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Chapter 1 

Introduction 

 

The nanotechnology age started with the famous talk ″There′s plenty of room at the 

bottom: an invitation to enter a new field of physics″ [1] given by Nobel prizewinner 

Richard Feynman. In this talk Feyman was inspired to explore the nano world of the 

material structure. 

Scanning proximity probes (SPP) are uniquely powerful tools for analysis, 

manipulation and bottom-up synthesis. They are capable of addressing and engineering 

surface applications at the atomic level and they are the key for unlocking the full 

potential of nanotechnology. 

Microsized cantilevers as instruments used in nanotechnology earned their claim to 

fame with the invention of the atomic force microscopy (AFM). The AFM was 

originally described by Binnig and co-workers [2] as an offspring of the scanning 

tunnelling microscope (STM) [3].  

The following rapid development of scanning probe microscopes (SPM) derives directly 

from the principles of achieving extraordinary lateral resolution through a precise 

position of the probe. Additionally, the SPM family of microscope techniques are based 

on these principles, such as AFM, STM, Scanning Thermal Microscopy (SThM), 

Friction Force Microscopy (FFM), Magnetic Force Microscopy (MFM) and Scanning 

Near-Field Optical Microscopy (SNOM). Figure 1.1 shows a picture of a typical laser 

beam detection system used in AFMs.  

Scanning force microscopy (SFM) as the most widely used variant of the SPP methods 

exhibited a strikingly successful evolution over the past ten years. This has been based 

primarily on the development of cantilever sensors for the detection of physical 

quantities, such as mechanical, magnetic and thermal transport properties, as well as 
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chemical and biological reactions. Using the SPP in AFM mode, it is possible to image 

molecules and to measure elastic properties of single molecules in a wide range of 

environments ranging from ultra high vacuum to liquid. Doing AFM in biological 

applications for example, it is essential to reduce the acting forces on the sample, such 

as a DNA molecule, to prevent damage. 

chemical and biological reactions. Using the SPP in AFM mode, it is possible to image 

molecules and to measure elastic properties of single molecules in a wide range of 

environments ranging from ultra high vacuum to liquid. Doing AFM in biological 

applications for example, it is essential to reduce the acting forces on the sample, such 

as a DNA molecule, to prevent damage. 

Besides their wide-spread use in SPPs, where the connection between the probe and 

sample is realized at a single point (the tip), microcantilevers have recently been used 

as sensors for measuring extremely small bending moments that are produced by 

thermally or chemically generated stresses over the whole cantilever surface. Working 

on such principles, the advancement of the microcantilever beams as ultra-sensitive 

force sensors increase enormously. 

Besides their wide-spread use in SPPs, where the connection between the probe and 
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as sensors for measuring extremely small bending moments that are produced by 

thermally or chemically generated stresses over the whole cantilever surface. Working 

on such principles, the advancement of the microcantilever beams as ultra-sensitive 

force sensors increase enormously. 

Today microcantilever based sensors are irreplaceable in many different scientific fields 

such as visualization and measurement of different physical quantities in the nanoscale 

range, as well as for such applications as information science, microfabrication, quality 

control, nano-science technology and biological research. 
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Figure 1.1 Schematic diagram of the components in an AFM laser beam deflection system. Figure 1.1 Schematic diagram of the components in an AFM laser beam deflection system. 
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The AFM detection principle is based on the deflection of the cantilever beam. 

Therefore one of the major tasks is to precisely measure small deflections. In the most 

exploited deflection measurement scheme [4], the cantilever deflection is measured by 

detecting the relative displacement of a laser beam reflected off the back of the 

cantilever. As an alternative to such an optical detection method of the cantilever 

deflection, the development of cantilevers integrated with piezoresistive displacement 

detection sensors [5] has resulted in a remarkable improvement of their capability in 

terms of applicability and ease of implementation. The sensing element or transducer is 

a piezoresistor embedded in the arms of the cantilever. The change of the piezoresistor 

resistance, which is caused by the stresses due to the cantilever bending, can be easily 

converted into an electrical signal suitable for measurement. These piezoresistive 

cantilevers are much more suited for operation in higher resonance modes compared to 

optical detection schemes, which require laser beam alignment and monitoring the 

deflection with a laser spot at different locations along the cantilever in order to avoid 

the vibration nodes. 

This scheme of a high sensitivity, low force cantilever system, which is capable of ultra 

high frequency response has resulted in the development at the California Institute of 

Technology (CalTech) of a mechanical beam resonator with a fundamental resonance 

frequency of 70.72 MHz and a quality factor of 2x104, fabricated using common silicon 

IC technology [6]. Such devices have the potential to provide new classes of particle 

and energy sensors due to their very small dimensions and mass, consequently high 

operating frequencies, and sensitivity to external conditions. For example, a resonator 

with a fundamental mechanical resonance frequency in order of 1GHz could sense 

quantum effects and interact with thermal phonons having the same range of 

frequencies. The CalTech’s team device has the ability to detect forces ∼ 10-18 N, at a 

central frequency of 1.0156MHz corresponding to a higher vibration eigenmode of the 

structure. This is below the intrinsic noise level corresponding to a minimum detectable 

force of 48x10-18 N with a bandwidth of 80 Hz [7]. 

Microcantilevers are also useful when portable, low cost individual sensors are required. 

Researchers at the Oak Ridge National Laboratory [8] had developed measurement 

sensors for humidity, mass, heat and chemical reactions based on microcantilevers. For 

example, the heat detected in a bimorph structure causing a bending, while mass 
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changes affect the resonant frequency. For portability and ease of use, laser detection 

should be avoided. These types of measurements can potentially be combined in an 

array of sensors to create an electronic nose. The advantages of the piezoresistive 

readout system over the cumbersome conventional laser readout principle for sensor-

actuator arrays are obvious and they herald the possibility of generic massively parallel 

SPP systems. They must, however, be able to achieve the same deflection sensitivity as 

the laser deflection method. 

The fundamental key to advance the capability of the SPM techniques is to improve 

the force (for static or DC-mode force microscopy) and force gradient (for dynamic or 

AC-mode force microscopy) sensitivity of the micro-fabricated cantilever. Small force 

measurements, for example, are needed for biology applications, where they are 

important for measuring antibody-antigen binding (100pN [9]) and protein folding (0.1-

100pN [10]). Ultrasensitive cantilevers are required for the Magnetic Resonance Force 

Microscopy (MRFM), where the forces below the attonewton have to be measured [11]. 

The ultimate sensitivity of the force and force gradient measurements are restricted by 

the thermal excitation noise of the micro-cantilever, which can be determined from the 

fluctuation-dissipation theorem (FDT). This theorem has been established by Callen 

et.al [12],[13],[14],[15], who predicts the relationship between the spectrum of the 

thermal noise and the dissipation of systems. The obtained results for the minimum 

detection force [16] and minimum detection force gradient [17] give us the blueprint 

conditions for the design of ultrasensitive cantilevers. Such cantilevers have to be 

maximally soft at the maximal bandwidth. The only way to meet the requirements of 

both conditions is to make thinner, narrower as and longer cantilevers. Therefore, 

cantilever sensors with extremely high sensitivity can be fabricated by simply reducing 

the cantilever dimensions. The basic idea of this design optimisation is to decrease the 

cantilever thickness below 100nm, which dictates a reduction of the integrated 

piezoresistor thickness below 50nm [18]. The physical consequence of this thin 

piezoresistor is the confinement of the charge carriers in the direction perpendicular to 

the cantilever surface. As it is well known from the quantum mechanics, below this 

boundary the quantum confinement begins to have significant influence on the 

electrical properties of the resistor.  
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At the moment the dominant mode of AFM imaging has become intermittent contact 

mode, or tapping mode (TM-AFM), firstly introduced by Zhong et al. [19]. The 

advantages of this technique is that it reduces lateral forces between the tip and sample 

[20]. However, the scan speed of current TM-AFM’s is limited to about 250 µm/s due 

to the actuation time constant of the piezotube feedback loop that keeps the tapping 

amplitude constant. This limitation can be overcome by reducing the size of the system 

and consequently its inertia. In this manner it is possible to increase the scanning speed 

significantly. Furthermore, by increasing the sensitivity of the tapping probe the signal 

to noise ratio can be improved, thus leading to a further reduction in the time constant 

needed for stable feed-back loop operation. Consequently, to the integration of the 

detecting piezoresistive sensor, actuator integration into the cantilever has to be 

considered as fundamental for the realisation of fast, high-resolution imaging. For signal 

conversion from the electrical to the mechanical domain, it is necessary to add 

conversion elements compatible with CMOS processing, using thin film technology. 

