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Abstract
Energy harvesting for the purpose of powering low power electronic sensor systems has
received explosive attention in the last few years. Most works using deterministic approaches
focusing on using the piezoelectric effect to harvest ambient vibration energy have concentrated
on cantilever beams at resonance using harmonic excitation. Here, using a stochastic approach,
we focus on using a stack configuration and harvesting broadband vibration energy, a more
practically available ambient source. It is assumed that the ambient base excitation is stationary
Gaussian white noise, which has a constant power-spectral density across the frequency range
considered. The mean power acquired from a piezoelectric vibration-based energy harvester
subjected to random base excitation is derived using the theory of random vibrations. Two
cases, namely the harvesting circuit with and without an inductor, have been considered. Exact
closed-form expressions involving non-dimensional parameters of the electromechanical
system have been given and illustrated using numerical examples.

(Some figures in this article are in colour only in the electronic version)

Nomenclature

α dimensionless time constant α = ωnCp Rl

β dimensionless constant β = ω2
n LCp

κ electromechanical coupling coefficient κ = θ2/kCp

� dimensionless frequency � = ω/ωn

ω frequency
ωn natural frequency of the harvester
θ electromechanical coupling
ζ damping factor
c damping of the harvester
Cp capacitance of the piezoelectric layer
k equivalent stiffness of the harvester
L inductance
m equivalent mass of the harvester
Rl load resistance
t time
V (ω) Fourier transform of voltage v(t)
v(t) voltage
X (ω) Fourier transform of displacement x(t)
x(t) displacement of the mass
Xb(ω) Fourier transform of base excitation xb(t)

xb(t) base excitation to the harvester
(•)∗ complex conjugation
det[•] determinant of a matrix
E[•] expectation operator
	•(ω) spectral density
R• autocorrelation function

1. Introduction

The harvesting of ambient vibration energy for use in powering
low energy electronic devices has formed the focus of much
recent research [1–6]. Of the published results that focus
on the piezoelectric effect as the transduction method, almost
all have focused on harvesting using cantilever beams and
on single-frequency ambient energy, i.e. resonance-based
energy harvesting. The exceptions are Sodano et al [7] who
looked at random ambient vibration disturbances via strictly
experimental means and Tanner et al [8] who developed a
piezoceramic stack harvesting device to power a magneto-
rheological damper, again only experimentally. The design of
an energy harvesting device must be tailored to the ambient
energy available. In some applications the ambient excitation
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Figure 1. Schematic diagrams of piezoelectric energy harvesters with two different harvesting circuits. (a) Harvesting circuit without an
inductor. (b) Harvesting circuit with an inductor.

will be at a single frequency, and most studies have designed
resonant harvesting devices based on this. Such devices
have to be tuned to the excitation and may not be robust to
variations in the excitation frequency. In many applications the
ambient energy is random and broadband, and the design of
the harvester must account for this form of excitation. This
paper examines the use of a stack harvester using the d33
piezoelectric constant, with broadband random ambient base
acceleration as the input.

Energy harvesting of ambient vibration has become
important and new electronic devices are being developed that
require very low power. Completely wireless sensor systems
are desirable and this can only be accomplished by using
batteries and/or harvested energy. Harvesting is attractive
because harvested energy can be used directly or used to
recharge batteries or other storage devices, which enhances
battery life. Soliman et al [9] considered energy harvesting
under wide band excitation. Liu et al [10] proposed acoustic
energy harvesting using an electromechanical resonator. Shu
et al [11–13] conducted detailed analysis of the power
output for piezoelectric energy harvesting systems. Several
authors [14–17] have proposed methods to optimize the
parameters of the system to maximize the harvested energy.

