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Abstract

The objective of this paper is to propose an exact closed-form solution to the ∞H optimization of

piezoelectric materials shunted with inductive-resistive passive electrical circuits. Realizing that

Den Hartogʼs method which imposes fixed points of equal height in the receptance transfer

function is approximate, the parameters of the piezoelectric tuned vibration absorber are

calculated through the direct minimization of the maxima of the receptance. The method is

applied to a one-degree-of-freedom primary oscillator considering various values of the

electromechanical coupling coefficients.

Keywords: piezoelectric tuned vibration absorber, shunted piezoelectric transducer, optimum

tuning rule, equal-peak method, exact closed-form solution

1. Introduction

The mechanical tuned vibration absorber (MTVA) is prob-

ably the most popular passive anti-vibration device [1].

Successful applications of the MTVA can be found in civil

engineering structures (e.g., the Burj Al Arab Hotel in Dubai,

the Taipei World Financial Center in Taiwan and the Mil-

lenium Bridge in London) and in other engineering applica-

tions (e.g., cars and high-voltage lines). Different studies

contributed to the development of analytic tuning procedures

for the MTVA starting from the work of Den Hartog [2] and

Brock [3] to the more recent contributions of Asami and

Nishihara [4, 5].

An interesting alternative to the MTVA is the piezo-

electric tuned vibration absorber (PTVA) implemented with a

piezoelectric transducer (PZT) bonded to the structure and

shunted with an electrical impedance. As the structure

deforms, the PZT converts a portion of the mechanical energy

into electrical energy which is in turn dissipated by the

electrical circuit. Resonant circuit shunting is most often

considered where the inherent capacitance of the PZT is

shunted with a resistor and an inductor [6]. Linear [7, 8] and

nonlinear [9–11] shunting strategies have been proposed in

the literature. Even if they have their own limitations, PTVAs

possess several advantages with respect to MTVAs, such as

the absence of moving parts and the possibility to be fine-

tuned online to compensate for any modeling errors. For

instance, PTVAs have been proposed for bladed disks

assemblies, see, e.g., [12–15].

Resonant circuit shunting enhances piezoelectric vibra-

tion damping through appropriate values of the frequency

tuning and damping parameters. In [7], two different methods

were proposed relying on the receptance transfer function and

on pole placement, respectively. The former rule extends Den

Hartogʼs fixed-point method [2] to PTVAs and is widely used

in the literature [16]. Minimization of the frequency response

amplitude is achieved by selecting the frequency tuning

parameter that gives two fixed points in the receptance of the

primary structure of equal heights. The later rule maximizes

the attainable modal damping by finding the value of the

frequency tuning parameter for which the distinct poles coa-

lesce in double complex conjugate pairs. Hogsberg and Krenk

recently proposed a tuning rule that is a balanced compromise

between these two design criteria [17]. Through the devel-

opment of an equivalent mechanical model of a piezoelectric

element, Yamada et al [18] introduced a new approximate
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analytic expression for the damping parameter that improves

the PTVA performance compared to the formulae proposed

in [7].

Because all the aforementioned tuning rules are approx-

imate, the contribution of the present paper is to derive an

exact closed-form solution for the design of piezoelectric

vibration absorbers based on resonance circuit shunting. The

paper is organized as follows. Section 1 briefly reviews Den

Hartogʼs fixed-point method for MTVAs together with the

exact solution proposed by Asami and Nishihara [4]. In

section 3, the formulation for shunted PZTs is introduced, and

the tuning rules proposed by Hagood and von Flotow [7] and

Yamada and co-workers [18] are discussed. An exact tuning

rule for PTVAs is derived in section 4 and compared to the

other tuning rules using a one-degree-of-freedom mechanical

oscillator. Finally, the conclusions of the present study are

drawn in section 5.

2. The mechanical tuned vibration absorber

The steady-state response of an undamped mass–spring sys-

tem subjected to a harmonic excitation at a constant frequency

can be suppressed using an undamped tuned vibration

absorber (TVA), as proposed by Frahm in 1909 [19]. How-

ever, the TVA performance deteriorates significantly when

the excitation frequency varies. To improve the performance

robustness, damping was introduced in the absorber by

Ormondroyd and Den Hartog [20]. The equations of motion

of the coupled system are

ω+ + − + − =

+ − + − =

( )

( )

m x k x c x y k x y f t

m y c y x k y x

¨ ˙ ˙ ( ) sin ,

¨ ˙ ˙ ( ) 0, (1)

1 1 2 2

2 2 2

where x(t) and y(t) are the displacements of the harmonically-

forced undamped primary system and of the MTVA,

respectively. k1 and k2 are the stiffness of the primary struc-

ture and of the MTVA, in that order. c2 represents the

damping of the MTVA.