Signal conversion by electrostatic forces has been demonstrated [21]. However, 

electrostatic forces are normally only significant for small separation of the plates 

because electro-statically driven cantilevers are based on electrostatic forces that are 

proportional to the square of the separation of the cantilever plates. The main 

advantages of electro-statically driven cantilevers are low power consumption and short 

actuation-times. Piezoelectric actuators based on sputtered ZnO films have been 

successfully used to excite mechanical vibration in micromachined cantilevers for AFM 

applications [22]. The micro-actuators described in this work are based on the so-called 

bimetal effect [23]. The actuator consists of a sandwich of layers, namely Al, SiO2 and 

Si. The aluminium layer forms the heating micro-resistor and is used as the driving 

element. 

 

The main objective of the work described in this thesis is to enable the construction of 

cantilevers with piezoresistive readout and to integrate bimorph actuators. The thesis 

focuses its efforts on the design and the determination of the physical limit of 

piezoresitive cantilevers with an embedded actuator needed for developing of ultimate 

sensitive force sensors for advanced measurement techniques for nano-science, including 

physical, chemical and biological applications. To achieve these goals the thesis draws 
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on areas such as theoretical physics, numerical simulations, noise characterization and 

micro mechanical technology. The organization of this thesis is based on the following 8 

chapters: 

• The current chapter presents the background and motivation for this work, and 

outlines the thesis organization. 

• Chapter 2 provides the basic definitions needed for a macroscopic description of 

the piezoresistive effect. 

• Chapter 3 gives an outline of the effective mass  method (  approximation), 

used to construct energy bands and wave functions near the conduction and 

valence band edges in semiconductors. The effects of strain on the band 

structure will be reviewed and the necessary corrections to the effective 

Hamiltonian will be presented. 

kp

• Chapter 4 deals in detail with issue regarding the piezoresistive effect in both n 

and p-type bulk silicon. 

• Chapter 5 discusses the way to extend the applicability of existing piezoresistive 

models by incorporating new physical effects that arise due to the scaling of the 

piezoresistors thickness and energy band modification in case of 2D. 

• Chapter 6 considers the fundamental equations for the mechanical 

characteristics of the cantilever beam. It is necessary to make this analysis, 

because the cantilever sensors transform the investigated force into a mechanical 

deflection. In addition the principles of the thermal bimorph actuations of the 

cantilever beam will be discussed as well. 

• Chapter 7 discusses the fundamental limits for the sensitivity of the piezo-

cantilever beam with an integrated bimorph actuator with respect to the noise 

and actuator-sensor crosstalk. As, the noise is connected with the energy 

dissipation (according to the fluctuation dissipation theorem), the different 

mechanisms of energy dissipation will be discussed. 

• Chapter 8 focuses on several questions during device fabrication and gives 

examples of cantilever based sensors and their applications. 

• Finally the thesis finishes with a summary and conclusions of this research. 
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Chapter 2 

Characteristic of the piezoresistive medium 

 

The piezoresistive effect of semiconductors describes how the resistivity is influenced by 

mechanical stress. For the phenomenological description of the piezoresistive effect 

elastic (stress or strain) and electrical (electrical filed) quantities are necessary.  

  

 

2.1 Strain and stress tensors 
 

For the definition of the elastic quantities, it is necessary to give a brief review of 

continuum mechanics theory. 

 

Stress is the distribution of internal body forces of varying intensity due to externally 

applied forces and/or heat. The intensity is represented as the force per unit area of 

surface on which the force acts. To illustrate this concept, consider an arbitrary 

continuous and homogeneous body. Around an arbitrary point in the continuous body 

we define an elementary volume with cubic form. The planes of this volume are normal 

to the coordinate directions ( ). The stress in such a point is presented 

by a stress tensor T  of rank two. Due to the mechanical equilibrium conditions of the 

infinitesimal cubic element the stress tensor can be written as a symmetrical matrix: 

≡ ≡ ≡1,  2,  3x y z

 

 

 

⎟ .  (2-1) 
11 12 13

21 22 23

31 32 33

⎛ ⎞
⎜ ⎟= ⎜
⎜ ⎟
⎝ ⎠

T T T

T T T

T T T

T
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.2. Characteristic of the piezoresistive medium

In the definition above,  are the normal stress components, which act on the faces 

perpendicular to the direction. In addition,  are the shear stress components 

oriented in 

iiT

i − ijT

j − direction and acting on the faces with normal in the direction. i −

The deformation of a body around the same point is characterized by the components 

of the strain tensor S . Strain is a dimensionless quantity, which represents the state of 

deformation in a solid body. In the one-dimensional case for any point of a crystal, the 

strain can be defined as a ratio between the deformation δ u  and length of the segment 

δ x , given by the following relationship: 

 

 
0

lim
δ

δ
δ→

∂
=

∂x

u u

x x
.  (2-2) 

 

To expand this definition to the three-dimension case, let us consider a solid, which 

differs from a perfect crystal in that the atoms are displaced from their equilibrium 

positions  by a small amount . In elastic theory one is interested in how the 

displacements change in space. The deformation 

x u

∆u  of the segment between points  

and  can be expressed as: 

x

+ ∆x x

 

 1 2 3    , , ,
∂

∆ = ∆ =
∂

i
i j

j

u
u x where i j

x
.  (2-3) 

The second rank tensor ∂ ∂iu x j , which appears in the above equation, can be 

decomposed into symmetric and anti-symmetric tensors: 

 

 
1 1

2 2

⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛∂ ∂∂ ∂ ∂ ∂ ∂
= + = + + −⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜∂ ∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝

s a
⎞
⎟⎟
⎠

j ji i i i i

j j j j i j

u uu u u u u

ix x x x x x x
.  (2-4) 

 

The anti-symmetric part is associated with a rotation of the whole crystal and there is 

no elastic energy associated with a pure rotation. Therefore, it is more convenient to 

define the strain tensor as the symmetrical part of the deformation tensor: 
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11 12 13

21 22 23

31 32 33

1 2 3

⎛ ⎞
∂∂⎜ ⎟= =⎜ ⎟ ∂ ∂⎜ ⎟

⎝ ⎠

+      , , ,
ji

ij

j i

S S S
uu

S S S where S for i j
x x

S S S

S =   (2-5) 

 

The diagonal elements  represent the normal strains. They are defined 

as the change in length per unit length in the line segment in the direction under 

consideration. The shear strains  are defined as the tangent of the 

change in the angle between segments whose original directions were . For 

small angle changes the tangent length is nearly equal to the angle change in radians. 

Therefore we associate the off-diagonal elements  

with the shear strains.  

11 22 33,    SS S and

12 23 13,    SS S and

i and j

12 21 13 31 23 32S S S S S and S

Consider a solid that is weakly deformed by external forces, which are represented by 

the stress tensor (2-1). In this case, the stress and strain tensors are related by Hooke’s 

law, which states that the stress tensor is linearly proportional to the strain tensor: 

 

 

= = −

= = −

, , , , ,  

, , , , ,  .          