Most of the works reported above consider that the
(base) excitation has some known form. Typically harmonic
excitation is considered. However, it is easy to envisage
situations where energy harvesting devices are operating under
unknown or random excitations. In such situations the
ambient vibration should be described using the theory of
random processes [18] and the analysis of harvested power
should be performed using the framework of probability
theory. Lefeuvre et al [19] were possibly the first to consider
random vibrations in the context of energy harvesting due to
random vibrations. However, Halvorsen [20] first used linear
random vibration theory to obtain closed-form expressions for
the harvested energy. They also derived the Fokker–Planck
equation governing the probability density function of the
harvested power. In this paper we consider a similar approach.
Specifically, we derive expressions for the mean normalized
harvested power of a system subjected to Gaussian white noise
base acceleration.

The outline of this paper is as follows. A single-
degree-of-freedom electromechanical model with and without
an inductor under deterministic excitation is discussed
in section 2. A brief overview of linear stationary random
vibrations is given in section 3. The mean power for a system
without an inductor is derived in section 4 and the equivalent
expression for the system with an inductor in section 5.
Numerical illustrations of the derived expressions are shown
in section 6. Based on the study considered in this paper, a set
of conclusions are drawn up in section 7.

2. Single-degree-of-freedom electromechanical model

We consider stack-type piezoelectric harvesting circuits as
shown in figure 1. We have considered two types of circuits,
namely without and with an inductor, as shown in figures 1(a)
and 1(b), respectively. Energy is harvested through base
excitations and the piezoceramic is operated in the {33}
direction. Here we use a simple single-degree-of-freedom
model for the mechanical motion of the harvester.

A more detailed model, along with correction factors for
a single-degree-of-freedom model that accounts for distributed
mass effects, was given by Erturk and Inman [21–24]. This
enables the analysis described here to be used in a wide
range of practical applications, providing that the broadband
base acceleration does not excite high vibration modes of
the harvester. The single-degree-of-freedom model could be
extended to multi-degree-of-freedom mechanical systems by
using a modal decomposition of the response. This paper only
considers a linear model of the piezoelectric material along the
d33 direction, which allows the application of linear random
vibration theory. The relaxation of the linearity assumption
would require the use of nonlinear random vibration theory
which is not considered in this initial work.

2.1. Circuit without an inductor

duToit and Wardle [25] expressed the coupled electromechani-
cal behaviour by the linear ordinary differential equations:

mẍ(t) + cẋ(t) + kx(t) − θv(t) = −mẍb(t) (1)

2



Smart Mater. Struct. 18 (2009) 115005 S Adhikari et al

θ ẋ(t) + Cpv̇(t) + 1

Rl
v(t) = 0. (2)

Equation (1) is simply Newton’s equation of motion for
a single-degree-of-freedom system, where t is the time, x(t)
is the displacement of the mass, m, c and k are, respectively.
the mass, damping and stiffness of the harvester and xb(t) is
the random base excitation. In this paper we consider the base
excitation to be a random process. θ is the electromechanical
coupling and the mechanical force is modelled as proportional
to the voltage across the piezoceramic, v(t). Equation (2) is
obtained from the electrical circuit, where the voltage across
the load resistance arises from the mechanical strain through
the electromechanical coupling, θ , and the capacitance of the
piezoceramic, Cp. Transforming both the equations into the
frequency domain and dividing the first equation by m and the
second equation by Cp we obtain

(−ω2 + 2iωζωn + ω2
n)X (ω) − θ

m
V (ω) = ω2 Xb(ω) (3)

iω
θ

Cp
X (ω) +

(
iω + 1

Cp Rl

)
V (ω) = 0. (4)

Here X (ω), V (ω) and Xb(ω) are, respectively, the Fourier
transforms of x(t), v(t) and xb(t). The natural frequency of
the harvester, ωn, and the damping factor, ζ , are defined as

ωn =
√

k

m
and ζ = c

2mωn
. (5)

Dividing the preceding equations by ωn and writing in matrix
form one has

[
(1 − �2) + 2i�ζ − θ

k

i�αθ
Cp

(i�α + 1)

