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PIEZOELECTRIC SHELL THEORIES WITH A PRIORI CONTINUOUS
TRANSVERSE ELECTROMECHANICAL VARIABLES

ERASMO CARRERA AND SALVATORE BRISCHETTO

This paper addresses the static analysis of multilayer shells with embedded piezoelectric materials. The
Reissner Mixed Variational Theorem is used to obtain transverse electromechanical variables (transverse
shear and normal stresses, plus normal electrical displacement) which are a priori continuous at each
layer-interface. The governing differential equations of doubly curved shells are derived by referring
to the Unified Formulation in terms of a few fundamental nuclei. Formulation with discord interface
continuity of transverse stresses and/or electrical displacements are discussed for comparison purpose.
We address both equivalent single-layer models and layerwise models; up to fourth-order expansions in
the thickness coordinate have been implemented. Numerical analysis has been restricted to closed-form
solutions. Plates and simply supported cylindrical shells with orthotropic layers have been investigated.
Both sensor and actuator configuration have been analyzed. The results obtained demonstrate the su-
periority of the proposed approach with respect to the other formulations considered, and its ability to
furnish a priori interlaminar continuous transverse electrical displacement.

1. Introduction

In recent years piezoelectric materials have been integrated with structural systems to build smart struc-
tures which are candidates for next generation of aerospace vehicles, as well as some advanced products
in the automotive and ship industries. Piezoelectric materials are, in fact, capable of altering the response
of the structures through sensing and actuation. By integrating surface bonded and embedded actuators in
structural systems, the desired localized strains may be induced in the structures thanks to the application
of an appropriate voltage to the actuators. Reviews on smart materials and structures appear in [Crawley
1994] and [Chopra 2002].

In most applications, the piezoelectric layers are embedded in multilayer structures made of anisotropic
composite materials. The efficient use of piezoelectric materials in multilayer structures requires accurate
evaluation of mechanical and electric variables in each layer. Classical shell models such as classical
lamination theory (CLT) and first-order shear deformation theory (FSDT) can lead to large discrepancies
with respect to the exact solution. Improvements can be introduced by using equivalent single-layer
models (ESLMs), in which the number of unknown variables is independent of the number of constitutive
layers, with higher-order kinematics. However, much better results can be obtained through the use of
layerwise models (LWMs), in which the number of unknown variables depends on the number of layers.
For recent indications of the superiority of LWMs over ESLMs, see [Robbins and Chopra 2006].

Keywords: piezoelectric shells, unified formulation, closed-form solutions, Reissner Mixed Variational Theorem, interlaminar
continuity.
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Figure 1. C0
z requirements for the electromechanical case.

The advantages of the Reissner Mixed Variational Theorem (RMVT) with respect to other approaches
that mostly make use of the Principle of Virtual Displacement (PVD) were shown in [Carrera 2001; 2003].
The Unified Formulation (UF) was used there to create an hierarchical shell formulation with variable
kinematics (relative to displacements and transverse stresses) in each layer. Attention was restricted
to pure mechanical problems. UF has been extended to closed-form and finite-element solutions of a
piezoelectric plate in [Ballhause et al. 2004] and [Robaldo et al. 2006], respectively; PVD was used and
only the displacements and the electrical potential were considered as unknown variables. The main
advantage of RMVT is the possibility of fulfilling a priori the continuity conditions for the transverse
electromechanical variables (electric displacement and stresses). In [Carrera 2001], these continuity
conditions have been called C0

z -requirements. Examples are given in Figure 1, which shows that some
variables (mechanical displacements, transverse shear and normal stresses, electric voltage and transverse
electrical displacements) must be C0 continuous in the thickness directions z, while the discontinuity of
electromechanical properties at the layer interface requires a discontinuous first derivative of the same
variables.

Attempts to introduce the C0
z -requirements in piezoelectric continua have been made in [D’Ottavio and

Kröplin 2006; Carrera and Boscolo 2006]. Closed form and FEs solutions were considered in these last
papers, respectively. Attention was restricted to the fulfillment of C0

z -requirements for transverse shear
and normal stress components. Such an extension is herein stated as a “partial” RMVT application. The
complete fulfillment of the C0

z -requirements to both electrical and mechanical variables has been provided
in the companion paper [Carrera and Fagiano 2007], devoted to FE analysis and plate geometries.. Such
a contribution has been called a “full” extension of RMVT to piezoelectric continua: it allows one to
describe a priori interlaminar continuous both transverse stresses and transverse electrical displacement
component.

A few papers on piezoelectric shells exist in the literature, in particular for the FE method. Layerwise
methods were considered in [Heyliger et al. 1996]. FE piezoelectric shells have been considered in
[Lammering and Mesecke-Rischmann 2003]. Cho and Roh [2003] proposed geometrically exact shell
elements, while Kögl and Bucalem [2005] gave the extension of MITC4 type element to piezoelectric
shell structures. Review and assessment have been given in [Saravanos and Heyliger 1999].

Three dimensional piezoelasticity solutions have been addressed in [Wang et al. 2005; Shakeri et al.
2006; Chen et al. 1996; Dumir et al. 1997]. Wang et al. [2005] and Shakeri et al. [2006] dealt with
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vibration problems. Chen et al. [1996] addressed cylindrical shell with very thin piezoelectric layers.
Only a piezoelectric layer was instead considered in [Dumir et al. 1997]. No results are available in
which both mechanical and piezoelectric layers (with thickness comparable to the mechanical layers) are
analyzed.

It appears to be of interest to extend the full version of RMVT to piezoelectric shells which is proposed
in this work. The present paper could be, in fact, considered as an extension of [Carrera 1999a; 1999b;
D’Ottavio et al. 2006; Carrera and Brischetto 2007].

New benchmarks are proposed in this paper related to piezoelectric cylindrical shell that was origi-
nally proposed in [Varadan and Bhaskar 1991] for pure mechanical problems. Both actuator and sensor
configurations are addressed. The role played by a priori continuous Dz description has been outlined
in most of the presented applications.

2. Overview of variational statements

The Principle of Virtual Displacement (PVD) for the pure mechanical static problems, can be written in
the form ∫

V
(δεT

pGσ pC + δεT
nGσ nC)dV = δLe, (1)

where u = (uα, uβ, uz) is the displacement vector; σ p = (σαα, σββ, σαβ), σn = (σαz, σβz, σzz), ε p =

(εαα, εββ, εαβ) and εn = (εαz, εβz, εzz) are the in-plane and out-plane stresses and strains. The subscript
C and G indicate the constitutive equations and the geometrical relations respectively (Sections 4–5).

The Reissner Mixed Variational Theorem assumes both the displacements u and the normal stresses
σn according to the equation∫

V

(
δεT

pGσ pC + δεT
nGσ nM + δσ T

nM(εnG − εnC)
)

dV = δLe. (2)

Thus RMVT allows the a priori fulfillment of C0
z -requirements of transverse shear and normal stresses.

The subscript M indicates variables assumed from a given model (see Section 6).
The extension of RMVT to piezoelectric case requires the introduction of the internal electric work;

see [D’Ottavio and Kröplin 2006; Carrera and Brischetto 2007; Carrera and Boscolo 2006; Garcia Lage
et al. 2004]. The primary variables are displacements u, normal stresses σn and electric potential Φ. This
extension is referred to as partial P-RMVT:∫

V

(
δεT

pGσ pC + δεT
nGσ nM + δσ T

nM(εnG − εnC)− δET
GDC

)
dV = δLe, (3)

where E= (Eα, Eβ, Ez) is the electric field and D= (Dα, Dβ, Dz) is the electric displacement. Applica-
tions of P-RMVT to shell were discussed in [Carrera and Brischetto 2007].