                     

ij ijkl kl ijkl

ij ijkl kl ijkl

T c S i j k l x y z c stiffness coefficients

S s T i j k l x y z s compliance coefficients   (2-6) 

 

The symmetrical tensors T  have only six different components, thus we can 

simplify the notation by introducing the following substitutions: 

  and S

 
 p ijT T= ,  (2-7) 

 

   (2-8) 1 2 3 1 2 3 4 5 6
2

       
      , , ,  ;  , , , , , .    

    

=⎧⎪= = =⎨ ≠⎪⎩

ij

q
ij

S for i j
S where i j q

S for i j

 

The relationships between the indexes are: 

 

   (2-9) 
11 1 22 2 33 3

23 4 13 5 12 6

→ → →
→ → →
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;

=
  

2. Characteristic of the piezoresistive medium

From the symmetrical form of both stress and strain tensors follows the symmetric 

form of the compliance and stiffness tensors. Therefore, the original 81 components of 

both fourth rank tensors can be reduced to a maximum of 36 independent constants, 

which are elements of a 6x6 matrix.  

Consequently, using the above conventions, equations (2-6) can be simplified into the 

following form: 

 

  (2-10) 

1 2 3 4 5 6, , , , , ,

   
.

      

= =

=

p pq q

p pq q

T c S p q

S s T

Comparing the equations (2-6) and (2-10) we can realize the relationships: 

 

  (2-11) 

1 2 3

2 4 5 6

4 4 5 6

= =
=
= =

  

either    

  both    

pq ijkl

pq ijkl

pq ijkl

s s for p,q , , ;

s s for p or q , , ;

s s for p and q , , .

 

Since the stiffness and compliance matrixes in equations (2-10) are not tensors, they 

have to be transformed using a different transformation law, which will be discussed in 

section 2.4. 

 

 

2.2 Resistive and piezoresistive tensors 
 

The relation between the electric field vector E  and electric current density  is given 

by Ohm’s law: 

J

 
 =J σE ,  (2-12) 

 

The electric field vector is proportional to the current vector by a symmetrical 

conductivity tensor of rank two with nine components. 

The piezoresistive effect indicates that the stress tensor in crystalline materials causes a 

change of the conductivity tensor: 
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ij

ijkl kl

d
T

σ
π

σ
= −   (2-13) 

 

or in matrix notation: 

 

 
p

pq q

d
T

σ
π

σ
= − ,  (2-14) 

where: ( )11 22 33 3σ σ σ σ= + + . 

The origin of the piezoresistive coefficients will be discussed in Chapter 4. 

 

 

2.3 Simplification by crystal symmetry 
 

The Neumann’s principle [24] states that: Every physical property of an object must 

have at least the symmetry of the point group of the object. This means, that the 

symmetry operations from the point group of the elementary cell did not change any 

physical parameters of the crystal. The silicon crystal has a diamond type lattice 

structure, for which there exist 48 point symmetric operations. By applying all 

symmetry operations one by one, the matrix describing the two-index matrix 

coefficients can be significantly reduced, yielding [25]: 

 

 ,  (2-15) 

11 12 12

12 11 12

12 12 11

44

44

44

0 0 0

0 0 0

0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

p p p

p p p

p p p

p

p

p

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟

= ⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠

p

 

where  is any property of the crystal- (in this thesis we deal with stiffness, compliance 

and piezoresistive matrixes). 

p

Thus, the cubic symmetry of silicon reduces the number of non zero independent 

components to three constants. Instead of components of the compliance and stiffness 
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.2. Characteristic of the piezoresistive medium

the following material constants are often used: Young’s modulus (Y), Poisson’s ratio 

(ν) and Shear modulus (G). They are defined respectively as: 

 

 

( ) ( )
11 12

11
11 12 11 12

12 12

11 11 12

44
44

1

2

1 1

c c
s ,

Y c c c c

s c
,

s c c

s .
G c

ν

+
= =

− +

= − =
+

= =

 (2-16)  

 

 The silicon material constants in crystallographic coordinates are given in the 

Appendix - Table 8. 

 

 

 

2.4 Coordinate transformation of the coefficients in matrix 

notation 

 

All of the above equations were developed with the coordinate axes corresponding to 

the [ ]100  directions of a crystal (crystallographic coordinates) in the cubic family. It 

would be more general and more useful to express the coefficients for an arbitrary 

direction. This can be done by defining longitudinal and transverse coefficients, lp  and 

tp . The longitudinal coefficient refers to the case where the applied field is in the same 

direction as the induced field, whereas the transverse coefficient refers to the case where 

the applied field is perpendicular to the induced field. 

Generally the arbitrary rotation of one coordinate system can be presented as: 

 
 í ijx a x j= . (2-17) 

 

There are many ways to describe 3D rotations. However, in physics, the Euler’s angles 

α , β  and γ  are often used, (see Figure 2.1). With such parameterisation the 

components of the transformation matrix can be expressed as [26]: 
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Figure 2.1 Definit on of the Euler s angles. 
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21 22 23 2 2 2
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cos sin cos sin

sin cos cos sin sin cos

sin cos

cos cos cos sin sin cos cos cos s

α α γ γ
α α β β γ γ

β β

α β γ α γ α β γ

− −⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛
⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜≡ = −⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜

⎜ ⎟ ⎜ ⎟ ⎜⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝⎝ ⎠ ⎝ ⎠

− +
=

a a a l m n

a a a l m n

a a a l m n

in sin cos sin

sin cos cos cos sin sin cos cos cos cos sin sin ,

sin cos sin sin cos

α γ α β
α β γ α γ α β γ α γ α γ

β γ β φ β

−⎛ ⎞
⎜ ⎟− − − +⎜ ⎟
⎜ ⎟
⎝ ⎠

 (2-18) 

 

where ,  and  are known as direction cosines. il im in

When we have the transformation of the coordinate system described by the above 

equation, the transformation rule for a tensor of rank-n is given by: 

 
 

1 2 1 1 2 2 1 2´ ´ ´ ´ ´ ´n n ni i ...i i i i i i i i i ...iA a a ...a A= . (2-19) 

 

Then the tensors of second rank in the simplified notation are transforms of the type: 

 

 ´ α=i ijA Aj ,  (2-20) 
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.2. Characteristic of the piezoresistive medium

where [27]: 

 

 .  (2-21) 
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It can be also shown that tensors of fourth rank, which give the relations between two 

tensors of second rank, in the simplified notation, transform as: 

 

 .  (2-22) 1´ α α −=pq pr rt tqA A

 

For example, applying the above transformation law we can express the longitudinal 

and transversal piezoresistive coefficients in an arbitrary direction, respectively, as: 

 

 
( ) ( )

( ) ( )

2 2 2 2 2 2
11 11 11 12 44 1 1 1 1 1 1

2 2 2 2 2 2
12 12 11 12 44 1 2 1 2 1 2

´ 2

´

l

t

l m l n m n ,

l l m m n n .

π π π π π π

π π π π π π

≡ = − − − + +

≡ = + − − + +
  (2-23) 

 

Thus, using the values of the piezoresistive coefficients in the crystallographic 

coordinate system (Table 8) we can calculate the piezoresistive coefficients in an 

arbitrary direction of the (001) wafer plane. As two of the Euler’s angles β  and γ  are 

equal to zero, we can find the extreme value of the piezoresistive coefficients with 

respect to α . For n-type Si the maximum magnitude of the piezoresistive coefficients 

occurs at 0α = , which is equivalent to the [100] direction 

( 11 2
11 102 2 10l ,max . m Nπ π −= = − × , 11 2

12 53 4 10t ,max . m Nπ π −= = × ). Moreover, for p-

type Si the maximum magnitude of the piezoresistive coefficients occurs at α π= 4 , 

which is equivalent to the [110] direction ( ( )11 11 12 44 2l ,maxπ π π π π= − − − =  
11 271 8 10. m N−= × ( ), 11 2

12 11 12 44 2 66 3 10t ,max . m Nπ π π π π −= + − − = − × ). 
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Chapter 3 

Quantum mechanical background 

 

While the preceding sections presented the continuum theory, we will now turn 

towards to the methods, which allow an atomistic description of a semiconductor 

crystal as a system consisting of atoms and electrons. Consequently this theory will be 

applied to model the piezoresistive effect. 

