38Þ

The vibration response is then4

�w(�x, t) =
X

‘

r = 1

�fr(�x)Fr sin
rp�vt

Lb
� ur

� �

+ e�
�jr �vrt

�

sin ur cos �vrt + �jr sin ur �
rp�v

�vrLb
cos ur

� �

sin �vrt

� ��

ð39Þ

Therefore, the acceleration input to the cantilevered

energy harvester located at �x=Lh is

a(t) =
X

‘

r = 1

�fr Lhð ÞFr

d2

dt2
sin

rp�vt

Lb
� ur

� �

+ e�
�jr �vrt

�

sin ur cos �vrt + �jr sin ur �
rp�v

�vrLb
cos ur

� �

sin �vrt

� ��

ð40Þ

which can be further expanded after the application of

the differentiation. The transverse acceleration given by

Equation (40) is the input to the first-order representa-

tion of the energy harvester equations given by

Equation (16).

The nature of the bridge response strongly depends

on the speed of the moving load. Fryba (1972) nor-

malizes the p�v=Lb term with respect to the fundamen-

tal natural frequency of the bridge and defines the

dimensionless parameter a=p�v=�v1Lb. Olsson (1991)

reports that a= 1 typically corresponds to a vehicle

speed of 400–1500 km/h depending on the structural

flexibility of the bridge, defining a conservative upper

limit for most practical purposes. For the fast vehicle

speed of a= 1, the midspan (�x= Lb=2) reaches its maxi-

mum deflection (implying a quarter cycle of vibra-

tion) after the vehicle exits the bridge (Olsson, 1991).

Simulations given in Fryba (1972) show that the

maximum dynamic deflection is obtained for

0:5 < a < 0:7. For large values of a, the deflection

rapidly tends to zero, whereas it converges to the sta-

tic deflection for low values of a.

Large-span highway bridges are usually lightly

damped structures (Fryba, 1972). Moreover, if the

vehicle speed satisfies a � 1 (i.e., �v � �v1Lb=p), the

response is dominated by the fundamental vibration

mode of the bridge. Therefore, taking only the first

term (r = 1) in the summation of Equation (39) due to

low vehicle speed and setting �j1 � 1 due to light damp-

ing of the bridge simplifies Equation (39) to

�w(�x, t) ffi �f1(�x)F1 sin
p�vt

Lb
=

2P

�m�v2

1
Lb

sin
pLh

Lb
sin

p�vt

Lb
ð41Þ

Thus, the dynamic response of the bridge is reduced

to simple harmonic motion as a first approximation.

Consequently, the acceleration input to the cantilevered

energy harvester is also harmonic due to

a(t) =
∂
2
�w(�x, t)

∂t2

�

�

�

�

�x= Lh

ffi �f1 Lhð ÞF1

d2

dt2
sin

p�vt

Lb

� �

=� 2Pp2
�v2

�m�v2

1
L3b

sin
pLh

Lb
sin

p�vt

Lb
ð42Þ

Hence, the harmonic solution of the piezoelectric

energy harvester equations can be used for designing

the cantilever. If the typical vehicle speed is known

along with the span length, the fundamental resonance

frequency of the cantilever should be chosen as p�v=Lb.
Moreover, the parameters of the energy harvester can

be optimized (Erturk and Inman, 2011b; Renno et al.,

2009) based on the harmonic solution at this frequency

since the optimal parameters (such as the optimal elec-

trical load) strongly depend on the excitation frequency

(but they do not depend on the base acceleration ampli-

tude in the linear energy harvesting problem). For a

set of vehicle speed and span length combinations,

Figure 3 shows the variation of the excitation frequency

of the cantilever obtained from v=p�v=Lb. Note that

the form of Equation (42) is strictly for �v � �v1Lb=p
and �j1 � 1 (therefore, the frequencies shown in Figure

3 are the single-harmonic excitation frequencies of the

energy harvester only for this condition). That is, the

assumption is that the fundamental natural frequency

of the bridge is much higher than the vehicle-induced

frequency. If the fundamental natural frequency of the

bridge is such that the vehicle-induced frequency

(v=p�v=Lb) interacts with it (or with the frequencies of

higher modes), the general form of Equation (40)

should be used.