] {
X
V

}
=

{
�2 Xb

0

}
, (6)

where the dimensionless frequency and dimensionless time
constant are defined as

� = ω

ωn
and α = ωnCp Rl. (7)

α is the time constant of the first-order electrical system, non-
dimensionalized using the natural frequency of the mechanical
system. Inverting the coefficient matrix, the displacement and
voltage in the frequency domain can be obtained as{

X
V

}
= 1


1

[
(i�α + 1) θ

k

−i�αθ
Cp

(1 − �2) + 2i�ζ

]{
�2 Xb

0

}

=
{

(i�α + 1)�2 Xb/
1

−i�3 αθ
Cp

Xb/
1

}
, (8)

where the determinant of the coefficient matrix is


1(i�) = (i�)3α+(2ζα+1)(i�)2 +(α+κ2α+2 ζ )(i�)+1
(9)

and the non-dimensional electromechanical coupling coeffi-
cient is

κ2 = θ2

kCp
. (10)

2.2. Circuit with an inductor

For this case, following Renno et al [17], the electrical equation
becomes

θ ẍ(t) + Cpv̈(t) + 1

Rl
v̇(t) + 1

L
v(t) = 0 (11)

where L is the inductance of the circuit. Transforming
equation (11) into the frequency domain and dividing by Cpω

2
n

one has

−�2 θ

Cp
X +

(
−�2 + i�

1

α
+ 1

β

)
V = 0 (12)

where the second dimensionless constant is defined as

β = ω2
n LCp, (13)

and is the ratio of the mechanical to electrical natural
frequencies. Similar to equation (6), this equation can be
written in matrix form with the equation of motion of the
mechanical system (3) as[

(1 − �2) + 2i�ζ − θ
k

−�2 αβθ

Cp
α(1 − β�2) + i�β

]{
X
V

}

=
{

�2 Xb

0

}
. (14)

Inverting the coefficient matrix, the displacement and voltage
in the frequency domain can be obtained as{

X
V

}
= 1


2

[
α(1 − β�2) + i�β θ

k

�2 αβθ

Cp
(1 − �2) + 2i�ζ

]

×
{

�2 Xb

0

}
=

{ (
α(1 − β�2) + i�β

)
�2 Xb/
2

�4 αβθ

Cp
Xb/
2

}
(15)

where the determinant of the coefficient matrix is


2(i�) = (i�)4βα + (2ζβα + β)(i�)3

+ (βα + α + 2ζβ + κ2βα)(i�)2

+ (β + 2ζα)(i�) + α. (16)

3. A brief overview of stationary random vibration

We consider that the base excitation xb(t) is a random process.
It is assumed that xb(t) is a weakly stationary, Gaussian,
broadband random process. Mechanical systems driven by this
type of excitation have been discussed by Lin [26], Nigam [27],
Bolotin [28], Roberts and Spanos [29] and Newland [30]
within the scope of random vibration theory. To obtain
the samples of the random response quantities such as the
displacement of the mass x(t) and the voltage v(t), one needs
to solve the coupled stochastic differential equations (1) and (2)
or (1) and (11). However, analytical results developed within
the theory of random vibration allow us to bypass numerical
solutions because we are interested in the average values of the
output random processes. Here we extend the available results
to the energy harvester. Since xb(t) is a weakly stationary
random process, its autocorrelation function depends only on
the difference in the time instants, and thus

E[xb(τ1)xb(τ2)] = Rxb xb(τ1 − τ2). (17)
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This autocorrelation function can be expressed as the inverse
Fourier transform of the spectral density 	xb xb (ω) as

Rxb xb (τ1 − τ2) =
∫ ∞

−∞
	xb xb (ω) exp[iω(τ1 − τ2)] dω. (18)

In this paper we are interested in the average harvested power
given by

E[P(t)] = E

[
v2(t)

Rl

]
= E

[
v2(t)

]
Rl

. (19)

For a damped linear system of the form V (ω) = H (ω)Xb(ω),
it can be shown that [26, 27] the spectral density of V is related
to the spectral density of Xb by

	V V (ω) = |H (ω)|2	xb xb(ω). (20)

Thus, for large t , we obtain

E
[
v2(t)

] = Rvv(0) =
∫ ∞

−∞
|H (ω)|2	xb xb (ω) dω. (21)

This expression will be used to obtain the average power for the
two cases considered. We assume that the base acceleration
ẍb(t) is Gaussian white noise so that its spectral density is
constant with respect to frequency.