Den Hartog demonstrated that the receptance ωg ( )m of

the primary mass passes through two fixed points independent

of absorber damping, as illustrated in figure 1. He proposed a

tuning rule that provides two fixed points of equal height in

the receptance curve [2]. Brock then computed the optimum

damping by taking the mean of the damping values that

realize a maximum of the receptance at the two fixed points

[3]. The corresponding analytic formulae for the frequency

tuning δm and damping ξ2 ratios are:

δ
ω

ω β

ξ
β

β

= =
+

= =
+

c

k m

1

1
,

2

3

8(1 )
, (2)

m
2

1

2
2

2 2

where ω1 and ω2 are the natural frequencies of the primary

system and of the absorber, respectively, β = m m2 1 is the

mass ratio and ξ2 is the damping ratio. Table 1 shows that the

two fixed points have the same amplitudes, unlike the two

maxima of the receptance curve. Even though they have most

likely sufficient accuracy considering the uncertainty inherent

to practical applications, formulas (2) are therefore only

approximate.

Interestingly, it is only recently that an exact closed-form

solution to this classical problem could be found [4]. Instead

of imposing two fixed points of equal amplitude, the direct

minimization of the ∞H norm of the frequency response of the

controlled structure is achieved:

ω ω ω∥ ∥ → = ∥∞g g gmin ( ) ( ) ( ) , (3)m m A m B

where ωA and ωB represent the resonance frequencies.

Eventually, exact analytic formulas can be obtained for the

frequency tuning and damping ratios:

⎡
⎣

⎤
⎦

δ
β

β β β β

β β

ξ
β β

β

=
+

+ + + + +

+ +

=
+ − +

+

( )
2

1

2 16 23 9 2(2 ) 4 3

3 64 80 27

1

4

8 9 4 4 3

1
. (4)

m

2

2

2

Table 2 confirms that this tuning rule yields resonance peaks

of equal amplitude. It also shows that, for this optimum

design, the fixed points of the receptance curve do not have

the same amplitude.

We note that all the developments in this section assume

an undamped primary system. To date, there is no exact

Figure 1. Illustration of Den Hartogʼs fixed-point method for
β = 0.05, δ = 0.952m and for various absorber damping values

(ξ = 0.04472 , ξ = 0.0672 , ξ = 0.134opt2, and ξ = 0.2682 ; line

thicknesses are proportion to ξ2).

Table 1.Amplitude of the fixed-points and maxima of the receptance
transfer function for Den Hartogʼs tuning rule ( =m 11 kg and

=k 11 N m−1).

Mass

ratio

Fixed

point P

Fixed

point Q Maximum A Maximum B

0.05 6.4031 6.4031 6.4075 6.4084

0.1 4.5826 4.5826 4.5884 4.5902

0.5 2.2361 2.2361 2.2453 2.2530

1.0 1.7321 1.7321 1.7417 1.7544

2
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solution for damped primary systems, but accurate approx-

imate analytic formulas have been derived [5].

3. The piezoelectric vibration absorber: existing

tuning rules

3.1. Governing equations of structures with shunted

piezolectric materials

Because we aim at mitigating one specific structural reso-

nance, a one-degree-of-freedom modal model of the host

structure, assumed to be undamped, is considered to which a

shunted PZT is attached. The PZT shunt is a series RL circuit.

This system is schematized in figure 2.