The voltage response of the piezoelectric energy har-

vester due to Equations (1) and (2) or due to Equation

(16) is proportional to the excitation amplitude. Ideally,

the cantilevered energy harvester should be located at

Figure 3. Variation of the vehicle-induced frequency with

vehicle speed and span length.
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the position of the maximum dynamic response on the

bridge. The position of the maximum dynamic response

is related to the eigenfunction expression given by

Equation (33). Expectedly, if the response of the bridge

is dominated by the fundamental vibration mode (for

low vehicle speeds), the ideal location is obtained from

Equation (33) as the midspan of the bridge (�x=Lb=2). If
the bridge response is dominated by higher vibration

modes, one should avoid locating the energy harvester

at the nodal positions of the respective eigenfunctions

and use the antinodal positions if the typical speeds in

the traffic (therefore, the excitation frequencies and the

expected mode shapes) are known.

Thin Piezoceramic Patch Covering a Region on a

Slender Bridge

In many cases, vehicle-induced frequencies as well as

bridge natural frequencies can be too low to excite a rel-

atively stiff energy-harvesting cantilever effectively

unless the cantilever is designed to be structurally very

flexible. An alternative approach is presented in this sec-

tion to harvest piezoelectric energy without using the

cantilevered configuration. The slender bridge shown in

Figure 4 has a piezoceramic patch covering the region

Lh1 < �x < Lh2 for harvesting energy from the vibrations

induced by the moving load. The perfectly conductive

electrodes covering the transverse faces of the patch are

connected to an external resistive load. For the typical

dimensions of commercially available piezoceramics,

the patch length is much smaller than the length of the

bridge, that is, Lh2 � Lh1ð Þ � Lb. However, several of

such patches can be combined to generate usable electri-

cal power from the dynamic strain induced on the sur-

face by the moving load. The aim of this section is to

relate the dynamic surface strain of the bridge (which is

a function of the moving load) to the electrical output

of the piezoceramic across a given resistive electrical

load. It is reasonable to assume that the dynamics of

the bridge are not affected by piezoelectric power gener-

ation. Therefore, the governing dynamic equation of

the slender bridge and its vibration response are given

by Equations (30) and (39), respectively.

As the admittance of the external circuit with a resis-

tor is 1=Rl, the integral form of Gauss’s law leads to

d

dt

ð

A

D � ndA

0

@

1

A=
v(t)

Rl

ð43Þ

where v(t) is the voltage across the resistive load, D is

the vector of electric displacement components, n is the

unit outward normal, and the integration is performed

over the electrode area A of the piezoceramic patch.

For one-dimensional strain fluctuations, the electric

displacement component in the thickness direction of

the patch is

D3 =�e31S1 + �e
S
33
E3 ð44Þ

where D3 is the electric displacement component, E3 is

the electric field component, S1 is the longitudinal strain

component while the piezoelectric stress constant (�e31)

and the permittivity component (�eS
33
) are as defined ear-

lier (the directions 1 and 3 are coincident with the direc-

tions �x and �z in Figure 4).

Since the electrodes are perpendicular to the trans-

verse direction, the only nonzero component of the

inner product in Equation (43) is due to Equation (44).

After expressing the mechanical strain in the piezocera-

mic in terms of the curvature of the bridge and the elec-

tric field in terms of the voltage across the load, the

governing circuit equation is obtained from Equation

(43) as

Cp

dv(t)

dt
+
v(t)

Rl

= � �e31hpcbp

ð

Lh2

Lh1

∂
3
�w(�x, t)

∂�x2∂t
d�x ð45Þ

where bp is the width of the piezoceramic (equal to the

width of the electrodes), hpc is the distance from the

neutral axis of the bridge to the center of the piezocera-

mic patch, �e31 is the effective (plane-stress) piezoelectric

stress constant, and Cp is the capacitance of the piezo-

ceramic patch (Cp = �e
S
33
bp(Lh2 � Lh1)=hp, where hp is the

thickness of the piezoceramic).