A material is said to be piezoresistive when an applied stress/strain results in a change 

in the material’s electrical resistance. Piezoresistive transducers have the advantages of 

simple fabrication and simple interface circuits. 

A stretched wire grows longer and thinner, which increases its resistance from geometry 

alone. Any conducting material can act as a strain gauge by this geometrical 

mechanism, but piezoresistive sensing usually refers specifically to strain gauges in 

semiconductors. The electrical properties of some doped semiconductors respond to 

stress with resistance changes over 100 times greater than those attributable to 

geometric changes alone. 

Piezoresistive effect in silicon was discovered more than fifty years ago [28], and is 

widely used in commercial pressure sensors and accelerometers.  

The piezoresistors in silicon are created by introducing dopant atoms to create a 

conducting path. When the silicon experiences stress, and therefore strain, the lattice 

spacing between the atoms changes. This change affects and alters the band structure 

by either shifting it in energy, distorting it, removing degeneracy effects, or any 

combination of the three and thus affects the conductivity. 

In this chapter, the microscopic theory for analysis of the piezoresistive effect will be 

introduced based on general quantum mechanics and semiconductor physics. As a 

starting point, we will introduce the Hamiltonian of the whole crystal and then 

consider the approximations usually assumed in order to calculate its energy states. 
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3.1 Electrons in a perfect crystal 3.1 Electrons in a perfect crystal 

  

The stationary many-electron Schrödinger equation is: The stationary many-electron Schrödinger equation is: 

  

 

 

H E  H EΨ = Ψ , (3-1) 

where  is the Hamiltonian operator that incorporates all kinetic and potential 

energies of the system. As in a crystal, there a huge number of simultaneous 

interactions occurring between every electron and every atom core, the Hamiltonian 

describing the electron states in perfect crystal takes the form: 

H

 

 

2 2 22 2 2
2

2 2 < <

∇
= − ∇ − + + +∑ ∑ ∑ ∑ ∑R

r
i

i

J J

i jk iJ JKi i j k iJ J K

Z e Z Z ee
H

m M r r
K

R
. (3-2) 

 

The first and second terms represent kinetic energy contribution due to the electron 

and lattice vibrations, respectively. The next three terms represent the electron-

electron, electron-nuclei and nuclei-nuclei Coulomb interaction, respectively. As even a 

small crystal contains a huge number of nucleus and electrons, the problem, as it 

stands, is practically impossible to be solved. Further approximations are outlined in 

the following section. 

In general it is difficult to obtain a complete solution to the problem of many-particle 

quantum systems. Each electron experiences a potential that depends on its own 

position and the rest of the electrons. This non-locality of the potential makes the 

Schrödinger equation extremely difficult to be solved. Further we will consider a 

possible approximation, which can be applied in order to simplify the problem.  

 

 

3.2 Approximations 
 

Ion cores have masses which may be up to 10  times of the electron mass, and 

consequently it can be shown that the ion core moves much slower than the electrons 

(approximately ). As a result, the electrons effectively exhibit an adiabatic 

4

310
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response, adjusting their motion almost instantaneously to the ion core, while the ion 

cores see only a time-average (adiabatic) electronic potential. The adiabatic 

approximation is also known as the Born-Oppenheimer approximation. The 

Hamiltonian can be now expressed as a sum of two terms, which described the electron 

and ion motions separately. For the electron motion we assume that the ion cores are 

frozen at position . Thus, we may split the wave function of the system into 

electronic 

RJ

( )ϕ r  and ionic components, such that: ( )Φ R

 

 ( ) ( ) ( ), ϕΨ = Φr R r R .  (3-3) 

 

The problem can be reformulated as two eigenvalue problems, yielding both electronic 

and ionic eigensolutions. The first problem, which will be further discussed, gives a 

solution for the electronic band structure. The second one gives a solution for the 

crystal lattice vibration properties known as phonons. 

The electronic eigenvalue equation is represented by: 

 

 ( ) ( )
22 2

2

2
ϕ ϕ

<
= = − ∇ + −∑ ∑ ∑rr r

r ri

J

ik iJi j k iJ

Z ee
H E where H

m
.  (3-4) 

 

The above equation still represents a many-body problem. Hartree suggested that in a 

many electron system it is possible to approximate the potential energy of the electron-

electron interaction (second term) by a time average potential , in which the 

electrons move independent. This leads to a self-consistent equation. Thus we have to 

solve a single electron Schödinger equation of the form: 

( )U r

 

 
22

2

2
ϕ ϕ

⎡ ⎤
− ∇ + = = −⎢ ⎥

⎣ ⎦
∑r r r

r

J

iJJ

Z e
V( ) E where V( ) U( )

m
. (3-5) 

The band structure of semiconductors can be obtained by solving equation (3-5) with 

various approaches: the pseudopotential method, the linear coupled atomical orbital 

(LCAO) method, the free-electron approximation method and the kp  perturbation 

(effective mass) method. All of these methods take into account the translation 
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kpsymmetry of the crystal. Here we will deal with the  perturbation method, for which 

the remaining problem lies in the representation of the wave function in case of the 

translation symmetry of the potential. The solution of this problem leads to the Bloch’s 

theorem, which describes the form of the eigenfunction in a spatially periodic potential 

as: 

symmetry of the crystal. Here we will deal with the  perturbation method, for which 

the remaining problem lies in the representation of the wave function in case of the 

translation symmetry of the potential. The solution of this problem leads to the Bloch’s 

theorem, which describes the form of the eigenfunction in a spatially periodic potential 

as: 

kp

  

  ( ) ( ) iu eϕ = kr
k kr r , (3-6) 

where 

  ( ) ( )u u= +k kr r R .  (3-7) 

 

Introducing the wave function from equation (3-6) into equation (3-5) we have: 

 

 ( )
2 2 2 2

2

2 2

i
u V u u u E u

m m m
− ∇ + − ∇ + =k k k k

k
r k k k .  (3-8) 

 

If we define the momentum operator i= − ∇p , the above equation at k  has the 

form: 

0= k

 

 ( )
0 0

2 22
0

0
2 2

n nV u E
m m m

⎡ ⎤⎡ ⎤
+ + = −⎢ ⎥⎢ ⎥

⎣ ⎦ ⎣ ⎦
k k

kp
r k p

0nu k   (3-9) 

 

Here  is the potential of the unstrained unit cell,  is the energy spectrum of 

the unstrained crystal at k and  is the unstrained electron Bloch wave function 

which transforms according to the representation located at  (see section 3.5). 

( )V r
0knE

0 0nu k

0k

 

 

3.3 Band structure in the presence of strain 

 

In the strained crystal, the unit cell is deformed but it still remains periodic, 

consequently retaining the periodicity of the wave function. Thus, we can write the 
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equation (3-9) at wave vector 0 +k k  for the wave function in the strained crystal 

satisfying the equation: 

 

 ( ) ( ) ( )
0 0

222
0

0

´
´ ´ ´ ´

2 2

⎡ ⎤⎡ ⎤ +
⎢+ + + = −⎢ ⎥
⎢ ⎥⎣ ⎦ ⎣ ⎦

n nV u E
m m m

k k

k kp
r k k p ´⎥ u k .  (3-10) 

In order to find the perturbation term, the above equation should be written in terms 

of the unstrained (unprimed) coordinate system. Thus we have to look how the terms 

and  will be transformed. The relationship between the coordinate systems in 

strained and unstrained crystals can be written as: 

p´ ( )´V r

 
 ´ = +i i ij jx x S x .  (3-11) 

 

Using such a transformation of the coordinate system we can find the transformation 

law for the momentum and potential as: 

 

 
( ) ( ) ( )´

´
δ δ

δ

⎛ ⎞∂ ∂ ∂
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i jj ij ij

jp i i S i S
x xx S

p ,  (3-12) 

 

 2 2 2´ ´ ´ 2 2δ= ≈ − = −i i i i ij ij i ij jp p p p S p Sp p p p ,  (3-13) 

 

 ( ) ( ) ( ) ( )
( )( )

0´ =
∂ +

= + =
∂ij ij ij

ij

V
V V V S where V

S
S

1 S r
r r r r .  (3-14) 

 

By comparing the Schrödinger equations for strained and unstrained crystals we can 

find the term acting as a perturbation in the form: 

 

 ( ) ( )( ) 01δ = + −H H HSS S r   (3-15) 

or 

 ( ) ( )
2 2 2

2
,δ
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x
. (3-16) 
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where:  where:  
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  (3-17) 

 

is known as deformational potential operator. 