Assuming linear characteristics under constant tempera-

ture, the general form of the piezoelectric constitutive

equations are standardized by IEEE [21]:

⎡
⎣

⎤
⎦

⎡
⎣

⎤
⎦ϵ

= +

= +

d s

d

S E T

D E T

[ ] ,

[ ]* . (5)

E

T

where T and S are the material stress and strain vectors,

respectively; ⎡⎣ ⎤⎦sE is the compliance matrix of the piezo-

ceramic under constant electric field; ⎡⎣ ⎤⎦ϵT represents the

permittivity under constant stress; d[ ] is the matrix of piezo-

electric constants, and ∗ denotes matrix transpose. The

components of the aforementioned vectors and matrices for a

general 3D problem are described in [7]. The current problem

considers the PZT rod as a one-dimensional element in which

both the expansion and polarization direction coincidence

with the central axis of the rod (conventionally called the ‘3’-

direction). Hence, the PZT rod operates in its thickness

transduction mode or d33-mode. The constitutive equations of

the PZT rod then become:

⎧
⎨
⎩

⎫
⎬
⎭

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

⎧
⎨
⎩

⎫
⎬
⎭

ϵ
=

D

S

d

d s

E

T
. (6)

T

E

3

33

3 33

33 33

3

3

By integrating equations (6) over the volume of the PZT

rod, the charge q and the displacement x are written as

functions of the force fPZT and the voltage between the

electrodes vPZT:

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

⎧
⎨
⎩

⎫
⎬
⎭

={ }qx
c d

d
k

v

f
1 . (7)

PZT 33

33
PZT

PZT

PZT

The coefficient cPZT is the capacitance between the

electrodes of the PZT rod with no external force, and kPZT is

the stiffness of the short-circuited PZT rod. They are defined

as:

ϵ= =c
s

l
k

s

s

l
,

1
, (8)T

EPZT 3
0

0
PZT

33

0

0

where s0 and l0 are the cross section area and length of the

PZT rod, respectively. Equation (7) can be reformulated

as:

⎧
⎨
⎩

⎫
⎬
⎭

⎡
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⎢
⎢
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1
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θ

= −

=
−

=
−

( )c c k

k
k

k

k

k

k

c

1 ,

1
,

1
, (10)

PZT PZT 0
2

PZT
PZT

0
2

0

0
2

PZT

PZT

are the capacitance of the PZT rod under constant strain,

the stiffness of the PZT rod with open electrodes, and the

electromechanical coupling factor θ, respectively. These

parameters are defined as functions of the electro-

mechanical coupling coefficient in d33-mode:

ϵ
= =k d

k

c
d

s

1
. (11)

E T
0 33

PZT

PZT
33

33 3

Finally, placing a resistive–inductive (RL) shunt across

the electrodes of the piezoelectric and applying Newtonʼs

and Kirchhoffʼs law yield the governing equations of the

Table 2. Amplitude of the fixed-points and maxima of the receptance
transfer function for Asami and Nishiharaʼs tuning rule ( =m 11 kg

and =k 11 N m−1).

Mass

ratio

Fixed

point P

Fixed

point Q Maximum A Maximum B

0.05 6.4027 6.4035 6.4079 6.4079

0.1 4.5819 4.5833 4.5892 4.5892

0.5 2.2334 2.2387 2.2480 2.2480

1.0 1.7281 1.7360 1.7456 1.7456

Figure 2. Piezoelectric vibration absorber with a series RL shunt.

3
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system:

θ ω

θ

+ + − =

+ + − =−

( )m x k k x q f t

Lq Rq c q x

¨ sin ,

¨ ˙ 0, (12)

1 1 PZT

PZT
1

where the primary host structurer is considered undamped

(i.e. =b 01 ). By defining the parameters similarly to [9]:

ω ω

γ
ω

ω
δ

ω

ω

ω τ ω

ω
α θ

=
+

=

= =

= =

= =

=
+

=
+

∼∼

k k

m L c

x m x q L q

r R c t

f
f

k k

c
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,
1

,

, ,

, ,

, ,

, , (13)

e

e

1
1 PZT

1 PZT

1 1

1

PZT 1 1

0

1 PZT 1

PZT

PZT 1

equations (12) can be conveniently recast into

δα γτ

δ δα δ

″ + − =

″ + ′ − + =

∼

∼ ∼ ∼

∼ ∼

∼

x x q f

q r q x q

sin

0, (14)

0

2 2

where prime denotes differentiation with respect to the

dimensionless time τ. We note that the parameter

α θ

κ

=
+

=
− +

=
+

=
+

c

k k

k

k

k

k k

k
k

k k

k

1

1
, (15)