The full extension of RMVT to piezomechanical problems (F-RMVT) must consider the transverse
electrical displacement Dz as an additional variable. F-RMVT states that∫

V

(
δεT

pGσ pC + δεT
nGσ nM − δET

pGDpC − δET
nGDnM + δσ T

nM(εnG−εnC)− δDT
nM(EnG−EnC)

)
dV

= δLe, (4)
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where D p = (Dα, Dβ) and Dn = (Dz) are in-plane and out-of-plane electric displacements, and E p =

(Eα, Eβ) and En = (Ez) are in-plane and out-of-plane electric fields. F-RMVT allows the complete
fulfillment of C0

z -requirements.
Appropriate “constitutive” equations are required for (1)–(4), as discussed in Section 5.

3. Shell geometry

Geometry and notation for multilayer shells are shown in Figure 2; for details see [Rogacheva 1994].
The square of an infinitesimal linear segment in the layer, the associated infinitesimal area and volume
elements are given by

ds2
k = H k

α

2
dα2

k + H k
β

2
dβ2

k + H k
z

2
dz2

k,

d�k = H k
α H k

β dαk dβk, dV = H k
α H k

β H k
z dαk dβk dzk,

(5)

where the metric coefficients are

H k
α = Ak(1+ zk/Rk

α), H k
β = Bk(1+ zk/Rk

β), H k
z = 1, (6)

k is the layer index in the multilayer shell, and Rk
α and Rk

β are the principal radii of curvature along the
coordinates αk and βk . Ak and Bk are the coefficients of the first fundamental form of �k (0k is the
�k boundary). In this paper, the attention has been restricted to shells with constant radii of curvature
(cylindrical, spherical, toroidal geometries) for which Ak

= Bk
= 1.

h k
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Figure 2. Geometry and notation for the layered shell.

4. Geometrical relations

The geometrical relations allow one to express the in-plane strain ε p and out-of-plane strain εn in terms
of displacement u. At the same way the in-plane components E p and out-of-plane components En of
electric field can be expressed in terms of the electric potential Φ. Then

ε pG = [εαα, εββ, εαβ]
T
= (D p + Ap) u, εnG = [εαz, εβz, εzz]

T
= (Dn�+ Dnz − An) u,

EpG = [Eα, Eβ]
T
=−De� Φ, EnG = [Ez]

T
=−Den Φ.

(7)
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The explicit form of the introduced arrays follows:

D p =

 ∂α/Hα 0 0
0 ∂β/Hβ 0

∂β/Hβ ∂α/Hα 0

 , Dn� =

 0 0 ∂α/Hα

0 0 ∂β/Hβ

0 0 0

 , Dnz =

 ∂z 0 0
0 ∂z 0
0 0 ∂z

 ,

De� =

 ∂α/Hα 0 0
0 ∂β/Hβ 0
0 0 0

 , Den =

 0 0 0
0 0 0
0 0 ∂z

 ,

Ap =

 0 0 1/(Hα Rα)

0 0 1/(Hβ Rβ)

0 0 0

 , An =

 1/(Hα Rα) 0 0
0 1/(Hβ Rβ) 0
0 0 0

 .

For convenience, the electric potential, the in-plane and out-of-plane electric field have been treated as
the [3× 1] vector with components Φ = (Φ, Φ,Φ), EpG = (Eα, Eβ, Eβ), EnG = (Ez, Ez, Ez). Such an
artifice will allow us to preserve the [3× 3] dimension for the fundamental nuclei.

5. Constitutive equations

The constitutive equations of a piezoelectric continuum can be written in various forms; see [Ikeda 1996;
Rogacheva 1994]. Different choices lead to the use of different electromechanical coefficients and field
variables. The two most used forms are related to the Gibbs free energy G and the electric Gibbs energy
G2, respectively. These are often referred to as the d-form and the e-form, [Carrera and Brischetto 2007].
The formulation based on G2 is used in this work; we will present the constitutive equations for the PVD
formulation and their split form in in-plane and out-of-plane components. We then use these equations
to obtain the constitutive equations which are consistent with F-RMVT application.

Classical PVD formulation. The displacement u and the potential Φ are the unknown variables in the
PVD setting. The electric Gibbs energy G2 is (see [Carrera and Brischetto 2007])

G2(ε, E)= 1
2εT CEε− 1

2 ET εεE−ET eε, (8)

in which CE is the elastic coefficients matrix related to constant electric field. The [6× 6] matrix C of
an orthotropic material in the rotated reference system assumes the form (see [Reddy 2004])

CE
=



C11 C12 C16 0 0 C13

C12 C22 C26 0 0 C23

C16 C26 C66 0 0 C63

0 0 0 C55 C45 0
0 0 0 C45 C44 0

C31 C32 C36 0 0 C33


=

[
CE

pp CE
pn

CE
np CE

nn

]
, (9)

CE
pp, CE

pn , CE
np and CE

nn are [3 × 3] submatrices related to in-plane p and out-of-plane (normal n)
strain/stress components.
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The piezoelectric and dielectric coefficient matrices are

e=

 0 0 0 e15 e14 0
0 0 0 e25 e24 0

e31 e32 e36 0 0 e33

 , εε
=

 εε
11 εε

12 0
εε

21 εε
22 0

0 0 εε
33

 , (10)

where the dielectric coefficients refer to a constant strain state, E is the electric field, ε is the [6× 1]
strain vector with components ε = (εαα, εββ, εαβ, εαz, εβz, εzz).

The stresses σ = (σαα, σββ, σαβ, σαz, σβz, σzz) and electrical displacements D are obtained upon direct
differentiation of G2:

σ =
∂G2

∂ε
=

∂

∂ε

( 1
2εT CEε− 1

2 ET εεE−ET eε
)
= CEε− eT E,

D=−
∂G2

∂E
=−

∂

∂E

( 1
2εT CEε− 1

2 ET εεE−ET eε
)
= eε+ εεE.

(11)

The corresponding e-form of the constitutive equations is split into in-plane and out-of-plane components:

σ p =
∂G2

∂ε p
= CE

ppε p+CE
pnεn− eT

ppE p− eT
npEn,

σn =
∂G2

∂εn
= CE

npε p+CE
nnεn− eT

pnE p− eT
nnEn,

D p =−
∂G2

∂E p
= eppε p+ epnεn+ εε

ppE p+ εε
pnEn,

Dn =−
∂G2

∂En
= enpε p+ ennεn+ εε

npE p+ εε
nnEn,

(12)

where

epp =

[
0 0 0
0 0 0

]
, epn =

[
e15 e14 0
e25 e24 0

]
, enp =

[
e31 e32 e36

]
, enn =

[
0 0 e33

]
,

ε pp =

[
ε11 ε12

ε12 ε22

]
, ε pn =

[
0
0

]
, εnp =

[
0 0

]
, εnn =

[
ε33

]
.