The calculation of the integral on the right-hand side of
equation (21) in general requires the calculation of integrals of
the following form:

In =
∫ ∞

−∞
�n(ω) dω


n(ω)
∗
n(ω)

(22)

where the polynomials have the form

�n(ω) = bn−1ω
2n−2 + bn−2ω

2n−4 + · · · + b0 (23)


n(ω) = an(iω)n + an−1(iω)n−1 + · · · + a0. (24)

Following Roberts and Spanos [29] this integral can be
evaluated as

In = π

an

det [Dn]

det [Nn]
. (25)

Here the m × m matrices are defined as

Dn =

⎡
⎢⎢⎢⎢⎢⎣

bn−1 bn−2 · · · b0

−an an−2 −an−4 an−6 · · · 0 · · ·
0 −an−1 an−3 −an−5 · · · 0 · · ·
0 an −an−2 an−4 · · · 0 · · ·
0 · · · · · · 0 · · ·
0 0 · · · −a2 a0

⎤
⎥⎥⎥⎥⎥⎦

(26)
and

Nn =

⎡
⎢⎢⎢⎢⎢⎣

an−1 −an−3 an−5 −an−7

−an an−2 −an−4 an−6 · · · 0 · · ·
0 −an−1 an−3 −an−5 · · · 0 · · ·
0 an −an−2 an−4 · · · 0 · · ·
0 · · · · · · 0 · · ·
0 0 · · · −a2 a0

⎤
⎥⎥⎥⎥⎥⎦

.

(27)

4. Mean power for systems without an inductor

From equation (8) we obtain the voltage in the frequency
domain as

V =
−i�3 αθ

Cp


1(i�)
Xb. (28)

Following duToit and Wardle [25] we are interested in the
mean of the normalized harvested power when the base
acceleration is Gaussian white noise, that is |V |2/(Rlω

4	xb xb ).
Note that ω4	xb xb is the spectral density of the acceleration
and is assumed to be constant. After some algebra, from
equation (28), the normalized power is

P̃ = |V |2
(Rlω4	xb xb )

= kακ2

ω3
n

�2


1(i�)
∗
1(i�)

. (29)

Using equation (21), the average normalized power can be
obtained as

E[P̃] = E

[ |V |2
(Rlω4	xb xb )

]
= kακ2

ω3
n

∫ ∞

−∞
�2


1(i�)
∗
1(i�)

dω.

(30)
From equation (9) we observe that 
1(i�) is a third-order
polynomial in (i�). Noting that dω = ωn d� and from
equation (9), the average harvested power can be obtained from
equation (30) as

E[P̃] = E

[ |V |2
(Rlω4	xb xb )

]
= mακ2 I (1) (31)

where

I (1) =
∫ ∞

−∞
�2


1(i�)
∗
1(i�)

d�. (32)

Comparing I (1) with the general integral in equation (22) we
have

n = 3, b2 = 0, b1 = 1, b0 = 0,

a3 = α, a2 = (2ζα + 1), a1 = (α + κ2α + 2ζ ),

a0 = 1.