PZT

PZT 1

0
2

0
2

PZT

PZT 1

0
PZT

PZT 1

0

depends only on the stiffness ratio κ = k k1 PZT and the

electromechanical coupling coefficient k0. Since PZT rods

typically have ≅k 0.70 in d33-mode, α takes values between

0 and 0.7. It is related to the generalized electromechanical

coupling coefficient Kij defined in [7] according to the

relation

α
κ

κ
=

− +
→ =

+

− +
K

k

k

k

k k
K

k1

1

1
(16)ij ij

0
2

0
2

PZT

PZT 1 0
2

3.2. Tuning rules for resonant shunt circuits

Given a value of the parameter α, the tuning of a RL shunt

requires to determine the frequency tuning δ and damping r

parameters. As briefly discussed in the introductory section,

different rules exist for finding appropriate values of these

parameters. Two methods that apply Den Hartogʼs fixed-

point method to PTVAs, namely those of Hagood and von

Flotow [7] and Yamada et al [18], are described in this

section.

3.2.1. Hagoodʼs tuning rule. In 1991, Hagood and von

Flotow introduced the first tuning method for resonant shunt

circuits based on the receptance transfer function of the

primary mass:

γ

δ γ δ γ

γ δ γ δ γ δ γ α δ

=

=
+ −

− − + + + −

∼

( ) ( )

g
x

f

j r

j r j r

( )

1 1
,

(17)

e
0

2 2 2

4 2 3 2 2 2 2 2

with = −j 1 . Since then, this method has often been used in

the literature (e.g., Inman and co-workers applied the method

for tuning the linear part of the proposed nonlinear

piezoelectric shunt [9]).

The first step consists in selecting the frequency

tuning parameter δ that yields two fixed points of equal

amplitude in the receptance γg ( )e . At the fixed points, the

open circuit ( = ∞r ) and the closed circuit (r = 0)

receptance function should be coincident. Solving the

equation:

γ γ=
= =∞

g g( ) ( ) , (18)e er r0

yields the dimensionless frequencies of the fixed points P

and Q:

γ
δ δ δ α δ

δ
=

+ ± + − +2

2

1 2 2 1
. (19)P Q,

2 4 2 2 2

The optimum value δ = 1opt is subsequently obtained by

imposing

γ γ=
=∞

g g( ) ( ) . (20)P Q P Qe , e ,
r

Because the parameters (13) are somewhat different from

those considered in [7], the value of δopt is also different.

At the optimum, the frequency of the fixed points and the

corresponding amplitudes of the transfer function are

γ α γ γ
α

= ± = =g g
2

2
2 2 and ( ) ( )

2
(21)P Q P Q, e e

Determining the optimal circuit damping is more

challenging. To this end, Hagood and von Flotow proposed

to set

γ δ=g g( ) ( ). (22)P Qe , e opt

As we shall see, this expression is approximate. Combining

equations (17), (21) and (22) yields

α=r 2 . (23)optH

3.2.2. Yamadaʼs tuning rule. Through the development of

an equivalent mechanical model of a piezoelectric

element, Yamada et al [18] improved the analytic

approximations proposed in [7]. Specifically, they still

consider the value δ = 1opt for the frequency tuning, but

the damping ratio of the PTVA is derived such that the

derivative of the receptance γg ( )e should be zero at the

4
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fixed points:

γ

γ
=

γ γ

gd ( )

d
0. (24)

e

P Q,

By substituting equation (21) into equation (24), two

different optimum circuit damping values are calculated

for points P and Q:

α

α
=

±
r

3

2 2
. (25)P Q,

4

meaning that the two maxima of γg ( )e cannot

simultaneously coincide with the fixed points. They

proposed to define the optimum value through the root

mean square:

α

α
=

+
=

−
r

r r

2

3

2
. (26)

P Q
opt

2 2

2
Y

The performance of the two tuning rules are illustrated in

figure 3 for different dimensionless coupling parameters α.

For α = 0.1, the rule proposed by Yamada et al provides two

peaks of almost identical amplitudes, whereas the rule of

Hagood and von Flotow is less accurate. For larger values of

α, none of these rules provides equal peaks in the receptance

function.