F-RMVT constitutive equations. In the F-RMVT setting one assumes the displacement u, electric po-
tential Φ, transverse stresses σn and normal electric displacement Dn. The correspondent constitutive
equations are

σ p = CσDDn+Cσεε p+Cσσσn+CσEE p,

εn = CεDDn+Cεεε p+Cεσσn+CεEE p,

D p = CDDDn+CDεε p+CDσσn+CDEE p,

En = CEDDn+CEεε p+CEσσn+CEEE p,

(13)

in which in-plane strains and electrical field components as well as transverse stresses and transverse
electrical displacement are used to express σ p, εn, D p and En as requested by F-RMVT in Equation (4).
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The explicit forms of the matrices in Equation (13) are

CσD = (C pn C−1
nn eT

nn − eT
np)(enn C−1

nn eT
nn + εnn)

−1,

Cσε = C pp −C pn C−1
nn Cnp − (C pn C−1

nn eT
nn − eT

np)(enn C−1
nn eT

nn + εnn)
−1(enp − enn C−1

nn Cnp),

Cσσ = C pn C−1
nn − (C pn C−1

nn eT
nn − eT

np)(enn C−1
nn eT

nn + εnn)
−1enn C−1

nn ,

CσE = C pn C−1
nn eT

pn − eT
pp − (C pn C−1

nn eT
nn − eT

np)(enn C−1
nn eT

nn + εnn)
−1(enn C−1

nn eT
pn + εnp),

CεD = C−1
nn eT

nn(enn C−1
nn eT

nn + εnn)
−1,

Cεε =−C−1
nn Cnp −C−1

nn eT
nn(enn C−1

nn eT
nn + εnn)

−1(enp − enn C−1
nn Cnp),

Cεσ = C−1
nn −C−1

nn eT
nn(enn C−1

nn eT
nn + εnn)

−1enn C−1
nn ,

CεE = C−1
nn eT

pn −C−1
nn eT

nn(enn C−1
nn eT

nn + εnn)
−1(enn C−1

nn eT
pn + εnp),

CDD = epn C−1
nn eT

nn(enn C−1
nn eT

nn + εnn)
−1
+ ε pn(enn C−1

nn eT
nn + εnn)

−1,

CDε = epp − epn C−1
nn Cnp − (epn C−1

nn eT
nn + ε pn)(enn C−1

nn eT
nn + εnn)

−1(enp − enn C−1
nn Cnp),

CDσ = epn C−1
nn − epn C−1

nn eT
nn(enn C−1

nn eT
nn + εnn)

−1enn C−1
nn − ε pn(enn C−1

nn eT
nn + εnn)

−1enn C−1
nn ,

CDE = epn C−1
nn eT

pn − (epn C−1
nn eT

nn + ε pn)(enn C−1
nn eT

nn + εnn)
−1(enn C−1

nn eT
pn + εnp)+ ε pp,

CED = (enn C−1
nn eT

nn + εnn)
−1,

CEε =−(enn C−1
nn eT

nn + εnn)
−1(enp − enn C−1

nn Cnp),

CEσ =−(enn C−1
nn eT

nn + εnn)
−1enn C−1

nn ,

CEE =−(enn C−1
nn eT

nn + εnn)
−1(enn C−1

nn eT
pn + εnp).

(14)

6. Unified formulation for shell theories

The Unified Formulation is a technique that allows one to handle in a unified manner a large variety of
plate/shell modelings. According to UF, the governing equations are written in term of a few fundamental
nuclei, which do not formally depend on the expansion N used in the z-direction, or in the variable
description (LW or ESL).

The unknown variables u, σ n , Φ and Dn are expressed in term of the layer thickness coordinate as(
uk(x,y,z),Φk(x,y,z),σ k

n(x,y,z),Dk
n(x,y,z)

)
= Fb(z)

(
uk

b(x,y),Φk
b (x,y),σ k

nb(x,y),Dk
nb(x,y)

)
+ Fr (z)

(
uk

r (x,y),Φk
r (x,y),σ k

nr (x,y),Dk
nr (x,y)

)
+ Ft(z)

(
uk

t (x,y),Φk
t (x,y),σ k

nt(x,y),Dk
nt(x,y)

)
(15)

The subscript t and b denote the linear part of the thickness expansion (t and b will be used to denote
top- and bottom-layer variable values in layerwise cases), while subscript r refers to higher-order terms:
r = 1, . . . , N−1. In compact form,(

uk(x,y,z),Φk(x,y,z),σ k
n(x,y,z),Dk

n(x,y,z)
)
= Fτ (z)

(
uk(x,y),Φk(x,y),σ k

n(x,y),Dk
n(x,y)

)
τ
. (16)

Here
(
uk(x, y), Φk(x, y), σ k

n(x, y), Dk
n(x, y)

)
τ

are two-dimensional unknowns, the Fτ (z) are the base
functions of the expansion, and the summation convention over repeated indices has been adopted. The
base functions could be, in general, different for each variable. Different choices for Fτ (z) will lead
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to different plate/shell theories. The choices made in our study are briefly discussed below; detailed
descriptions can be found in the works cited.

Layerwise models. The thickness functions are given by combinations of Legendre polynomials Pj as

Ft =
P0(ζk)+ P1(ζk)

2
, Fb =

P0(ζk)− P1(ζk)

2
, Fr = Pr (ζk)− Pr−2(ζk), r = 2, 3, . . . , N , (17)

for ζ = zk/2hk , where zk is the local layer thickness coordinate and hk is the layer thickness, so −1≤
ζk ≤ 1. As mentioned, t and b denote top and bottom; that is, the chosen functions have the properties

ζk =

{
1 : Ft = 1, Fb = 0, Fr = 0,

−1 : Ft = 0, Fb = 1, Fr = 0,
(18)

Thanks to these properties the interlaminar continuity of the assumed variables can be easily linked in
the assembly procedure from layer-level matrices to multilayer-level matrices.

Equivalent single-layer model. In this case the layerwise expansion is preserved for the transverse stresses,
electric potential and electric displacements, while a Taylor-type expansion is used for the displacement
components:

u(x, y, z)= uτ (x, y) zτ , τ = 0, N .

The base functions related to displacements can be chosen as

Fb(z)= 1, Fr (z)= zr , r = 1, . . . , N − 1, Ft(z)= zN .

A refinement of the ESL formulation can be reached by adding to the displacement assumption a func-
tion that imposes a zigzag form onto the displacement distribution. Following Murakami [1986], who
introduced this idea, we take the displacement with imposed zigzag as

u = u0+ (−1)kζk uZ + zr ur , r = 1, . . . , N − 1. (19)

The zigzag term, denoted by the subscript Z , changes sign for each layer k. These terms can be repre-
sented in unified form, by referring the subscript t to the zigzag function: ut = uZ . In this case, the
thickness functions are defined as

Fb = 1, Ft = (−1)kζk, Fr = zr for r = 1, . . . , N − 1. (20)

These ESLM with zigzag functions are considered with linear, parabolic and cubic expansions.

7. Governing equations

Upon substitution of the constitutive equation (13), the geometrical relations (7) and Equation (16) in
Equation (4), and after integration by parts (see [Carrera 1998; 1999a; 1999b]), we obtain the governing
differential equations for the piezoelectric layers consistent with the assumptions made.
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The electromechanical equilibrium and compatibility equations on the domain �k are

δuk
τ : K

kτ s
uu uk

s + K kτ s
uσ (σ k

n)s + K kτ s
ue Φk

s + K kτ s
uD (Dk

n)s = pk
τ ,

δ(σ k
n)τ : K

kτ s
σu uk

s + K kτ s
σσ (σ k

n)s + K kτ s
σe Φk

s + K kτ s
σD (Dk

n)s = 0,

δΦk
τ : K

kτ s
eu uk

s + K kτ s
eσ (σ k

n)s + K kτ s
ee Φk

s + K kτ s
eD (Dk

n)s = pk
eτ ,

δ(Dk
n)τ : K

kτ s
Du uk

s + K kτ s
Dσ (σ k

n)s + K kτ s
De Φk

s + K kτ s
DD(Dk

n)s = 0.