Substituting the response form given by Equation

(32) in Equation (45) gives

dv(t)

dt
+
v(t)

t
=
X

‘

r = 1

cr

d�hr(t)

dt
ð46Þ

where �hr(t) is given by Equation (37), t is the time con-

stant of the circuit given by t =RlCp, and the modal

electromechanical coupling is

cr = � �e31hpcbp

Cp

ð

Lh2

Lh1

d2�fr(�x)

d�x2
d�x= � �e31hpcbp

Cp

d�fr(�x)

d�x

�

�

�

�

�x= Lh2

�x= Lh1

ð47Þ

Figure 4. Schematic of the moving load problem for a slender

bridge with a thin piezoceramic patch covering a region (the size

of the patch is exaggerated).
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Equation (46) can be solved by using the integrating

factor et=t, yielding

v(t) = e
�t
t

ð

e
t
t

X

‘

r = 1

cr

d�hr(t)

dt
dt ð48Þ

where the initial voltage is assumed to be zero.

Therefore, for the external resistive load Rl, the electri-

cal power output is

P(t) =
1

Rl

e
�t
t

ð

e
t
t

X

‘

r = 1

cr

d�hr(t)

dt
dt

" #2

ð49Þ

The excitation of the piezoceramic patch (and hence,

its electrical output) is proportional to the dynamic

strain field induced over the region it covers. From

Equation (47), the optimal region to cover is the region

of maximum curvature, so that cr is maximized for a

given vibration mode r. Therefore, for vibrations with

the fundamental mode of the bridge (r = 1), one should

prefer covering the region (Lb � Lp)=2 < �x <

(Lb + Lp)=2 (where Lp is the length of the patch). For

vibrations with higher modes, covering the inflection

points (strain nodes (Erturk et al., 2009b)) of the bridge

with a single patch results in cancellation of the electri-

cal output. Nevertheless, in practice, it is necessary to

use several patches (due to their size limitations) for

covering a significant region on the bridge and one sim-

ply needs to consider the phases of the electrical out-

puts before combining them in the circuit to avoid

cancellations (Erturk et al., 2009b).

Piezoelectric Energy Harvesting from

Local Strain Fluctuations

The derivation given in this section aims to express the

power output due to the dynamic strain field induced in

a small rectangular piezoceramic patch attached onto a

vibrating host structure (Figure 5). Therefore, the prob-

lem considered here is a local and two-dimensional way

of treating the problem of the previous section. The

inputs in the following derivation are the dynamic

strain components in two perpendicular directions

rather than the original source of the excitation (e.g.,

moving load, fluid–structure interaction). Hence, the

generalized derivation covered here can be used for esti-

mating the piezoelectric power output extracted from

the surface strain energy of various engineering struc-

tures. The electromechanical response to generalized,

harmonic, and random strain fluctuations are derived

in the following section.

Response to Generalized Strain Fluctuations

In Figure 5, the dynamic loading condition (not shown)

and the orientation of the rectangular thin piezocera-

mic patch are such that the patch is exposed to strain

fluctuations in two perpendicular directions, such as

the principal strain directions (Gere and Timoshenko,

1990). The perfectly conductive electrodes covering the

upper and the lower faces of the piezoceramic patch

are connected to a resistive electrical load. As in the

moving load problem, it is assumed that the effect of

piezoelectric power generation on the dynamics of the

large structure is negligible. Moreover, the piezocera-

mic patch is much thinner than the host structure and

the bonding is perfect, so that the average strain distri-

bution in the patch is similar to the strain distribution

on the covered surface of the structure.