As we have arrived at the close form expression of the perturbation term, we can apply 

either the degenerate or nondegenerate perturbation theory in order to find the 

dispersion around the  in the presence of stress S . Further, we are interested in such 

places  of the band structure at which the energy has an extremum. Thus, the linear 

terms in k  vanish. The term of order kS  describes only small changes of the energy. 

0k

0k

Further we will employ the first order perturbation theory in  and the second order 

in  for the above-obtained perturbation. 

S

k

 

 

3.4 Spin-orbit interaction 

 

In the previous section the perturbation Hamiltonian was obtained without considering 

the electron spin. In order to include the interaction of the electron spin with the 

magnetic field induced by the electron orbital movement we have to consider an 

additional perturbation term, which will be estimated below. 

The spin-orbit coupling is a relativistic effect. Here will be demonstrated only a 

conclusion based on classical electrodynamics.  

Since the electron has charge and spin it also has a magnetic moment 0µ= −µ σ , where 

0
2

e

mc
µ =  is Bohr magneton and the components of vector  are the Pauli spin 

matrices: 

σ

 

 
0 1 0 1 0

1 0 0 0 1
, ,x y z

i

i

−⎛ ⎞ ⎛ ⎞ ⎛
= = =⎜ ⎟ ⎜ ⎟ ⎜

⎞
⎟−⎝ ⎠ ⎝ ⎠ ⎝

σ σ σ
⎠
.  (3-18) 

 

If an electron moves with velocity  in an electrical field with intensity E  it will see, 

in the coordinate system connected with it, the magnetic field : 

v

H
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⎡ ⎤= ×⎢ ⎥⎣ ⎦c

v
H E .  (3-19) 

 

The intensity of the electric field is connected with the potential ( )V r  as: 

 

 ( )1
= − ∇V

e
E r .  (3-20) 

 

As the energy of the dipole with moment µ  in the magnetic field  is equal to H µH , 

we can finally express the classical spin-orbit operator as: 

 

 (
2 22

= ∇ × pcl
soH V

c m
)σ . (3-21) 

 

However this energy term is not complete, due to the relativistic effect called Thomas 

precession [29], the correct energy of the spin dipole is [30]: 

 

 
2

cl

so
so

H
H = .  (3-22) 

 

The above-obtained spin-orbit Hamiltonian is important for the proper description of 

the valence band structure (see Chapter 4.2) and has to be considered in addition to 

the perturbation given by (3-16).  

 

 

3.5 Crystal symmetry of the Silicon 

 

In previous sections the perturbation term to the Hamiltonian in the presence of strain 

has been obtained. In order to calculate the correction to the energy spectrum  

given by equation (3-9) the perturbation theory to the perturbation term has to be 

applied. As the perturbation theory method requires the exact wave function  in 

0knE

0nu k
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this section we will give an idea how they can be obtained using the symmetry 

properties of the crystal. 

this section we will give an idea how they can be obtained using the symmetry 

properties of the crystal. 
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classification of the symmetry transformation the well-developed mathematical 

apparatus of the group theory [31] is used. In terms of the group theory, symmetry 

operations which are carried out on spatial coordinates, are classified as group 

elements. When these operations are applied to some function of coordinates (in the 

configuration space of the system) we will generate a number of functions from which 

we can choose a set of  linearly independent functions called basic functions. The 

action of some symmetry operation  on any of the basic functions  results in a 

function 

According to Wigner [26] the Schrödinger equation for any physical system has to be 

invariant with respect to the symmetry transformations of this system. For the 

classification of the symmetry transformation the well-developed mathematical 

apparatus of the group theory [31] is used. In terms of the group theory, symmetry 

operations which are carried out on spatial coordinates, are classified as group 

elements. When these operations are applied to some function of coordinates (in the 

configuration space of the system) we will generate a number of functions from which 

we can choose a set of  linearly independent functions called basic functions. The 

action of some symmetry operation  on any of the basic functions  results in a 

function 

n

SR if

[ ]S iR f

[
 represented as a linear combination of basic functions i.e. 

]S i ijR f a f= j . In such a manner applying the symmetry operation  to all basic 

functions we will generate a matrix . Thus, applying all symmetry operations one by 

one to the basic functions we obtain a set of matrices, which together with the usual 

rule for matrix multiplication form a group that is equivalent to the group of symmetry 

operations. The obtained group of matrices is called representation with dimension . 

Obviously, generated matrices (i.e. the representation) depend on the basic functions. 

Further we are interesting in basic functions, which generate so-called irreducible 

representations or in other words representations that cannot be expressed in terms of 

representation of lower dimensionality. 

SR

ija

n

As we have introduced the general definition used in group theory we can begin with 

the classification of symmetry properties of the elementary Si lattice and its reciprocals 

lattice. The elementary cell of Si can be expressed as two face-centred cubic (FCC) 

lattices with a size , where the second lattice, in Cartesian coordinates is translated 

by vector 

0a

( 0 0 04 4 4a ,a ,a )  relative to the first lattice, see Figure 3.1a. According to 

the crystallographic classification, the FCC lattice belongs to the cubic syngony. Its 

symmetrical properties are determined by the 48 symmetrical elements, which belong 

to the  point group and are generated from the 24 elements  of the group  (see 

Table 1) by adding the inversion operation  [26].  

hO iR dT

J
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Figure 3.1 a) The diamond structure characteristic for Si and b) The first Brillouin zone of 

the FCC lattice. 

 

Returning to the equation (3-9) and taking into account that the potential  has 

the symmetry of the elementary cell we will realize that the Hamiltonian is invariant 

under a part of the symmetry operation of the  group i.e. the symmetry is 

determined from the symmetry of the wave vector . As the wave vector is presented 

as a point in the reciprocal lattice space it is important to study the symmetrical 

properties at different points in the reciprocal lattice. The reciprocal lattice to the FCC 

is a body-centered cubic (BCC) lattice. The first Brillouin zone of the Si reciprocal 

lattice has the form of a truncated octahedron with volume 

( )V r

hO

0k

( 3
04 2 aπ ) - Figure 3.1b. 

Further we are interested in the points at which the conduction band minimum and 

valence band maximum are located. For the case of Si these points occur at point in ∆  

direction and in  point, respectively (for definitions see Figure 3.1b). The electronic 

states belong to one dimension 

Γ

1∆  representation with spherical symmetric base 

function, while the hole states belong to three dimension '
25Γ  representation with basic 

functions { }xy ; yz ; zx  [32].  



 24 3. Quantum mechanical background.