(21)

Two types of boundary conditions on 0k are obtained: those of the Dirichlet type,

uk
s = ūk

s , Φk
s =Φ

k
s , (22)

and those of Neumann type,

5kτ s
uu uk

s +5kτ s
uσ (σ k

n)s +5kτ s
ue Φk

s +5kτ s
uD (Dk

n)s =5kτ s
uu ūk

s +5kτ s
uσ (σ k

n)s +5kτ s
ue Φ

k
s +5kτ s

uD (D
k
n)s,

5kτ s
eu uk

s +5kτ s
eσ (σ k

n)s +5kτ s
ee Φk

s +5kτ s
eD (Dk

n)s =5kτ s
eu ūk

s +5kτ s
eσ (σ k

n)s +5kτ s
ee Φ

k
s +5kτ s

eD (D
k
n)s .

(23)

The fundamental nuclei on the domain �k have the form

K kτ s
uu =

∫
Ak

(
[−Dτ

p + Aτ
p]

T Cσε [Ds
p + As

p]
)
Fτ Fs Hα Hβ dz,

K kτ s
uσ =

∫
Ak

(
[Dτ

nz − Aτ
n − Dτ

n�]
T
+ [−Dτ

p + Aτ
p]

T Cσσ

)
Fτ Fs Hα Hβ dz,

K kτ s
ue =

∫
Ak

(
−[−Dτ

p + Aτ
p]

T CσE Ds
e�

)
Fτ Fs Hα Hβ dz,

K kτ s
uD =

∫
Ak

(
[−Dτ

p + Aτ
p]

T CσD

)
Fτ Fs Hα Hβ dz,

K kτ s
σu =

∫
Ak

(
(Ds

nz + Ds
n�− As

n)−Cεε(Ds
p + As

p)
)
Fτ Fs Hα Hβ dz,

K kτ s
σσ =

∫
Ak

−Cεσ Fτ Fs Hα Hβ dz,

K kτ s
σe =

∫
Ak

CεE Ds
e� Fτ Fs Hα Hβ dz, K kτ s

σD =

∫
Ak

−CεD Fτ Fs Hα Hβ dz,

K kτ s
eu =

∫
Ak

−Dτ
e�

T CDε(Ds
p + As

p)Fτ Fs Hα Hβ dz, K kτ s
eσ =

∫
Ak

−Dτ
e�

T CDσ Fτ Fs Hα Hβ dz,

K kτ s
ee =

∫
Ak

Dτ
e�

T CDE Ds
e� Fτ Fs Hα Hβ dz, K kτ s

eD =

∫
Ak

(Dτ
en

T
− Dτ

e�
T CDD)Fτ Fs Hα Hβ dz,

K kτ s
Du =

∫
Ak

CEε(Ds
p + As

p)Fτ Fs Hα Hβ dz, K kτ s
Dσ =

∫
Ak

CEσ Fτ Fs Hα Hβ dz,

K kτ s
De =

∫
Ak

(Ds
en − Ds

e�CEE)Fτ Fs Hα Hβ dz, K kτ s
DD =

∫
Ak

CED Fτ Fs Hα Hβ dz.
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The fundamental nuclei on the boundary 0k are

5kτ s
uu =

∫
Ak

I T
p Cσε(Ds

p + As
p)Fτ Fs Hα Hβ dz,

5kτ s
uσ =

∫
Ak

(I T
n�+ I T

p Cσσ )Fτ Fs Hα Hβ dz,

5kτ s
ue =

∫
Ak

−(I T
p CσE Ds

e�)Fτ Fs Hα Hβ dz,

5kτ s
uD =

∫
Ak

I T
p CσD Fτ Fs Hα Hβ dz,

5kτ s
eu =

∫
Ak

I T
e�CDε(Ds

p + As
p)Fτ Fs Hα Hβ dz,

5kτ s
eσ =

∫
Ak

I T
e�CDσ Fτ Fs Hα Hβ dz,

5kτ s
ee =

∫
Ak

−I T
e�CDE Ds

e� Fτ Fs Hα Hβ dz,

5kτ s
eD =

∫
Ak

I T
e�CDD Fτ Fs Hα Hβ dz,

where some auxiliary arrays have been introduced to facilitate integration by parts:

I p =

 1/Hα 0 0
0 1/Hβ 0

1/Hβ 1/Hα 0

 , In� =

 0 0 1/Hα

0 0 1/Hβ

0 0 0

 , Ie� =

 1/Hα 0 0
0 1/Hβ 0
0 0 0

 . (24)

Closed-form solutions. Navier-type closed-form solutions are possible for the governing equations de-
rived in the previous section if the materials are transversely isotropic, that is, if they fulfill the conditions

C pp16 = C pp26 = C pn63 = C pn36 = Cnn45 = 0, e25 = e14 = e36 = 0, εε
12 = εε

21 = 0. (25)

The following harmonic assumptions can be made for the field variables:

(uk
ατ

, σ k
αzτ

)=
∑
m,n

(U k
ατ

, Sk
αzτ

) cos
mπαk

ak
sin

nπβk

bk
, k = 1, Nl,

(uk
βτ

, σ k
βzτ

)=
∑
m,n

(U k
βτ

, Sk
βzτ

) sin
mπαk

ak
cos

nπβk

bk
, τ = t, b, r, (26)

(uk
zτ

, σ k
zzτ

, pk
zτ

, Φk
τ , Dk

nτ
)=

∑
m,n

(U k
zτ

, Sk
zzτ

, Pk
zτ

, Φ̂k
τ , D̂k

nτ
) sin

mπαk

ak
sin

nπβk

bk
, r = 2, N ,

in which ak and bk are the shell lengths in the αk and βk directions, and m and n are the correspondent
wave numbers. These assumptions correspond to simply supported boundary conditions.

Upon substitution of Equation (26), the governing equations on �k assume the form of a linear system
of algebraic equations in the domain while the boundary conditions are exactly fulfilled.

The final form of that system of algebraic equations at the multilayer shell level could be formally
written as follows:

K̂ uu û + K̂ uσ σ̂n + K̂ ueΦ̂ + K̂ uDD̂n = p,

K̂σu û+ K̂σσ σ̂n + K̂σeΦ̂ + K̂σDD̂n = 0,

K̂ eu û + K̂ eσ σ̂n + K̂ eeΦ̂ + K̂ eDD̂n = pe,

K̂ Du û+ K̂ Dσ σ̂n+ K̂ DeΦ̂ + K̂ DDD̂n = 0.

(27)
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An example of the explicit form of the fundamental nuclei for the k-layer is reported in the Appendix.
The layer arrays are used to obtain multilayer matrices, using the assembly techniques described in
[Carrera 2003].

8. Numerical results

This section discusses numerical computations for piezoelectric shells, comparing F-RMVT results with
the P-RMVT and PVD results described in [Carrera and Brischetto 2007].