For the thin rectangular piezoceramic undergoing

strain fluctuations in the x and y directions ((1) and (2)

in Figure 5), the nonzero electric displacement compo-

nent is expressed as

D3 =�e31S1 +�e32S2 + �e
S
33
E3 ð50Þ

where S1 and S2 are the strain components,5 E3 is the

electric field component while the plane-stress piezo-

electric stress constants and the permittivity component

for a thin piezoceramic plate are obtained by neglecting

the transverse shear and thickness stress components as

�e31 =�e32 =
d31

sE
11
+ sE

12

, �e
S
33
= e

T
33
� 2d2

31

sE
11
+ sE

12

ð51Þ

Here, d31 is the piezoelectric strain constant, sE
11

and

sE
12

are the elastic compliance components at constant

electric field, and e
T
33

is the permittivity component at

constant stress. In Equation (51), the symmetry of

transverse isotropy about the z-axis is applied by

assuming a poled piezoelectric ceramic. Hence,

Equation (50) becomes

D3 =�e31 S1 + S2ð Þ+ �eS
33
E3 ð52Þ

If the voltage across the resistive load Rl is denoted

by v(t), Equation (43) leads to

dv(t)

dt
+
v(t)

t
=
�e31

Cp

ð

A

∂

∂t
S1(x, y, t) + S2(x, y, t)½ �dA ð53ÞFigure 5. Rectangular thin piezoceramic patch attached onto a

large civil engineering structure for power generation from two-

dimensional surface strain fluctuations.
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where t =RlCp is the time constant and Cp = �e
S
33
A=hp is

the capacitance of the piezoceramic patch (where hp is

its thickness and A is the electrode area).

For the space-dependent strain components

S1(x, y, t) and S2(x, y, t), the solution of the voltage

response is

v(t) =
�e31

Cp

e
�t
t

ð

e
t
t

ð

A

∂

∂t
S1(x, y, t) + S2(x, y, t)½ �dA

8

<

:

9

=

;

dt ð54Þ

and the power output is obtained from

P(t) =
1

Rl

�e31

Cp

e
�t
t

ð

e
t
t

ð

A

∂

∂t
S1(x, y, t) + S2(x, y, t)½ �dA

8

<

:

9

=

;

dt

* +
2

ð55Þ

In order to maximize the spatial integrand in

Equation (55), one should avoid covering the inflection

lines of the host surface (where the strain components

change sign) with a single patch.

If the strain field in each direction of the piezocera-

mic patch is homogenous (so that S1(t) and S2(t) are

space-independent), the right-hand side of Equation

(53) is simplified to give

dv(t)

dt
+
v(t)

t
=
�e31A

Cp

d

dt
S1(t) + S2(t)½ � ð56Þ

yielding the power output of

P(t) =
1

Rl

�e31A

Cp

e
�t
t

ð

e
t
t
d

dt
S1(t) + S2(t)½ �dt

� �2

ð57Þ

Steady-State Response to Harmonic Strain

Fluctuations

Consider the case where the dynamic strain components

are harmonic in time at the same frequency:

S1(t) = ~S1e
jvt
, S2(t) = ~S2e

jvt ð58Þ

where ~S1 and ~S2 are the strain values (which might be

complex valued to account for a phase difference), v is

the excitation frequency, and j is the unit imaginary

number. In practice, each of the strain components

could also have a DC (static) component, which has no

contribution to the alternating voltage output of the

piezoceramic patch at steady state.

The steady-state voltage output is obtained from

Equation (56) as

v(t) = jv�e31A ~S1 + ~S2
� 	

jvCp +
1

Rl

� ��1

ejvt ð59Þ

Hence the steady-state power amplitude is

P=
v2

�e2
31
A2 ~S1 + ~S2

� 	2

Rl

1+v2R2

l C
2
p

ð60Þ

which can be used to find the optimal electrical load as

∂P

∂Rl

�

�

�

�

Rl =R
opt

l

= 0 ! R
opt
l =

1

vCp

ð61Þ

Therefore, the maximum power output is simply

Pmax = PjRl =R
opt

l
=
v�e2

31
A2 ~S1 + ~S2

� 	2

2Cp

ð62Þ

Response to Broadband Strain Fluctuations of White

Noise Type

For harmonic strain fluctuations in two perpendicular

directions, one can define the following electromechani-

cal FRF using Equation (59):

x(v) =
v(t)

jv ~S1 + ~S2
� 	

ejvt
=

�e31ARl

1+ jvRlCp

ð63Þ

which is the frequency-domain transfer function that

relates the harmonic voltage response to the harmonic

strain-rate resultant at steady state.