4. The piezoelectric vibration absorber: exact

tuning rule

4.1. Theory

As discussed in section 2 for MTVAs and as also shown in

the previous section, a fixed-point-based absorber design

cannot yield resonance peaks of equal amplitude. Following

the method proposed by Nishihara and Asami [4] for

MTVAs, an exact solution for the ∞H optimization of pie-

zoelectric materials shunted with resistive-inductive passive

electrical circuits is derived in this section. It is obtained by

focusing only on the resonant points A and B, therefore

ignoring the existence of the fixed points. So, for a given

value of α

γ δ

γ γ

→

= ≡

δ
∞

g r

g g h

min ( ) find , such  that

( ) ( ) . (27)

r

A B

, e

e e 0

For simplicity, the square of the receptance function

γ γ γ=g n d( ) ( ) ( )
e
2 is considered where

γ γ δ γ= + + −( )n r( ) 1 2 , (28)4 2 2 2

γ δ γ δ δ δ γ

δ α δ δ δ γ

α δ δ α δ

γ α α

= + − −

+ − − + + +

+ + + − −

× + − +

( )
( )
( )

d r

r

r

( ) 2 2

2 2 4 1

2 2 2 2

2 1. (29)

4 8 6 2 4 2 6

4 2 2 2 4 2 4

2 2 2 2 2 2

2 4 2

Because only terms of even power appear in these expres-

sions, we can pose γ γ=1
2 such that γ γ γ=g N D( ) ( ) ( )

e
2

1 1 1

with

γ γ δ γ

γ δ γ δ δ δ γ

δ α δ δ δ γ

α δ δ α δ

γ α α

= + + −

= + − −

+ − − + + +

+ + + − −

× + − +

( )
( )

( )
( )

N r

D r

r

r

( ) 1 2 ,

( ) 2 2

2 2 4 1

2 2 2 2

2 1. (30)

1 1
2 2 2

1

1
4

1
4 6 2 4 2

1
3

4 2 2 2 4 2
1
2

2 2 2 2 2 2

1
4 2

Following the definition of γN ( )
1

and γD ( )
1
, the fourth-order

polynomial is obtained

(a)

(b)

(c)

Figure 3. Performance of existing tuning rules for PTVAFs for
different values of α. (a) α = 0.1, =r 0.1184optY

, =r 0.1414optH
,

δ = 1. (b) α = 0.3, =r 0.3337optY
, =r 0.4243optH

, δ = 1. (c) α = 0.7,

=r 0.7012optY
, =r 0.9899optH

, δ = 1.
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γ γ
γ

= −F D
N

h
( ) ( )

( )
, (31)

1 1
1

0
2

equation (27) shows that two obvious roots of this polynomial

are γ A1 and γ B1 . Because the receptance transfer function

possesses horizontal tangents at the resonant points A and B, it

also follows that

γ γ′ = ′ =F F( ) ( ) 0, (32)A B1 1

where prime represents the derivative with respect to γ1.

According to equation (32), the multiplicity of the roots γ A1

and γ B1 is two:

γ γ γ γ γ

γ γ γ γ

= + + + +

= − −

F b b b b( )

( ) ( ) , (33)A B

1 1
4

1 1
3

2 1
2

3 1 4

1 1
2

1 1
2

with the coefficients bi defined as

γ γ

γ γ γ γ

γ γ γ γ

γ γ

= − +

= + +

= − +

=

( )

( )
( )

b

b

b

b

2 ,

2 ,

2 ,

. (34)

A B

A B A B

A B A B

A B

1 1 1

2 1 1

2

1 1

3 1 1 1 1

4 1
2

1
2

It follows that

= − =

= + − =

f b b b

f
b

b b

0,

4
2 0. (35)

1 1 4 3

2
1
2

4 2

By substituting the expression of γN ( )
1

and γD ( )
1

from

equations (30) into (31), another expression of the coefficients

bi can be obtained:

⎡
⎣

⎤
⎦

δ
δ

δ α δ

δ α δ α

δ α α

= − − +

= + − − +

= − + + + −

= + −

( )

( )

( )

b
r

b h r

b h h r

b h

2 2 ,

4 2 2 1,

2 2 2 2 ,

2 , (36)

1 1
1

1

2 1
2

1
2

1 1 1

3 1 1
2

1 1 1
2

1 1

4 1
2

1
2

1
2

1

where = −h h1 11
2

0
2, δ δ= 11

2, =r r1
2 and α α=1

2.

Equations (35) therefore becomes

⎡
⎣

⎤
⎦

δ δ χ

δ α δ α

= − + −

− − + + + =

( )

( )

f r

h h r

2 2

2 2 2 0, (37)

1 1
2
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1 1
2
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2

1 1

δ χ α δ

δ δ
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+ − + =

( ) ( )f h
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1 2 1

1

4
0, (38)

2 1
2

1
4

2 1
3

1 1
2

1 1 1
2

where χ α α≡ + −h 21
2

1
2

1 .