Acronyms of theories. Depending on the used variational statement (PVD or RMVT), variables descrip-
tion and order of expansion N , a number of two-dimensional shell theories can be derived. To identify the
various theories, appropriate acronyms are introduced, built as shown in the chart. The first field can be E
or L, denoting the ESL or LW description, respectively; the
second field can be D, M or FM according to PVD, RMVT
application and RMVT application with normal electric dis-
placement modeled; the last field can take on the numbers
1–4 according to the order of the adopted expansion in the
thickness direction; a third Z and fourth C field (optional in
the ESL case) denote the use of MZZF and/or IC fulfillment,
respectively. FSDT results are obtained as particular case
of ED1 ones, while CLT solutions have been computed by
application of a penalty technique to a shear correction factor
of FSDT. Stiffness coefficients related to FSDT and CLT are
those of three-dimensional Hooke’s Law; that is, no plane
stress problems have been imposed.

Z C

Formulation

L Layer Wise

Equivalent Single

Layer
E

L

E

Theory

D Displacements (Based on PVD)

M Mixed (Based on RMVT)

FM Full Mixed (Based on RMVT)

D

M

FM

Options for ESL Models

Z

C

ZigZag function for displacements

Interlaminar Continuity

Order of adopted

expantion

Linear

Parabolic

Cubic

4th order

1

2

3

4

Preliminary assessment. The piezoelectric plates for which three-dimensional solutions were given in
[Heyliger 1997] are considered. The two cases of a sensor (where a bisinusoidal distribution of mechani-
cal pressure is applied) and an actuator (where a bisinusoidal distribution of electric voltage is applied) are
considered in Figure 3, which also shows the Cartesian reference system used. The material properties
are those in columns 1 and 2 of Table 1. A four-layer plate has been analyzed. The two external layers
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Figure 3. Geometry and boundary conditions for the sensor (left) and actuator (right) configurations.
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PZT-4 Gr/EP PVDF Piezo Composite
[Dumir et al. 1997] [Chen et al. 1996]

E1 [GPa] 81.3 132.38 2 2 172
E2 [GPa] 81.3 10.756 2 2 6.9
E3 [GPa] 64.5 10.756 2 2 6.9

ν12 [−] 0.329 0.24 1/3 0.29 0.25
ν13 [−] 0.432 0.24 1/3 0.29 0.25
ν23 [−] 0.432 0.49 1/3 0.29 0.25

G23 [GPa] 25.6 3.606 0.75 0.7752 1.4
G13 [GPa] 25.6 5.6537 0.75 0.7752 3.4
G12 [GPa] 30.6 5.6537 0.75 0.7752 3.4

e15 [C/m2
] 12.72 0 0 0 0

e24 [C/m2
] 12.72 0 0 0 0

e31 [C/m2
] −5.20 0 −0.0015 0.046 0

e32 [C/m2
] −5.20 0 0.0285 0 0

e33 [C/m2
] 15.08 0 −0.051 0 0

ε11/ε0 [−] 1475 3.5 − − −

ε22/ε0 [−] 1475 3.0 − − −

ε33/ε0 [−] 1300 3.0 − − −

ε11 [pC/Vm] 1.306× 104
− 106.2 106.0 13060

ε22 [pC/Vm] 1.306× 104
− 106.2 106.0 13060

ε33 [pC/Vm] 1.151× 104
− 106.2 106.0 13060

Table 1. Electromechanical properties of the materials considered.

are made of piezoelectric material and have thickness he = 0.1htot. The two internal layers are of a
unidirectional composite with fiber orientation 0◦/90◦ and thickness hi = 0.4htot. Results for mechanical
and electrical variables related to the sensor piezoelectric plates are given in Table 2, allowing further
insight into the results already discussed in [Ballhause et al. 2004; D’Ottavio and Kröplin 2006; Carrera
and Brischetto 2007]. The tables show the tranverse distribution of the transverse normal stress and the
normal electric displacement for a thick plate geometry. Higher-order LW results related to P-RMVT,
F-RMVT and PVD applications are compared to exact three-dimensional solutions. Mixed theories ful-
filling C0

z -requirements (partial and full) give better normal stress results with respect to classical theories
(LD4 and LD3 do not fulfill the continuity of σzz through the interfaces). The best results for Dz are
obtained via F-RMVT analysis under the assumption of a priori electrical and mechanical interlaminar
continuity; indeed, LFM4 and LFM3 allow one to assume continuous Dz through the interfaces.

The actuator case is considered in Table 3, which shows the electric potential obtained from high-order
expansions compared with those from a 3D solution. PVD, P-RMVT and F-RMVT, are all suitable for
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z/h 3D LD4 LM4 LFM4 LD3 LM3 LFM3

0.500 1.0000 1.0000 1.0001 1.0001 1.0013 0.9994 0.9994
0.400 0.9515 0.9515 0.9516 0.9516 0.9502 0.9522 0.9522
0.400 0.9515 0.9518 0.9516 0.9516 0.9611 0.9522 0.9522
0.300 0.8520 0.8517 0.8517 0.8517 0.8479 0.8515 0.8515
0.200 0.7375 0.7376 0.7375 0.7375 0.7376 0.7376 0.7376
0.100 0.6169 0.6168 0.6169 0.6169 0.6207 0.6171 0.6171
0.000 0.4983 0.4986 0.4984 0.4984 0.4888 0.4977 0.4977
0.000 0.4983 0.4982 0.4984 0.4984 0.5067 0.4977 0.4977
−0.100 0.3805 0.3805 0.3804 0.3804 0.3771 0.3807 0.3807
−0.200 0.2614 0.2613 0.2614 0.2614 0.2613 0.2613 0.2613
−0.300 0.1482 0.1485 0.1484 0.1485 0.1518 0.1482 0.1482
−0.400 0.0487 0.0485 0.0487 0.0487 0.0403 0.0492 0.0492
−0.400 0.0487 0.0487 0.0487 0.0487 0.0499 0.0492 0.0492
−0.500 0.0000 0.0000 0.0000 0.0000 −0.0012 −0.0006 −0.0006

0.500 160.58 160.58 160.61 160.51 161.18 160.14 160.93
0.400 −0.3382 −0.3348 −0.4734 −0.3383 −0.9356 −4.1211 −0.3380
0.400 −0.3382 −0.3384 −0.3384 −0.3383 −0.3369 −0.3369 −0.3380
0.300 −0.1276 −0.1277 −0.1277 −0.1277 −0.1283 −0.1283 −0.1278
0.200 0.0813 0.0813 0.0813 0.0813 0.0813 0.0813 0.0813
0.100 0.2913 0.2914 0.2914 0.2914 0.2920 0.2920 0.2916
0.000 0.5052 0.5053 0.5053 0.5053 0.5038 0.5038 0.5050
0.000 0.5052 0.5053 0.5053 0.5053 0.5070 0.5070 0.5050
−0.100 0.7259 0.7262 0.7262 0.7262 0.7256 0.7256 0.7264
−0.200 0.9563 0.9565 0.9565 0.9565 0.9565 0.9565 0.9565
−0.300 1.1995 1.2000 1.2000 1.2000 1.2007 1.2007 1.1999
−0.400 1.4587 1.4590 1.4590 1.4590 1.4573 1.4573 1.4593
−0.400 1.4587 1.4559 1.3599 1.4590 1.9984 2.9753 1.4593
−0.500 −142.46 −142.46 −142.43 −142.39 −143.00 −142.69 −142.77

Table 2. Through the thickness distribution of (top) transverse normal stress σzz and
(bottom) normal electric displacement Dz in 1013, for the sensor case, with a/h = 4.
Comparison of various approaches versus 3D solution.