  

E  E  R1(xyz) R1(xyz) 

3C4
2 R2(xy-z-) R3(x-yz-) R4(x-y-z) 

8C3 R5(yzx) R6(y-zx-) R7(y-z-x) R8(yz-x-) R9(zxy) R10(z-x-y) R11(zx-y-) R12(z-xy-) 

6S4=6JC4 R13(x-zy-) R14(x-z-y) R15(z-y-x) R16(zy-x-) R17(yx-z-) R18(y-xz-) 

6σ=6JC2
R19(xzy) R20(xz-y-) R21(zyx) R22(z-yx-) R23(yxz) R24(y-x-z-) 

Table 1 Classificat on of the group  symmetr cal element into six classes and its 

transformation laws.  

i idT

 

In this chapter the stress influence on the Hamiltonian in terms of  and deformation 

potential perturbation has been described. In addition the symmetrical properties of the 

Si crystal have been introduced in order to find the basis of Bloch wave functions. In 

the following chapter we will continue with calculations of the dispersion curves using 

the results obtained above. 

kp
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Chapter 4 

Calculation of the piezoresistive effect for the bulk 

piezoresistors-3D case 
 

As already pointed out, the piezoresistive effect in semiconductors is due to the stress 

dependence of the band structure (Figure 4.1). Therefore, the effective-mass 

approximation (kp  method) and the theory of deformation potential have been 

introduced in the previous chapter. This theoretical tool permit description of the effect 

of stress on the band structure near extreme points i.e. near the conduction band 

minimum and the valence band maximum. However, it is desirable to relate the 

fundamental theory of physical properties of semiconductors to the piezoresistive 

coefficients given by equation (2-14).  

Figure 4.1 Dispersion relations for the energy E(k) of an electron or hole  

versus wave vector length in the first Brillouin zone of silicon (after [33]). 
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In this chapter we will use the previously obtained results to calculate the piezoresistive 

coefficients for n-type and p-type silicon. 

In this chapter we will use the previously obtained results to calculate the piezoresistive 

coefficients for n-type and p-type silicon. 
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under strain, the sixfold degeneracy of the conduction band is decomposed into a two- 

and fourfold degeneracy. Herring and Vogt [34] had described quantitatively the band 

edge shifting with the help of dilatation 

For silicon, the band edge of the conduction band is along the ∆ direction near 

. Corresponding to this band edge there are six equivalent valleys, although 

under strain, the sixfold degeneracy of the conduction band is decomposed into a two- 

and fourfold degeneracy. Herring and Vogt [34] had described quantitatively the band 

edge shifting with the help of dilatation 

[3/ 4,0,0]=k

dΞ  and shear deformation  potentials. From 

cyclotron resonance experiments an additional parameter 

uΞ

mΞ , which describes the stress 

inducing effective mass change, has been provided by Hensel [35]. 

In order to present the conduction band energy shift in terms of conduction band 

parameters, the results from the deformation potential theory obtained by  and  

in equation (3-16) for the case of the conductive band minima can be rewritten as [36]: 

H S H kS

 

 

( )
( )
( )

1 11 22 33 11 23 2 3

2 11 22 33 22 13 1

3 11 22 33 33 12 1 .
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  (4-1) 

 

In n-type silicon, the piezoresistance is attributed to the raising or lowering of the 

conduction band minima under applied stress. Figure 4.2a shows the ellipsoidal 

constant energy surfaces in k-space for three of six equivalent conduction bands. The 

length of the major and minor axis, which can be obtained from perturbation theory 

with respect to the kp  perturbation term, is indicative of the effective mass. Thus the 

electrons in longitudinal direction have high mass  (low mobility lm µl ) while the 

transverse electrons have low mass  (high mobility tm µt ). An electron current along 

one of the cubic axes (Figure 4.2a) consists of two types of electrons: Electrons with 

longitudinal mass and concentration  (Valley-1) and electrons with transversal mass 

and concentration  (Valleys-2, 3). Therefore the conductivity can be expressed as: 

ln

tn
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4.1. Conduction band structure-piezoresistive coefficients 

a) 

Figure 4.2 The conduction band isoenergetic surfaces (90meV) in relaxed and stressed silicon. 
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The effect of tensile stress on the conduction band structure and constant energy 

surfaces is shown in Figure 4.2b. If a uniaxial tensile stress is applied in 

The effect of tensile stress on the conduction band structure and constant energy 

surfaces is shown in Figure 4.2b. If a uniaxial tensile stress is applied in x  direction, 

the conduction band energy minimum at valley-1 is increased. This causes electrons to 

be transferred to valleys 2 and 3, which have lower energy minimum.  

Referring to the theory of semiconductor physics [37], the free carrier concentration in 

every valley  can be obtain from: i

 

 1 2/

−⎛ ⎞
= −⎜ ⎟

⎝ ⎠

ci f

i c

B

E E
n N F

k T
, (4-3) 

 

where the material effective density of states  and the half-order Fermi integral cN 1 2/F  

are defined, respectively, as: 
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The Fermi energy fE  is obtained from the neutral charge conditions: 
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where  and  are the donor concentration and donor energy level, respectively. dn dE

Using the equations (4-3) and (4-6) we can calculate the electron concentration in every 

valley. In case of tensile stress the concentration of electrons in valley-1 (which have 

longitudinal mass with respect to the current in x -direction; see Figure 4.2b) is 

decreased i.e. using the equation (4-2), a net decrease in resistivity is expected. Based 

on this model we can calculate the piezoresistive coefficients according to equation 

(2-14). The computed piezoresistive coefficients, for the conductive band parameters 

taken from Table 8, are presented in Table 2. 
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Concentration 

3[ ]−
m  

Stress 

[ ]GPa  

Concentration at stress

3[ ]−
m  

Shear mass 

[ ] atomic units  

PR coefficients 

1[ ]−
Pa  

21
1 2 1 66 10, .= ×valleyn  

21
3 4 5 6 1 66 10, , , .= ×valleyn

 

11 0 1.=T  21
1 2 1 25 10, .= ×valleyn  

21
3 4 5 6 1 87 10, , , .= ×valleyn

1,2
44 0=valley

m  

3,4,5,6
44 0=valley

m  

11
11 89.9 10π −= − ×

11
12 45.0 10π −= ×  

21
1,2 1.66 10= ×valleyn  

21
3,4,5,6 1.66 10= ×valleyn

 

12 0.1=T  21
1,2 1.66 10= ×valleyn  

21
3,4,5,6 1.66 10= ×valleyn  

1,2
44 11.12=valley

m  

3,4,5,6
44 0=valley

m  

11
44 8.6 10π −= − ×  

Table 2 Calculated piezoresistive coefficients at room temperature  

for boron-doped silicon ( 44− =c dE E meV  22 310 −=dn m ). 

 

The so called many-valley theory presented in this section describes n-type silicon very 

well. A large, negative 11π  coefficient is predicted, 21π  is expected to be the opposite in 

sign and with half magnitude of 11π . Finally, the shear coefficient, 44π , is predicted to 

be very small. The original data from Smith [28] confirm these predictions reasonably 

well. 
 

 

4.2 Valence band structure - piezoresistive coefficients 

 

While in the previous section the piezoresistive coefficients for the n-type silicon was 

calculated, in this section we will present the stress influence on the valence band 

structure. Thus we will be able to calculate the piezoresistive coefficients for the p-type 

silicon. 

The near-band-edge valence band structure of the silicon is much more complicated 

than the conduction band, which leads to a more complex dependence of conductivity 

on stress. The top of the valence band, located at the Γ  point, 0=k  (see Figure 4.1), 

comprised two distinct bands, designated heavy-hole and light-hole. Considering the 

spin-orbit interaction,  below the degenerate maximum of these two bands 44meV
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kp

'
25

appears the maximum of a third band, known as split-off band. Due to the interaction 

between the light-hole and split-off bands, the shape of the light-hole band is complex. 

In order to model the Si valence bands we use a  description of the bands, see 

equation (3-16). As already pointed out, the states of the holes at the Brillouin zone 

centre belong to the 

appears the maximum of a third band, known as split-off band. Due to the interaction 

between the light-hole and split-off bands, the shape of the light-hole band is complex. 