(33)
Now using equation (25), the integral can be evaluated as

I (1) = π

α

det

[ 0 1 0
−α α + κ2α + 2ζ 0
0 −2ζα − 1 1

]

det

[ 2ζα + 1 −1 0
−α α + κ2α + 2ζ 0
0 −2ζα − 1 1

] . (34)

Combining this with equation (31) we finally obtain the
average harvested power due to white noise base acceleration
as

E[P̃] = E

[ |V |2
(Rlω4	xb xb )

]

= πmακ2

(2ζα2 + α)κ2 + 4ζ 2α + (2α2 + 2)ζ
. (35)

Since α and κ2 are positive the average harvested power
is monotonically decreasing with damping ratio ζ . Thus the
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mechanical damping in the harvester should be minimized. For
fixed α and ζ the average harvested power is monotonically
increasing with the coupling coefficient κ2, and hence the
electromechanical coupling should be as large as possible.
Maximizing the average power with respect to α gives the
condition

α2(1 + κ2) = 1 (36)

or in terms of physical quantities

R2
l Cp(kCp + θ2) = m. (37)

5. Mean power for systems with an inductor

From equation (15) we obtain the voltage in the frequency
domain as

V =
�4 αβθ

Cp


2(i�)
Xb. (38)

Following Renno et al [17] the average normalized harvested
power can be obtained as

E[P̃] = E

[ |V |2
(Rlω4	xb xb )

]
= mαβ2κ2 I (2) (39)

where

I (2) =
∫ ∞

−∞
�4


2(i�)
∗
2(i�)

d�. (40)

Using the expression of 
2(i�) in equation (16) and
comparing I (2) with the general integral in equation (22) we
have

n = 4, b3 = 0, b2 = 1, b1 = 0,

b0 = 0, a4 = βα, a3 = (2ζβα + β),

a2 = (βα + α + 2ζβ + κ2βα), a1 = (β + 2ζα),

a0 = α.

(41)
Now using equation (25), the integral can be evaluated as

I (2) = π

βα

× det

⎡
⎢⎣

0 1 0 0

−βα βα + α + 2ζβ + κ2βα −α 0

0 −2ζβα − β β + 2ζα 0

0 −βα βα + α + 2ζβ + κ2βα α

⎤
⎥⎦

/
det

⎡
⎢⎣

2ζβα + β −β − 2ζα 0 0

−βα βα + α + 2ζβ + κ2βα −α 0

0 −2ζβα − β β + 2ζα 0

0 −βα βα + α + 2ζβ + κ2βα α

⎤
⎥⎦ .

(42)

Combining this with equation (31) we finally obtain the
average normalized harvested power as

E[P̃] = E

[ |V |2
(Rlω4	xb xb )

]
= mαβκ2π(β + 2αζ )/

[(4βα3ζ 2 + 2βα2(β + 1)ζ + β2α)κ2 + 8βα2ζ 3

+ 4βα(β + 1)ζ 2 + 2(β2α2 + β2 − 2βα2 + α2)ζ ]
= mαβκ2π(β + 2αζ )

β(β + 2αζ )(1 + 2αζ )(ακ2 + 2ζ ) + 2α2ζ(β − 1)2
. (43)

Figure 2. The normalized mean power of a harvester without an
inductor as a function of α and ζ , κ = 0.6.

This is the complete closed-form expression of the normalized
harvested power under Gaussian white noise base acceleration.

Since α, β and κ2 are positive the average harvested power
is monotonically decreasing with damping ratio ζ . Thus the
mechanical damping in the harvester should be minimized. For
fixed α, β and ζ the average harvested power is monotonically
increasing with the coupling coefficient κ2, and hence the
electromechanical coupling should be as large as possible.
These are the same conclusions as for the case without an
inductor, although only slightly more difficult to prove.

We can also determine optimum values for α and β .
Dividing both the numerator and denominator of the last
expression in equation (43) by β(β + 2αζ ) shows that the
optimum value of β for all values of the other parameters is
β = 1. This value of β implies that ω2

n LCp = 1, and thus the
mechanical and electrical natural frequencies are equal. With
β = 1 the average normalized harvested power is

E[P̃] = mακ2π

(1 + 2αζ )(ακ2 + 2ζ )
. (44)

If κ and ζ are fixed then the maximum power with respect to α

is obtained when α = 1/κ .