this case; the electric potential is, in fact, a primary variable for all three models. The main advantage of
F-RMVT with respect to P-RMVT is the fulfillment of C0

z -requirements for normal electric displacement.
Further evaluation of the proposed model can be gleaned from the next few tables. A shell problem

proposed in [Chen et al. 1996] is considered in Table 4, where 3D solutions are compared with respect to
PVD, P-RMVT and F-RMVT models; mechanical displacements at middle surface are considered. This
problem refers to a Ren shell [1987] with three mechanical cross-ply layers (90◦/0◦/90◦) and two external
piezoelectric layers (see fifth and fourth columns of Table 1). The thickness of each piezoelectric layer
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z/h 3D LD4 LM4 LFM4 LD3 LM3 LFM3

0.500 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
0.400 0.9929 0.9929 0.9929 0.9929 0.9929 0.9929 0.9929
0.400 0.9929 0.9929 0.9929 0.9929 0.9929 0.9929 0.9929
0.300 0.8415 0.8418 0.8418 0.8418 0.8418 0.8418 0.8418
0.200 0.7014 0.7015 0.7015 0.7015 0.7014 0.7014 0.7014
0.100 0.5707 0.5709 0.5709 0.5709 0.5709 0.5709 0.5709
0.000 0.4476 0.4477 0.4477 0.4477 0.4477 0.4477 0.4476
0.000 0.4476 0.4477 0.4477 0.4477 0.4477 0.4477 0.4476
−0.100 0.3305 0.3307 0.3307 0.3307 0.3307 0.3307 0.3307
−0.200 0.2179 0.2179 0.2179 0.2179 0.2179 0.2179 0.2179
−0.300 0.1081 0.1082 0.1082 0.1082 0.1082 0.1082 0.1082
−0.400 −0.0010 −0.0010 −0.0010 −0.0010 −0.0010 −0.0010 −0.0010
−0.400 −0.0010 −0.0010 −0.0010 −0.0010 −0.0010 −0.0010 −0.0010
−0.500 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Table 3. Through the thickness distribution of electric potential Φ for the actuator case,
with a/h = 4. Comparison of various approaches versus 3D solution.

Rβ/hc 2 4 10 50 100 2 4 10 50 100

ūz (z = 0) ūβ (z = 0)

Ref 1.440 0.459 0.144 0.0808 0.0785 5.294 1.549 0.480 0.269 0.262
LM4 1.443 0.458 0.144 0.0810 0.0787 5.308 1.547 0.479 0.270 0.262
LD4 1.443 0.458 0.144 0.0810 0.0787 5.305 1.547 0.479 0.270 0.262
LFM4 1.443 0.458 0.144 0.0810 0.0787 5.308 1.549 0.479 0.270 0.262
LM3 1.442 0.458 0.144 0.0810 0.0787 5.306 1.547 0.479 0.270 0.262
LD3 1.442 0.458 0.144 0.0810 0.0787 5.299 1.547 0.479 0.270 0.262
LFM3 1.442 0.458 0.144 0.0810 0.0787 5.306 1.547 0.479 0.270 0.262

Table 4. Mechanical displacements for a five-layer piezomechanic Ren shell [Chen et al.
1996]; the numbers given are ūz = 10 E3 uz h3

c/(Pz R4
β) and ūβ = 100 E3 uβ h3

c/Pz R4
β .

Comparison with exact 3D solution.

is one hundredth of the total (h p = 1/100 hc). Loading conditions are: 8t =8b = 0 and Pz = 1 at top.
F-RMVT results are very similar to 3D solutions and to PVD and P-RMVT models: the piezoelectric
layers are, in fact, very thin and mechanical displacements are the primary variables in the three proposed
variational statements.

Table 5 shows a comparison of the results obtained with the present models with the three-dimensional
solution from [Dumir et al. 1997] for a one-layer piezoelectric Ren shell, whose material properties are
reported in column 3 of Table 1. The loading conditions are 8t =8b = 0 and Pz = 1 at the top. F-RMVT
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Rβ/h Ref LM4 LM3 LFM4 LFM3

w (z =−h/2)

2 −28.65 −28.63 −28.46 −28.63 −28.46
4 −20.55 −20.55 −20.54 −20.55 −20.54
6 ←− −18.72 −→ 10 ←− −17.60 −→

20 −16.96 −16.95 −16.95 −16.95 −16.95
100 ←− −16.55 −→ 500 ←− −16.48 −→

w (z = 0)

2 −31.47 −31.45 −31.41 −31.45 −31.41
4 ←− −21.10 −→ 6 ←− −18.96 −→

10 ←− −17.68 −→ 20 ←− −16.98 −→
100 ←− −16.55 −→ 500 ←− −16.48 −→

w (z = h/2)

2 −31.31 −31.30 −31.14 −31.30 −31.14
4 −20.65 −20.65 −20.64 −20.65 −20.64
6 ←−−−−−− −18.73 −−−−−−→

10 ←− −17.60 −→ 20 ←− −16.95 −→
100 ←− −16.55 −→ 500 ←− −16.48 −→

v (z =−h/2)

2 −23.61 −23.59 −23.38 −23.59 −23.38
4 −13.09 −13.09 −13.08 −13.09 −13.08
6 −10.23 −10.23 −10.22 −10.22 −10.22

10 ←− −8.177 −→ 20 ←− −6.778 −→
100 ←− −5.738 −→ 500 ←− −5.539 −→

v (z = h/2)

2 2.046 2.045 2.029 2.045 2.029
4 −0.8806 −0.8806 −0.8799 −0.8806 −0.8799
6 −2.331 −2.331 −2.330 −2.331 −2.330

10 ←−−−−−− −3.572 −−−−−−→
20 −4.528 −4.528 −4.527 −4.527 −4.527

100 ←− −5.297 −→ 500 ←− −5.451 −→

σ zz (z = 0)

2 −0.2906 −0.2359 −0.2922 −0.2359 −0.2922
4 0.2170 0.2453 0.2181 0.2453 0.2181
6 0.6356 0.6541 0.6365 0.6541 0.6365

10 1.420 1.430 1.420 1.430 1.420
20 3.319 3.325 3.320 3.325 3.320

100 ←− 18.34 −→ 500 ←− 93.34 −→

Rβ/h Ref LM4 LM3 LFM4 LFM3

σ βz (z = 0)

2 −0.6653 −0.6742 −0.6706 −0.6742 −0.6706
4 −0.6238 −0.6261 −0.6252 −0.6261 −0.6252
6 −0.6055 −0.6065 −0.6061 −0.6065 −0.6061

10 −0.5893 −0.5896 −0.5895 −0.5896 −0.5895
20 −0.5762 −0.5763 −0.5763 −0.5763 −0.5763

100 ←− −0.5653 −→ 500 ←− −0.5631 −→

1038 (z = 0)

2 1.734 1.729 1.847 1.729 1.847
4 2.443 2.442 2.477 2.442 2.477
6 2.541 2.540 2.556 2.540 2.556

10 2.560 2.560 2.565 2.560 2.565
20 2.540 2.540 2.541 2.540 2.541

100 ←− 2.504 −→ 500 ←− 2.494 −→

10Dz (z =−h/2)

2 5.908 −9.206 −10.27 6.381 7.326
4 2.550 −16.26 −16.92 2.670 3.299
6 1.532 −31.74 −32.19 1.584 2.017