Equation (37) is solved for r1 equal to the square of the

optimum circuit damping:

⎡
⎣

⎤
⎦δ δ δ χ δ α χ α

δ χ
=

− + + + + −

− +
r

h

h

2 1
. (39)1

1 1 1
2

1 1 1 1

1 1
2

The substitution of r1 into equation (38) provides a fourth-

order polynomial in δ1, which is directly related to the fre-

quency tuning ratio δ:

δ δ δ δ+ + + + =a b c d e˜ ˜ ˜ ˜ ˜ 0. (40)1
4

1
3

1
2

1

The coefficients of the polynomial depend only on α1, related

to the coupling factor α, and h1, related to the amplitude h0 of

the receptance function:

⎜ ⎟

⎜ ⎟

⎡
⎣

⎤
⎦

⎡

⎣
⎢

⎛

⎝

⎞

⎠

⎤

⎦
⎥

⎡
⎣

⎛

⎝

⎞

⎠

⎤

⎦
⎥
⎥

⎡
⎣

⎤
⎦

⎡
⎣

⎤
⎦

χ α

χ α χ

χ α

χ χ α α χ

α α

α χ

= −

= − +

= − − − +

+ + −

= + + + −

+ −

= − −

( )

( )

( )

( )

( )

a h h

b h h

c h

h

d h

e

˜ 1 ,

˜ 4 1
1

2
,

˜ ( 4 2) 5 2

4
1

2
,

˜ 2 2 2 4 4

2 2 ,

˜ 1 . (41)

1
4

1
2

1
2

1
2

1

1
2

1
2

1

2

1
4

3 2
1 1

2
1

1
2

1

1
2 2

The parameter α1 is an input to the problem whereas h1 should be

minimized so as to minimize the resonance peak amplitude h0.

To ensure the existence of a multiple real root of

equation (40), the value of h1 should be selected so that the

discriminant of this polynomial Δ4 is zero. For a nth-order

polynomial f(x), a linear relation exists between the dis-

criminant and the resultant
∂

∂( )R f ,
f

x
[22]. This relation can be

written for the quartic function f2 as:

⎛

⎝
⎜

⎞

⎠
⎟Δ

δ
=

∂

∂a
R f

f1

˜
, . (42)4 2

2

1

Hence, the resultant R can be set to zero instead of Δ4. Since

the expression of R is very complex and cannot be solved by

hand, the symbolic algebraic software Maple is used to sim-

plify the resultant as:

⎡
⎣

⎤
⎦

α α α

α α

α α α

α

− + −

− + + −

+ − + −

+ − + − =

( )

( )

( )

h

h h

h

h h

1

64
54 54 144 144

128 128 2

27

32

27

16

1

64
171 117

272

64
1 1 0. (43)

1
3

1
2

1
2

1

1
2

1
2

1
2

1

1
4

1
3

1
2

1
2

1
2

1 1
4

The common factor α −( )h h1024 11
4

1
2 3

1
10

⎡
⎣

⎤
⎦χ α χ+ − +( )h h1

2
1 1

2 2
2
was eliminated from the resultant
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during the simplifications. Four different roots are found for

equation (43):

α α α α α

= ±

× − − + ± − +

h
1

8

9 16 64 2 54 144 64

(44)

1

1
2

1 1
4

1
3

1
2

Considering that h1 should be positive and should be mini-

mized, the following root is the solution:

α α

α α α

=

×
− − +

− − +

h
1

8

9 16 64

2 54 144 64
. (45)

1

1
2

1

1
4

1
3

1
2

opt

This value of h1 should be inserted into equation (41) to

obtain the coefficients in terms of α1, and equation (40) can be

solved analytically for δ1. Eventually:

δ =
−S a b

a

4 ˜ ˜

4 ˜
. (46)1opt

where

⎛

⎝
⎜

⎞

⎠
⎟

Δ

Δ Δ Δ

= + −

=
−

=
+ −

S
a
Q

Q
p

p
ac b

a

Q

1

2

1

3 ˜

2

3
,

8 ˜ ˜ 3 ˜

8 ˜
,

4

2
(47)