If the PSD of the white noise-type strain-rate resul-

tant is given by Ss(v) = S0, after following steps similar

to those given for the base excitation problem, the

expected value of the power output can be obtained as

E P(t)½ �= 1

Rl

ð

‘

�‘

x(v)j j2Ss(v)dv

=
S0

Rl

ð

‘

�‘

�e31ARl

1+ jvRlCp

�

�

�

�

�

�

�

�

2

dv=
S0p �e31Að Þ2

Cp

ð64Þ

Remarkably, for an ideal white noise–type strain-

rate resultant, the expected value of the electrical power

output extracted from the piezoceramic patch does not

depend on the external load resistance. The power out-

put in both harmonic and white noise excitations is

proportional to �e2
31
=Cp due to Equations (62) and (64),

respectively (where Cp}�e
S
33
). Therefore, the piezoelectric

material should be chosen to maximize �e2
31
=�eS

33
for har-

vesting energy from surface strain fluctuations using a

patch.

Strain Gage Measurements and Strain

Transformations

In practice, it is useful to measure the strain levels on

the surface of the host structure to estimate the power

output using the foregoing derivations prior to bonding
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a piezoceramic patch onto the host structure. The

directions of principal strain components and the way

they change in time (if they do) can also be checked.

Usually, strain gage rosettes are employed for strain

measurements and they consist of multiple gages

oriented at a fixed angle with respect to each other.

Figure 6 shows the schematic of a rectangular rosette

configuration (where the angle between the gages is

45�). In general, at least three independent strain read-

ings are required to define the two-dimensional state

of strain assuming that no other information is avail-

able. The rectangular rosette configuration shown in

Figure 6 gives three simultaneous strain measurements

SA, SB, and SC in A, B, and C directions, respectively.

The directions of the principal strain components (S1
and S2) are denoted by 1 and 2.

Based on Mohr’s circle (Gere and Timoshenko,

1990), the principal strain components are obtained

from the following strain transformation:

S1, 2 =
SA + SC

2
6

1
ffiffiffi

2
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

SA � SBð Þ2 + SB � SCð Þ2
q

ð65Þ

and the angle between gage A and the direction of posi-

tive S1 is

u=
1

2
tan�1

SA � 2SB + SC

SA � SC

� �

ð66Þ

Equations (65) and (66) give an idea regarding how

the strain levels and the direction of principal strains

change in time if the loading and structural conditions

result in such variations. It is useful noticing from

Equation (65) that

S1 + S2 =
SA + SC

2
+
SA + SC

2
= SA + SC ð67Þ

which implies that the strain resultant of two arbitrary

but orthogonal directions (SA + SC) is equal to that of

the principal strain directions (S1 + S2). Although deter-

mining the two-dimensional strain state on the surface

requires three independent strain measurements, two

orthogonal strain measurements are sufficient to esti-

mate the resultant of the principal strain components

and, therefore, the resulting power output for a rectan-

gular patch oriented in the principal strain directions.

Case Study for Piezoelectric Energy

Harvesting from Surface Strain

Fluctuations

Analysis of a Piezoceramic Patch for

Two-Dimensional Strain Fluctuations

This section analyzes a piezoceramic patch for piezo-

electric power generation from surface strain fluctua-

tions. The thin patch considered here is a 30 330 3

0.2 mm3 lead zirconate titanate PZT-5A square piezo-

ceramic plate with d31 = 2171 pm/V, sE
11
=16:4pm2=N,

sE
12
=�5:74pm2=N, e

T
33
= 15:05 nF=m (yielding �e31 =

�16 C=m2 and �e
S
33
= 9:57 nF=m). If two conductive

electrodes of negligible thickness cover the opposite

faces completely, the capacitance of the patch can be

calculated as Cp = 43 nF. In the following simulations,

it is assumed that the strain fluctuation is harmonic at

the same frequency in both orthogonal strain direc-

tions, and the strain field in the patch is homogeneous.

The input parameters required to predict the maximum

power amplitude in Equation (62) are then the strain

values (~S1 and ~S2) and the frequency of harmonic

fluctuation (v).