10 0.7830 −82.68 −82.94 0.8008 1.0622
20 0.2659 −320.7 −320.9 0.2702 0.4003

100 −0.1171 −7861 −7861 −0.1169 −0.0911
500 −0.1902 −195747 −195747 −0.1902 −0.1851

10Dz (z = h/2)

2 0.8480 −5.641 −4.502 1.1484 −0.1072
4 0.0213 −14.28 −13.62 0.1161 −0.5774
6 −0.0996 −30.43 −29.98 −0.0557 −0.5155

10 −0.1575 −81.90 −81.64 −0.1413 −0.4121
20 −0.1860 −320.4 −320.3 −0.1820 −0.3143

100 −0.2041 −7861 −7861 −0.2039 −0.2298
500 −0.2075 −195747 −195747 −0.2075 −0.2126

10Dβ (z = 0)

2 −0.3070 −0.3060 −0.3270 −0.3060 −0.3270
4 −0.4324 −0.4323 −0.4384 −0.4323 −0.4384
6 −0.4497 −0.4497 −0.4524 −0.4497 −0.4524

10 −0.4531 −0.4531 −0.4541 −0.4531 −0.4541
20 −0.4496 −0.4496 −0.4498 −0.4496 −0.4498

100 ←−−−−−− −0.4431 −−−−−−→
500 −0.4415 −0.4415 −0.4414 −0.4414 −0.4414

Table 5. One-layer piezoelectric Ren shell: present analysis vs. exact solutions [Dumir
et al. 1997]. Values of Rβ/h in bold;← x→ indicates that all 5 row values equal x .
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b = 2π Rβ
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βα

Figure 4. Proposed benchmark: cylindrical shell, geometry and notation from [Varadan
and Bhaskar 1991].

and P-RMVT models are compared to exact solutions for different values of the thickness ratio. This
table confirms the validity of F-RMVT model: the limitations for Dz evaluation exhibited by P-RMVT
model (see also [Carrera and Brischetto 2007]) have been overcome by F-RMVT.

Proposed benchmarks. In this section the shell problems for which 3D solution were given in [Varadan
and Bhaskar 1991] for the pure mechanical problem are extended to the piezoelectric case. The problem
was studied in [Carrera 1999a; 1999b] to assess the Unified Formulation in both PVD and RMVT for
pure mechanical problems. The piezoelectric shells considered here are built by replacing and/or adding
piezoelectric layers to the original shells. The material properties of these layers coincide with those
already used for the piezoelectric plates.

The cylindrical shell considered by Bhaskar and Varadan has the geometric parameters a= 40, b= 20π ,
Rα =∞, Rβ = 10, m = 1, n = 8; see Figure 4.

Two layouts are considered: one piezoelectric layer, and then four layers, the two external layers being
made of piezoelectric material, and the two internal ones of carbon fiber cross-ply (0◦/90◦). The mechan-
ical and geometrical properties are those used in the plate case. Both actuator and sensor configurations
are treated. For the actuator case the distribution of electric potential Φ applied at top surface is

Φ(α, β)=Φ sin
πα

a
sin

8πβ

b
, (28)

with Φ t = 1, Φb = 0 and P z = 0.
Transverse mechanical pressure is applied at the bottom surface in the sensor case:

Pz(α, β)= P z sin
πα

a
sin

8πβ

b
, (29)

with 8top =8b = 0, and P z = 1.
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Results are given in the next few tables and figures, which compare different variational treatments for
thick and thin shells, showing the electric potential, normal electric displacement, transverse displace-
ment w ≡ uz , and normal stress σzz . Table 6, left, referring to the one-layer actuator case, shows that
higher-order expansions leads to the same results for both electric potential and mechanical displacement,

Rβ/h 2 4 10 100

Φ (z = 0)
LD4 0.3431 0.4611 0.5037 0.5254
LM1 0.5000 0.5000 0.5000 0.5000
LM4 0.3431 0.4611 0.5037 0.5254
LFM1 0.5000 0.5000 0.5000 0.5000
LFM2 0.3415 0.4609 0.5037 0.5254
LFM3 0.3436 0.4614 0.5037 0.5254
LFM4 0.3431 0.4611 0.5037 0.5254

Dz1011 (z = h/2)
LD4 −605.73 −801.76 −1622.9 −10416
LM1 −350.00 −662.37 −1608.6 −11711
LM4 −605.73 −801.76 −1622.9 −10416
LFM1 −327.37 −642.20 −1599.7 −16656
LFM2 −529.21 −743.93 −1593.3 −16262
LFM3 −587.25 −787.72 −1616.7 −16266
LFM4 −584.80 −783.99 −1615.6 −16266

W 1011 (z = 0)
LD4 −9.6220 −11.285 6.4540 11277
LM1 −21.851 −18.528 2.9362 9531.4
LM4 −9.6220 −11.285 6.4540 11277
LFM1 −21.850 −18.528 2.9353 9531.4
LFM2 −9.4240 −11.030 6.5318 11276
LFM3 −9.6061 −11.282 6.4540 11277
LFM4 −9.6220 −11.285 6.4540 11277

σzz (z = h/2)
LD4 3.0350 2.5512 1.0498 −836.32
LM1 −0.4037 −0.1264 0.6259 54.231
LM4 0.0431 0.0114 0.0004 −0.0001
LFM1 −0.4037 −0.1264 0.6258 54.231
LFM2 0.4285 0.4332 0.1982 −0.3861
LFM3 −0.0260 −0.0347 0.0005 0.0098
LFM4 0.0431 0.0114 0.0004 −0.0001

Rβ/h 2 4 10 100

Φ (z = 0)
LD4 0.0153 0.0355 0.0942 0.6513
LM1 0.0000 0.0000 0.0000 0.0000
LM4 0.0153 0.0355 0.0942 0.6513
LFM1 0.0000 0.0000 0.0000 0.0000
LFM2 0.0150 0.0350 0.0939 0.6513
LFM3 0.0161 0.0359 0.0943 0.6514
LFM4 0.0153 0.0355 0.0942 0.6513

Dz109 (z = h/2)
LD4 0.0224 0.1377 2.0958 1456.1
LM1 −0.1144 −0.2121 0.1311 1118.0
LM4 0.0224 0.1377 2.0958 1456.1
LFM1 −0.1340 −0.3506 −1.7252 −197.53
LFM2 0.0407 0.0378 −0.0937 −111.27
LFM3 0.0045 0.0092 −0.1536 −111.76
LFM4 0.0095 0.0028 −0.1646 −111.76

W 109 (z = 0)
LD4 0.0566 0.3332 4.5483 3016.6
LM1 0.0623 0.2956 3.6212 2530.3
LM4 0.0566 0.3332 4.5483 3016.6
LFM1 0.0623 0.2955 3.6210 2530.3
LFM2 0.0530 0.3223 4.5169 3016.5
LFM3 0.0566 0.3331 4.5482 3016.6
LFM4 0.0566 0.3332 4.5483 3016.6

σzz (z =−h/2)
LD4 −1.5105 −3.0742 −33.331 −22413
LM1 −1.0564 −3.6212 −20.878 −1473.3
LM4 −1.1392 −1.0671 −1.0269 −1.0018
LFM1 −1.0551 −3.6198 −20.877 −1473.3
LFM2 −1.1380 −1.5644 −2.6532 −12.288
LFM3 −1.3463 −1.3907 −1.4043 −1.2716
LFM4 −1.1392 −1.0671 −1.0269 −1.0018

Table 6. Proposed benchmark: one-layer piezoelectric shell in the Varadan–Bhaskar
geometry (Figure 4). Comparison of approaches. Left, actuator case; right, sensor case.
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regardless of variational statement. Normal stress fulfills the boundary conditions at the top (σzz = 0 at
the top for actuator case) in the case of P-RMVT and F-RMVT; however higher-order expansions are
required. Normal electric displacement results related to F-RMVT applications are quite different with
respect to PVD and P-RMVT ones (where Dz is not an assumed variable). These differences are larger
for the sensor case, as will be seen.