0

2

2

1 1
2

0
3

3

while the parameters Δ0 and Δ1 are:

Δ

Δ

= − +

= − + + −

c bd ae

c bcd b e ad a

˜ 3 ˜ ˜ 12 ˜ ˜,

2 ˜ 9 ˜ ˜ ˜ 27 ˜ ˜ 27 ˜ ˜ 72 ˜. (48)

0
2

1
3 2 2

In summary, the solution to the tuning of the resonant

shunt circuit can be written in terms of the original para-

meters δ, r and α by considering equations (49)–(52). From

the knowledge of the coupling factor α, h0 and χ are com-

puted:

α α α α

=

− + + +

h
8

2 54 144 64 9 16

, (49)0
4 2 2

χ

α α α α α

=

× − − + + −

1

8

64 2 54 144 64 55 144

(50)

2 4 2 4 2

To obtain real values for h0 and χ , the allowable range of

α is α ⩽ − ≅954 212 7 0.748 15
2

53
. This limit on the

maximum value of α should not pose any practical difficulty

since electromechanical coupling factors should usually be

lower than this limit. The coefficients of the quartic

Figure 4. Variation of (a) the tuning frequency ratio δ, and (b) the
dimensionless damping of the shunt r predicted by the different
tuning rules against the electromechanical coupling parameter α.

Figure 5. (a) Performance of the three tuning rules for α = 0.01, (b)
close-up of the resonant peak.
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polynomials (40) are then calculated:

⎛
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⎞
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=
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2

0
2

0
2

2

0
2

0
4

3 2

0
2

2

0
2

6 4

0
2

From these coefficients, variables Δ0, Δ1, p, Q and S in

equations (47) and (48) are determined. The optimal

parameters can then be obtained:

⎡
⎣

⎤
⎦

⎡
⎣

⎤
⎦

δ

δ α χ

χ δ δ

=
−

=
+ + + −

+ −

( )( )

( )

a

Sa b

r
h

h

2
˜

4 ˜ ˜
,

2 1 1 1

1 1
. (52)

opt

opt

opt
2 2

0
2

opt
2

0
2

opt
2

The resistance R and inductance L of the shunt circuit are

calculated directly from ropt and δopt using equations (13):

⎛

⎝
⎜

⎞

⎠
⎟

δ κ ϵ
=

+
L

m s l

s

1

(1 )
(53)

T
opt
2

1

3

33 0

0

2

⎛

⎝
⎜

⎞

⎠
⎟

ϵ κ
=

+
R

r m
s

l

s1
. (54)

T

opt

3

1
33

0

0

3

Figure 6. (a) Performance of the three tuning rules for α = 0.01, (b) close-up of the resonant peak.
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4.2. Numerical results

The transfer function of the primary oscillator (17) is com-

puted for the optimal values proposed by the three tuning

rules investigated in this paper:

δ δ

δ

= =

=
−

a

Sa b

1,

2
˜

4 ˜ ˜
, (55)

opt,H opt,Y

opt,exact

α

α

α

=

=
+

=
−

r

r
r r

2 ,

2

3

2
, (56)

P Q

opt,H

opt,Y

2 2

2

⎡
⎣

⎤
⎦

⎡
⎣

⎤
⎦

δ α χ

χ δ δ
=

+ + + −

+ −

( )( )

( )
r

h

h

2 1 1 1

1 1
. (57)opt,exact

2 2
0
2

2
0
2 2

These values are plotted in figure 4 as a function of the

dimensionless coupling parameter α within its allowable

domain. Because a rapid computation of the optimal para-

meters could be useful in some applications (e.g., for potential

digital implementation of the shunt circuit), very precise

simplified formulas are also proposed in the appendix.

figures 5–8, which depict the transfer functions for four dif-

ferent values of α, fully validate the analytic developments

carried out in the previous section. Indeed, the transfer

function for the exact rule possesses two resonance peaks

with identical amplitude. The corresponding amplitude is also

consistently lower than the maximum peak amplitude given

by the other tuning rules.

For a very low value of the coupling parameter, α = 0.01

in figure 5, there is almost no visible difference between

Yamada and exact rules. The damping value proposed by

Hagoodʼs formula is associated with a noticeable performance

decrease. For α = 0.1 and α = 0.3 in figures 6 and 7,

respectively, both Hagood and Yamada rules lead to lower

performance compared to the exact rule. Finally, for α = 0.7

in figure 8, a complete detuning is observed for Yamadaʼs

rule. For a more quantitative comparison, figure 9 displays the

percentage of peak amplitude reduction provided by the exact

rule as a function of α. It confirms the superiority of this

tuning methodology over the existing methods. For realistic

values of α, an improvement of a couple of percents can be

expected.