Suppose that the strain components have the oppo-

site sign at an arbitrary instant of time and they oscil-

late at 10 Hz. The peak power amplitudes for different

combinations of ~S1 and ~S2 at this frequency are shown

in Figure 7. In the simulations, ~S1 takes values between

50 and 80 microstrain while ~S2 takes values between

240 and 210 microstrain. It is known from Equation

(62) that the important parameter is the resultant of

these strain components given by ~S1 + ~S2. The maxi-

mum power output obtained for the resultant of 80 and

210 microstrain is 0.745 mW, whereas the minimum

power output of 15.2 mW is obtained for the resultant

of 50 and 240 microstrain. Since the frequency is fixed

at 10 Hz, the matched (optimal) resistance of all combi-

nations in Figure 7 is 369.7 kO.

The peak power amplitudes are plotted in Figure

8(a) for various strain resultant and frequency combi-

nations while the optimal resistive loads of these com-

binations are plotted in Figure 8(b). For a fixed

excitation frequency, the power output depends on the

strain resultant quadratically, whereas for a fixed strain

resultant, the power output changes with frequency lin-

early. The maximum power output of 0.951 mW is

obtained in Figure 8(a) for a 50 microstrain resultant

at 25 Hz frequency using this 9 cm2 piezoceramic patch

of 0.2 mm thickness. Note that the matched resistance

grows dramatically at low frequencies (Figure 8(b))

Figure 6. Schematic of a rectangular rosette configuration with

gages A, B, and C and the principal strain directions 1 and 2.
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since it is inversely proportional to the excitation fre-

quency due to Equation (61).

Discussion Based on the Strain Gage Measurements

for a Steel Multigirder Bridge

The dynamic strain measurements taken on the steel

multigirder bridge shown in Figure 9(a) are briefly dis-

cussed to estimate the maximum piezoelectric power

that can be generated using the patch studied in the pre-

vious section. The strain measurements were taken at a

location on the bridge by using a rectangular rosette

strain gage configuration (Figure 6). Figure 9(b) dis-

plays the strain measurements recorded at the point of

interest with a sampling frequency of 82.6 Hz. The

orientations of the gages A, B, and C can be found in

Figure 6.

The raw strain data shown in Figure 9(b) are used in

Equation (65) and the dynamic principal strain compo-

nents shown in Figure 10(a) are obtained. A close-up

view of the principal strain components is shown in

Figure 10(b) at an arbitrary instant of time. Note that

one component oscillates around a positive static value

(static tension) whereas the other one oscillates around

a negative static value (static compression). It is

observed through fast Fourier transform (FFT)

analysis that a major harmonic exists at approximately

22.6 Hz in both components.

Recall from Equation (67) that the strain resultant

S1 + S2 is identical to the resultant SA + SC. Figures 11(a)

and (b) shows this strain resultant for the entire time

history and for an arbitrary instant of time, respec-

tively. Figure 11(b) also includes a single harmonic his-

tory of 20 microstrain amplitude at 22.6 Hz as a first

approximation. If the dynamic behavior of the strain

resultant can be approximated as a harmonic strain

fluctuation of 620 microstrain at 22.6 Hz, the peak

power amplitude is estimated from Figure 8(a) as

0.138 mW. Assuming homogeneous strain behavior in

the small region and combining seven of such patches,

one can reach milli-Watt level instantaneous power

output based on this first approximation.

Summary and Conclusion

Civil infrastructure systems provide unique and critical

application platforms for vibration-based energy har-

vesting. In particular, the state-of-the-art wireless and

battery-powered sensor networks used for structural

health monitoring can be made self-powered if suffi-

cient vibrational energy is available in their environ-

ment. Among other transduction mechanisms used for

vibration-to-electricity conversion, piezoelectric trans-

duction has been most heavily researched in the last few

years due to the ease of application and large power

density of piezoelectric materials. This article introduces

analytical derivations combining some of the funda-

mental civil engineering problems with the problem of

piezoelectric energy harvesting.

The moving load problem for a slender bridge is vis-

ited for analytical formulation of two scenarios of

piezoelectric energy harvesting. In the first scenario, a

cantilevered piezoelectric energy harvester is located at

an arbitrary position on the bridge. The vibratory

response of the bridge caused by the moving load cre-

ates the excitation input to the generalized cantilevered

Figure 7. Variation of the peak power amplitude for different

combinations of the principal strain components at 10 Hz.