Table 6, right, refers to the sensor case. The same comments for the left half of the table are made
for electric potential, mechanical displacement and normal stress evaluation. Mechanical loading is
applied at the bottom of the shell; such a boundary condition is exactly fulfilled by P-RMVT and F-
RMVT applications. F-RMVT is more effective with respect to the other models for normal electric
displacement evaluations.

The comments made in connection with Table 6 are confirmed for Table 7, which refers to a four-
layer configuration. The differences in the evaluation of Dz are, in fact, larger for the sensor case. The
presence of two mechanical layers reduces the electric coupling. Furthermore, for the sensor case the
effect of the radii of curvature is larger than in the actuator case. The fulfillment of boundary conditions
for transverse normal stress at the shell bottom demands the use of higher-order expansions and mixed
theories; this is confirmed by an analysis of Table 7 (in contrast, higher-order PVD theories leads to an
accurate evaluation of σzz in the case of a plate. This is not so in the shell case because of the curvature).

Figure 5 shows that discrepancies for Dz among F-RMVT, P-RMVT and PVD increase in the sensor
case. Figure 6 refers to a multilayer shell: the capability of F-RMVT analysis to fulfill the interlami-
nar continuity of Dz is clearly shown. Transverse normal stress evaluation is given in Figure 7. The
superiority of F-RMVT and P-RMVT with respect to PVD is confirmed.

Appendix: Explicit forms of fundamental nuclei

We detail here the algebraic forms related to closed-form solution for the nuclei K kτ s
uD :

(KuD)11 =
α J kτ s

β (Cnn33e31−C pn13e33)

e2
33+Cnn33ε33

, (KuD)12 = 0, (KuD)13 = 0,

(KuD)21 =
β J kτ s

α (Cnn33e32−C pn23e33)

e2
33+Cnn33ε33

, (KuD)22 = 0, (KuD)23 = 0,

(KuD)31 =

−Cnn33e31
λD
Rα

J kτ s
β −Cnn33e32

λD
Rβ

J kτ s
α +C pn13e33

λD
Rα

J kτ s
β +C pn23e33

λD
Rβ

J kτ s
α

e2
33+Cnn33ε33

,

(KuD)32 = 0, (KuD)33 = 0,

where we have introduced the integrals

J kτ s
α =

∫
hk

Fτ Fs Hα dz, J kτ s
β =

∫
hk

Fτ Fs Hβ dz. (30)

The particular case of flat plates can be easily obtained by taking Rk
α = Rk

β =∞.
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Figure 5. Proposed benchmark: plot of Dz109 versus z for one-layer piezoelectric shell,
with Rβ/h = 10. Left, actuator case; right, sensor case.
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Figure 6. Proposed benchmark: plot of Dz1010 versus z for multilayer piezoelectric
shell, with Rβ/h = 10. Top left, actuator case; top right, sensor case. The bottom figure
plots the zoom of LFM4 results of sensor case.
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Rβ/h 2 4 10 100

Φ (z = 0)
LD4 0.4064 0.4829 0.5029 0.5009
LM1 0.4014 0.4824 0.5029 0.5009
LM4 0.4064 0.4829 0.5029 0.5009
LFM1 0.3805 0.4784 0.5041 0.5012
LFM2 0.4059 0.4827 0.5029 0.5009
LFM3 0.4065 0.4829 0.5029 0.5009
LFM4 0.4064 0.4829 0.5029 0.5009

Dz109 (z = h/2)
LD4 −1.0754 −0.6666 −0.3322 −0.3494
LM1 −0.6686 −0.4157 −0.2172 −0.3373
LM4 −1.0754 −0.6666 −0.3322 −0.3494
LFM1 −1.0844 −0.6674 −0.3285 −0.3623
LFM2 −1.0639 −0.6600 −0.3268 −0.3622
LFM3 −1.0655 −0.6603 −0.3269 −0.3622
LFM4 −1.0654 −0.6603 −0.3269 −0.3622

W 1011 (z = 0)
LD4 −1.1542 −1.0208 −1.0048 2.4869
LM1 −1.2671 −1.0582 −1.0290 2.4730
LM4 −1.1542 −1.0208 −1.0048 2.4869
LFM1 −1.2320 −1.0342 −1.0112 2.4838
LFM2 −1.1362 −1.0171 −1.0043 2.4869
LFM3 −1.1560 −1.0209 −1.0048 2.4869
LFM4 −1.1542 −1.0208 −1.0048 2.4869

σzz (z = h/2)
LD4 0.1416 0.0902 0.0757 −0.1835
LM1 −0.0062 0.0021 0.0023 0.0006
LM4 0.0000 0.0000 0.0000 0.0000
LFM1 0.0055 0.0074 0.0043 0.0008
LFM2 0.0008 0.0000 0.0001 0.0000
LFM3 0.0001 0.0000 0.0000 0.0000
LFM4 0.0000 0.0000 0.0000 0.0000

Rβ/h 2 4 10 100

Φ (z = 0)
LD4 0.0039 0.0157 0.0485 0.3414
LM1 0.0036 0.0154 0.0484 0.3415
LM4 0.0039 0.0157 0.0485 0.3414
LFM1 0.0013 0.0133 0.0458 0.3287
LFM2 0.0038 0.0156 0.0485 0.3414
LFM3 0.0039 0.0157 0.0485 0.3414
LFM4 0.0039 0.0156 0.0485 0.3414

Dz1011 (z = h/2)
LD4 9.8912 42.445 391.73 227910
LM1 5.1565 31.407 347.52 225160
LM4 9.8858 42.441 391.73 227910
LFM1 1.1188 1.6464 1.9872 −1.6061
LFM2 0.5401 0.6890 0.8068 −2.5408
LFM3 0.6220 0.7813 0.9010 −2.4677
LFM4 0.6092 0.7747 0.9001 −2.4676

W 109 (z = 0)
LD4 0.2633 0.9437 7.9334 4403.2
LM1 0.2548 0.9386 7.9314 4404.3
LM4 0.2633 0.9437 7.9334 4403.2
LFM1 0.2539 0.9377 7.9271 4403.0
LFM2 0.2623 0.9426 7.9307 4403.2
LFM3 0.2634 0.9438 7.9335 4403.2
LFM4 0.2633 0.9437 7.9334 4403.2

σzz (z =−h/2)
LD4 −2.2444 −6.0302 −52.912 −32549
LM1 −1.1772 −1.0658 −0.8449 11.453
LM4 −1.0013 −1.0010 −1.0006 −1.0000
LFM1 −1.1791 −1.0667 −0.8440 11.512
LFM2 −0.9992 −1.0172 −1.0857 −1.7388
LFM3 −0.9983 −1.0057 −1.0087 −1.0071
LFM4 −1.0013 −1.0010 −1.0006 −0.9999

Table 7. Proposed benchmark: multilayer piezoelectric shell in the Varadan–Bhaskar
geometry (Figure 4). Comparison of approaches. Left, actuator case; right, sensor case.
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