In order to model the Si valence bands we use a  description of the bands, see 

equation (3-16). As already pointed out, the states of the holes at the Brillouin zone 

centre belong to the 

kp

'
25Γ  representation of the  group. Basic functions {hO }xy ; yz ; zx  

of this representation upon symmetry elements of the  group (see Table 1) 

transform similar to the {
hO

};  ;  x y z  [38]. Considering the electron spin we can order the 

basic function as: 
 

 ↑= x1ψ , ↓= x2ψ , ↑= y3ψ , ↓= y4ψ , ↑= z5ψ , ↓= z6ψ .  (4-7) 
 

Looking for the first order correction to the energy with respect to the strain and 

second order correction to the energy with respect to the  perturbation, we can 

apply the perturbation theory to the perturbation Hamiltonian given with equation 

(3-16). Including the spin-orbit perturbation , this leads us to the following secular 

equation for the energy correction 

kp

SOH

( )
E

kS : 

 

 ( )
' ' 0+ + − Ε =kSk S

ii ii SOH H H ,  (4-8) 

where: 

 

'

'' '' '

'
'''' '

' 1 6

1 3

,

,

, ..
 ;

, .

αβ

α β
α β

αβ

ψ ψ ψ ψ
α β≠

=
=

=−∑ ∑k

ii

i i i i

ii

i ii i i

S

p p i i
H k k

E E .
  (4-9) 

 

 ' 'ii i iH αβ αβ
αβ

ε ψ ψ= Ξ∑S .  (4-10) 

 

For presenting the matrix elements  and  in the basis given with (4-7), we will 

consider their symmetrical properties with respect to elements of the  group. The 

second sum '  in the Hamiltonian , upon acting of the symmetry operation, 

transforms like product the 

'iiH S
'iiH k

hO

,iiSαβ

i

'iiH k

'i p pα βψ ψ⋅ ⋅ ⋅ . The operators p i xα α∂ ∂≡ − , in 

this product, transform like coordinates xα . Therefore the sum ',iiSαβ  and the matrix 

elements 'ii i iD αβ αβ 'ψ ψ≡ Ξ  in the Hamiltonian  will be transformed in a similar 

way. 

'iiH S
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Let’s now assume . ' 1i i= =

When α β≠  we have  and ,11 0Sαβ = ,11 0Dαβ = . For example if 1α =  and 2β =  

(1 , 2 , 3  ≡ ≡ ≡x y z ) we can apply the symmetry element 2R  (see Table 1) to the sum 

. The result is 12,11S xy≡ xx ( )2R xyxx xyxx= −  i.e. 12,11 0S =  and .  12,11 0D =

When 1α β= =  we have  1111,S xx≡  xx and xx11,11D xx≡ . As we cannot find a symmetry 

element, which can change the sign, the matrix elements  and  are presented 

by constants. Thus we can define the following valence band parameter  and 

deformation potential l : 

1111S 1111D

L

 

 

22
''

2
1 '''' 1

x i

ii

x p
L

E Em

ψ

≠
=

−∑  and 11l x .  (4-11) x= Ξ

 

When 2α β= =  (or 3α β= = ) we have 11,22S xxyy≡  and 11,22D xxyy≡  (or 11,33S xxzz≡  

and ). We can see also that 11,33D xx≡ zz ( )2
13

2
R xy x xz x= . Thus we can define another 

valence band parameter M  and deformation potential : m

 

 

2 22 2
'' ''

2 2
1 '' 1 '''' 1 '' 1

y i z i

i ii i

x p x p
M

E E E Em m

ψ ψ

≠ ≠

= =
− −∑ ∑  and 22 33m x x x x= Ξ = Ξ .  (4-12) 

 

Finally we obtain: 
 

 2 2
11 ( )2

x y zH Lk M k k= + +k  and 11 ( )xx yy zH lS m S S= + +S
z

2=

.  (4-13) 

 

If  in similar way we can realize that it has only two non-zero members 

in the sum when 

1 ' and i i=

1 2 and α β= =  or 2 and 1α β= = . Thus we can define a third 

valence band parameter  and deformation potential :  N n

 

 
2

'' '' '' ''

2
1 '''' 1

x i i y y i i x

ii

x p p y x p p
N

E Em

ψ ψ ψ ψ

≠

+
=

−∑
y

 and 12 21n x y x y= Ξ + Ξ .  (4-14) 

 

So the respective matrix elements can be written as: 
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12 21  12 21 x yH H Nk k= =k k

'

0

 and .  (4-15) 12 21 12H H nS= =S S

 

Following the same technique we can find the rest of the matrix elements and finally 

we can construct the following Hamiltonian in the basis (4-7): 

 

 

0 ' 0

0 0 ' '

' 0 0 '

0 ' 0 '

' '

' ' 0

xx xy SO xz SO

xx xy SO SO xz

xy SO yy yz SO

xy SO yy SO yz

xz SO yz SO zz

SO xz SO yz zz

h h i h

h h i

h i h h i
H

h i h i h

h h i h

h i h h

− ∆ ∆⎡ ⎤
⎢ ⎥

+ ∆ −∆⎢ ⎥
⎢ ⎥+ ∆ − ∆⎢ ⎥= ⎢ ⎥− ∆ − ∆
⎢ ⎥

−∆ ∆⎢ ⎥
⎢ ⎥

∆ ∆⎢ ⎥⎣ ⎦

h

2 )

,  (4-16) 

 

where: 

 2 2 2 2 2( ) (h H H Lk M k k lS m S Sαα αα αα α β γ αα ββ γγ= + = + + + + +k S ,  (4-17) 

 h H H Nk k nSαβ αβ αβ α β α= + = +k S
β ,  (4-18) 

 

 
2 2

'
3 4

SO
SO y x

i V V
x p p

x ym c

∆ ∂ ∂
∆ ≡ = −

∂ ∂
y .  (4-19) 

 

By using the above perturbation Hamiltonian, Dijkstra [39] has found analytical 

solutions for the valence band energies: 

 

 

2 3
3

2
2 3

3

2
2 3

3

cos /  ,

cos /  ,

cos /  ,

π

π

Θ⎛ ⎞= − −⎜ ⎟
⎝ ⎠

Θ +⎛ ⎞= − −⎜ ⎟
⎝ ⎠

Θ −⎛ ⎞= − −⎜ ⎟
⎝ ⎠

kS

kS

kS

SO

hh

lh

E Q p

E Q p

E Q p

  (4-20) 

where: 

 
2 3

3

3 2 9 27
cos

9 54
 ;  ;

⎛ ⎞− − + ⎜ ⎟= = Θ =
⎜ ⎟
⎝ ⎠

p q p pq r R
Q R a rc

Q
 ,   (4-21) 

and: 
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'

   (4-22) 

( )
( )

( ) ( )

22 2 2

2 32 2 2

( ) 3 '

2 ' 2

 ,

 ,

 .

= − + +

= + + − − − − ∆

= − + + + − − ∆ + ∆

xx yy zz

xx yy zz yy zz xy xz yz SO

xx yy zz xx yz yy xz zz xy xy xz yz SO SO

p h h h

q h h h h h h h h

r h h h h h h h h h h h h p

 

The advantage of the above equation is that it expresses an analytical solution for the 

valence band energies, which gives us the possibility to increase the speed of the 

calculations significantly. Consequently we can calculate the energy values around the 

band edges in the Brillouin zone.  

In the frame of this work the 3D k-space was divided into 300x300x300 equally spaced 

intervals. For all generated mesh points we calculate the corresponding energies, Figure 

4.3 shows the warped constant energy surfaces for heavy and light holes without stress 

and in presence of stress with magnitude T=108 Pa in direction [110]. The 

corresponding strain components in the crystallographic coordinate system, which are 

necessary for the calculation of the Hamiltonian elements, are: 

 

 ( )11 12 2S S s s Tαα ββ= = +  ;  12S s Tγγ =  ;  44 / 4S s Tαβ = .  (4-23) 
 

As we have two types of holes (heavy holes-hh and light holes-lh), the isotropic hole 

conductivity is the sum of both hole conductivities: 

 

 2 hh lh

hh lh

n n
e

m m
σ τ

⎛ ⎞
= +⎜ ⎟

⎝ ⎠
.  (4-24) 

 

Applying stress to the semiconductor results in a split between the upper valence 

bands, which finally changes the hole concentration. Beside that, a change in the 

warped constant energy surfaces shape, which is off course connected to the effective 

mass, will occur due to the same stress. In such a way change in the conductivity under 

an applied stress can be explained in the terms of hole transfer nδ  and mass change 

mδ  phenomena [40]: 

 

 2 2

hh lh
ij ijhh hh lh lh hh lh

ij hh lh hh hh lh lh
hh lhij ij ij ij ij ij

m mn n n n n n
e e

n nm m m m m m

δ δδ δ
δσ τ τ

⎛ ⎞ ⎛
⎜ ⎟ ⎜= + − +
⎜ ⎟ ⎜
⎝ ⎠ ⎝

⎞
⎟
⎟
⎠
.  (4-25) 



 

 

 

34 4. Calculation of the piezoresistive effect for the bulk piezoresistors-3D case.