Table A1. The coefficients ai in equation (A.1).

δ̂ a5 a4 a3 a2 a1 a0

α ⩽ 0.2 0.092 25 0.0808 0.002 94 0 0 0

α > 0.2 4.263 14 −6.4942 3.9275 −1.0805 0.1335 −0.005 771

Table A2. The coefficients ni in equation (A.2).

r̂ n3 n2 n1 n0

α ⩽ 0.2 0.5256 −0.000 92 1.2247 0

α > 0.2 1.178 61 −0.5223 1.353 53 −0.00901

Figure 7. Performance of the three tuning rules for α = 0.3.

Figure 8. Performance of the three tuning rules for α = 0.7.

Figure 9. Percentage of peak amplitude reduction provided by the
exact closed-form solution against the dimensionless coupling
parameter α.
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5. Conclusion

In this paper, an exact closed-form solution to the ∞H opti-

mization of piezoelectric material shunted with inductive-

resistive passive electrical circuits is proposed. This solution

imposes exactly two equal peaks in the receptance function that

are associated with the smallest possible vibration amplitude of

the host structure. The performance of this method is therefore

superior to all existing tuning rules for resonant circuit shunt-

ing, even if the improvement may be marginal for small

electromechanical coupling parameters. Simplified, though

very accurate, formulas for the optimum tuning ratio and the

dimensionless damping are also provided in the Appendix.
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Appendix. Simplification of the exact formulas

The curves δ δ α= ( )opt opt and α=r r ( )opt opt in figure 4 are

fitted using fifth and third-order polynomials:

δ α α α

α α

= + + +

+ + +

(
)

a a a

a a a

ˆ 1

, (A.1)

opt 5
5

4
4

3
3

2
2

1 0

α α α= + + +r n n n nˆ . (A.2)opt 3
3

2
2

1 0

The coefficients ai (i = 0, 1, 2,..., 5) and nj (j = 0, 1, 2, 3)

are listed in tables A1 and A2, respectively.

Table A3. Exact and fitted values of δopt, ropt and h0.

α δ δ̂ r r̂ h0 ĥ0

0.001 1.000 000 0 1.000 000 0 0.0012 0.0012 1414.2 1414.2

0.005 1.000 000 0 1.000 000 0 0.0061 0.0061 282.8433 282.8434

0.01 1.000 000 0 1.000 000 0 0.0122 0.0122 141.4233 141.4234

0.02 1.000 000 0 1.000 000 0 0.0245 0.0245 70.7146 70.7148

0.05 1.000 000 1 1.000 000 1 0.0613 0.0613 28.2942 28.2945

0.1 1.000 010 7 1.000 011 9 0.1230 0.1230 14.1621 14.1624

0.2 1.000 176 7 1.000 182 4 0.2492 0.2491 7.1118 7.1123

0.3 1.000 951 1 1.000 832 9 0.3819 0.3819 4.7772 4.7753

0.4 1.003 300 6 1.003 512 0 0.5254 0.5243 3.6242 3.6283

0.5 1.009 248 5 1.009 127 1 0.6848 0.6845 2.9482 2.9481

0.6 1.023 655 8 1.023 542 4 0.8680 0.8697 2.5200 2.5174

0.65 1.038 020 0 1.038 476 2 0.9728 0.9738 2.3705 2.3697

(a)

(c)

(b)

(d)

Figure A1. Receptance transfer function for the exact (solid line) and fitted (circles) values of δopt and ropt for different dimensionless
coupling parameters α. (a) α = 0.1 (b) α = 0.1 (c) α = 0.3 (d) α = 0.7
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Table A3 compares the exact and fitted values of the

design parameters δ and r together with the corresponding

maximum amplitude of the receptance function h0. The

maximum relative error on δ and r is 0.04% and 0.2%,

respectively. Figure A1 depicts the comparison between the

exact and fitted transfer functions for different dimensionless

coupling parameters α. Overall, these results demonstrate the

very high accuracy of the proposed simplifications

(A.1)–(A.2).
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