Figure 8. Variations of (a) the maximum power amplitude and (b) the optimal resistance values for different combinations of the

strain resultant and the excitation frequency.
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energy harvester equations covered in this article.

Typical vehicle-induced frequencies and fundamental

natural frequencies of slender bridges can be very low

and the piezoelectric cantilever should be designed to

have a very low fundamental natural frequency. As an

alternative to using the cantilevered energy harvester

configuration, a certain region on the bridge is covered

with a piezoceramic patch in the second scenario. The

piezoelectric power delivered from the patch to the elec-

trical load is related to the moving load excitation

based on the analytical electromechanical formulation.

Following the moving load excitation, the focus is

placed on formulating the problem of piezoelectric

energy harvesting from two-dimensional surface strain

fluctuations of large structures. For the orthogonal

strain fluctuations of a rectangular piezoceramic patch,

analytical expressions of the electrical power output are

obtained considering generalized, harmonic, and white

noise excitations. It is shown using the model developed

here that a 3033030:2mm3 piezoceramic patch can

generate about 1 mW power for the dynamic orthogo-

nal strain resultant of 50 microstrain at 25 Hz. An

additional discussion is provided based on the dynamic

strain measurements taken on the steel multigirder

bridge. On the basis of a combination of the theoretical

analysis and the field measurements, it is predicted that

milli-Watt strain level can be obtained using a few

patches for the relatively low strain levels measured on

this nonslender bridge.

The derivations related to the fundamental moving

load problem can be extended to other transduction

mechanisms of vibration-based energy harvesting as

well (e.g., electromagnetic transduction). However,

piezoceramic patches offer a unique option for energy

harvesting directly from the surface strain fluctuations

of various civil infrastructure systems.

Figure 9. (a) The 3-span steel continuous curved multigirder bridge in Roanoke, Virginia, (span length: 33 m) and (b) the measured

strain components at a point on the bridge using a rectangular rosette strain gage (see Figure 6 for the arrangement of gages A, B,

and C).

Figure 10. Dynamic principal strain components: (a) the entire time history and (b) a close-up view at an arbitrary instant of time.
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Notes

1. Although combined dynamical systems (distributed para-

meter systems with lumped attachments) have certain lim-

itations as far as the normal-mode assumption is

concerned (Banks et al., 1998), as an engineering approxi-

mation, one can solve the undamped problem for

csI = ca = 0 (which is a normal-mode system (Caughey and

O’Kelly, 1965)) and introduce modal viscous damping in

the modal coordinates.

2. Note that this formulation (Erturk and Inman, 2009)

accounts for the geometric information of the rigid tip

mass attachment in case it does not behave like a point

mass. The geometric information of the tip mass (e.g.,

prismatic or cylindrical) is included within the mass

moment of inertia term (It) without loss of generality as a

compact alternative to expanding it in terms of the geo-

metry of the tip mass for a specific configuration (Kim

et al., 2010). The mass moment of inertia of the tip mass

should always be expressed in conjunction with the paral-

lel axis theorem at the end of the elastic point where the

boundary condition is written to be in agreement with the

differential eigenvalue problem.

3. The term bridge is used (instead of beam) to avoid confu-

sion with the energy harvester, which has a similar

mechanical equation. The derivations apply to other slen-

der structures exposed to moving loads.

4. In his book on the subject of moving loads, Fryba (1972)

studies special cases regarding the speed of the load and

the damping in the structure following his solution based

on the Laplace–Carson integral transformation. The

response expression is left in its general form in this article

and the reader is referred to Fryba (1972) for an extensive

discussion of special cases.

5. The derivations given here are for piezoelectric ceramics

with conventional electrodes. Expectedly, fiber-based

orthotropic piezoceramics with interdigitated electrodes,

such as the active fiber composites and macro fiber com-

posites (Williams et al., 2002), do not give any electrical

output to strain fluctuations in the direction that is ortho-

gonal to the longitudinal direction of fibers.
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