6. Numerical illustrations

The expressions of sections 4 and 5 are now illustrated
numerically for a system with unit mass. In figure 2 the
normalized mean power of a harvester without an inductor, as
given by equation (35), is shown as a function of α and ζ . For
illustration, the value of the coupling coefficient κ is kept fixed
at 0.6. The increased harvested energy as the damping ratio
ζ decreases is clearly seen. Also there is a maximum in the
harvested energy for α = 0.86, corresponding to the optimum
predicted by equation (36).

In figure 3 the normalized mean power of a harvester with
an inductor, as given by equation (43), is shown as a function of
α and β . For illustration, the value of the coupling coefficient
κ is again kept fixed at 0.6, while the value of damping factor
ζ is kept fixed at 0.1. There is clearly a well-defined maximum

5
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Figure 3. The normalized mean power of a harvester with an
inductor as a function of α and β, with ζ = 0.1 and κ = 0.6.

Figure 4. The normalized mean power of a harvester with an
inductor as a function of β for α = 0.6, ζ = 0.1 and κ = 0.6. The ∗
corresponds to the optimal value of β(=1) for the maximum mean
harvested power.

harvested energy at β = 1 and α = 1/κ = 1.667, as predicted
in section 5, although this is better illustrated by taking sections
through this 3D surface.

The mean harvested power as a function of β is shown in
figure 4, with the other parameters fixed at α = 0.6, ζ = 0.1
and κ = 0.6. The optimum value occurs at β = 1, which is
shown by the star in figure 4. It was highlighted in section 5
that this value of β is optimum for all values of α. The mean
harvested power as a function of α is shown in figure 5 for
β = 1 and clearly shows the maximum at α = 1.667.

7. Conclusions

Vibration-energy-based piezoelectric energy harvesters are
expected to operate under a wide range of ambient
environments. This paper considers energy harvesting of such
systems under broadband random excitations. Specifically,
analytical expressions of the normalized mean harvested
power due to stationary Gaussian white noise base excitation
has been derived. The resulting two-dimensional stochastic
differential equations are solved using the theory of linear
random vibrations. Two cases, namely the harvesting circuit

Figure 5. The normalized mean power of a harvester with an
inductor as a function of α for β = 1, ζ = 0.1 and κ = 0.6. The ∗
corresponds to the optimal value of α(=1.667) for the maximum
mean harvested power.

with and without an inductor, have been considered. For
both cases exact closed-form expressions of the harvested
power involving the non-dimensional time constants, the
non-dimensional electromechanical coupling coefficient and
the mechanical viscous damping factor have been derived.
Optimal values of the parameter for which the harvested power
is maximum have been discussed. It was shown that, in order to
maximize the mean of the harvested power, (a) the mechanical
damping in the harvester should be minimized and (b) the
electromechanical coupling should be as large as possible.
The electrical circuits may also be optimized to obtain the
maximum mean power, and the expressions for these optima
have been given. For the circuit with an inductor the maximum
mean power occurs when the natural frequency of the electrical
circuit is equal to that of the mechanical system.

The expressions derived in this paper are useful in
quantifying the harvested power under random vibration. The
analysis presented here, equation (43) in particular, can be used
to (a) design energy harvesters subject to random excitation
and (b) to provide insight into the physical nature of harvesting
when subject to random ambient energy. To date, researchers
have only provided expressions for the energy harvested due
to deterministic ambient energy at a single frequency. The
importance of the result presented here is to provide a key
to designing harvesters in the more practical case when the
ambient vibration is random. The approach described in
this paper can be extended to filtered white noise and non-
Gaussian excitation that may be described as a rational fraction
polynomial in the frequency domain. Such excitation will
simulate more realistic excitation spectra compared to the
pure Gaussian white noise base acceleration considered in this
paper, although the derived expressions will be complicated.
Further work is also needed to obtain the higher-order moments
of the harvested power, such as the standard deviation, in
addition to the mean power derived here.
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