Figure 4.3 Warped heavy and light hole energy surfaces: (a) without stress and 

(b) with 108Pa stress along [110] direction [41]. 
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dE

dE

In order to calculate the piezoresistive coefficients with respect to equations (2-14), 

(4-24) and (4-25) we have to analyse hole concentrations and effective masses in two 

cases: i) without stress and ii) in the presence of stress.  

Once dispersions have been calculated, hole concentrations can be calculated as well: 

 

 ,  (4-26) 2 ( ) ( )hh hh

hh
band

n g E f E= ∫

 

 .  (4-27) 2 ( ) ( )lh lh

lh
band

n g E f E= ∫

 

The density-of-states  of the given energy , in the case of hh and lh are 

obtained from the numerical integration of the hh and lh volume, respectively; in k-

space which are between the energy  and 

( )g E E

E +E dE  

 

 
( )3

1
( )

2π ≤ ≤ +

= ∫
k

x y z

E E E dE

g E dE dk dk dk .  (4-28) 

 

To calculate the Fermi-Dirac function for hole, , we have to 

find the Fermi energy 

( 1
( ) 1 exp( )

−
= + −ff E E E )

fE  from the equation, that is given by the charge conservation 

law: 

 

 
( )

( )
( )

( ) ( )
2 2

1 1 1 2
f f

hh lh a

E E kT E E kT E E kT
hh lh
band band

g E dE g E dE n

e e e
− −

+ =
+ + +

∫ ∫
a f−

,  (4-29) 

 

where:  and  are the acceptor concentration and acceptor energy level 

respectively. In such a way we could consequently find the Fermi energy and 

concentrations of the heavy and light holes. 

an aE

In order to consider the mass change contribution to the piezoresistive effect we have 

to calculate the longitudinal and transversal effective masses with respect to the stress 

direction. They can be found from the following expression: 
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( )  ( )
1

2
2

ij

i j

E
m E

k k

−
⎛ ⎞∂

= ⎜ ⎟⎜ ⎟∂ ∂⎝ ⎠

m

.  (4-30) 

 

It is very important to note that the above effective mass depends very strongly on the 

energy. As an example in the case of unstressed silicon at the band edge ( ) 

the heavy and light effective mass, which are relevant to the [110] direction, are 

and 

0E meV=

00.37hhm m= 00.12lhm = , respectively. On the other hand at energy  the 

heavy and light effective masses become 

25meV−

00.95hhm m=  and 00.21lhm m= , respectively. 

Then the hole effective masses are determined by [42]: 

 

 
( ) ( )

( )
ij

ij

m E f E dE
m

f E dE
= ∫

∫
 . (4-31) 

 

Calculated piezoresistive coefficients in the [110] direction, according to equations 

(2-14), (4-24) and (4-25), are presented in Table 3. 

It can be seen from the table that the origin of the longitudinal piezoresistive effect is 

caused by a change of the hole concentration (the concentration of heavy holes is 

increased as the concentration of light holes is decreased). However, the origin of the 

transversal piezoresistive effect is more complicated, it depends on the sum of two 

opposite phenomena: i) the change of the hole concentrations and ii) the change of the 

effective masses in transversal direction. The latter is the dominating phenomena. 

Theoretically calculated longitudinal and transversal piezoresistive coefficients are in 

good agreement with values of longitudinal and transversal piezoresistive coefficients in 

[110] direction, which were obtained by experimentally piezoresistive coefficients in the 

crystallographic coordinate system (see Chapter 2.4).  
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 Without stress With 108Pa Stress in 
[110] direction 

Heavy holes

 
  

mhh(II)/m0 0.512 0.512 

mhh(⊥)/m0
0.512 0.376 

nhh/na 0.833 0.878 
 
Light holes 

  

mlh(II)/m0 0.159 0.159 

mlh(⊥)/m0
0.159 0.242 

nlh/na 0.167 0.122 

 
Piezoresistive 
coefficients 

  

πl [Pa-1] 

πt[Pa-1] 

72.9x10-11 (exp. 71.8x10-11) 

-60.5x10-11 (exp. -66.3x10-11) 

Table 3  Calculated piezoresistive coefficients in p-type silicon at room 

temperature and acceptor concentration nn=1022m-3. 

 

 

4.3 Piezoresistive coefficients as a function of temperature and 

concentration 

 

The above calculations were done at room temperature and fixed impurity 

concentration. In general, piezoresistive coefficients depend on the impurity 

concentration and temperature. In this section, according to the model proposed by 

Kanda [43], we will discuss the physical mechanism of this dependence. 

As we mentioned, in the case of parabolic approximation 2 2
α α= +cE E k m , the 

electron concentration is given by equation (4-3). By considering only the effect of 

electron concentration change due to the applied stress , which is true for n-type 

semiconductors, we can express the conductivity change as: 

11dT

 

 
( ) ( )

11
11

1ητσ η
η

∂ ∂ − −−
= ≡

∂ ∂
c f c f

c
B B

F E E E Ee
d N dT ,

m k T T k
−

T
.  (4-32) 
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Thus, the piezoresistive coefficient can be expressed as: Thus, the piezoresistive coefficient can be expressed as: 

  

 

 

( )  ( )
( )
( )

( )1 2

11 1 2 11

´1 1 ησπ
σ η

∂ −
= − =

∂
c f

d
B

F E Ed
n ,T

dT k T F T

)

.  (4-33) 

 

If we define the piezoresistive coefficient for a low doping concentration  at room 

temperature as , we can obtain the following expression: 

0dn

( 0 300π dn ,

 

 ( ) ( )
( )
( )

1 2
0

1 2

´300
300

η
π π

η
=d d

F
n ,T n ,

T F
.  (4-34)

 

It is important to note that the relaxation time τ, so far, was assumed to be constant. 

However, in reality the scattering processes depend on energy, and we will now 

introduce an idea how to include the influence of energy dependent relaxation times on 

the piezoresistive coefficients. This method is based on the Boltzmann transport 

equation (BTE). The BTE expresses the fact that in the six-dimensional phase space of 

Cartesian coordinates  and momentum p , the total rate of the distribution function r

( , , )f tr p  changing with time is equal to the scattering rate [44]: 
 

 
∂ ⎛ ⎞+ ∇ + ∇ = ⎜ ⎟∂ ⎝ ⎠collisions

f d
f f

t d
r pr p

f

t
.  (4-35) 

 

Since it is not possible to obtain a solution to the above equation under the most 

general conditions, simplifying assumptions are necessary in order to solve the BTE. In 

the relaxation time approximation (RTA), the collision integral can be replaced by an 

algebraic equation that involves a parameter known as the relaxation time τ  
 

 0

τ
−⎛ ⎞ = −⎜ ⎟

⎝ ⎠collisions

f fdf

dt
.  (4-36) 

 

The solutions of the BTE in the RTA approximation for a nonequilibrium distribution 

function give us the possibility to express the current , which is due to the applied 

electrical field E  (

J

e=p E ) as: 
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( )

( ) ( ) ( )0

3 3

2

42

fe
en en f t d dτ

εππ
∂

= = = −
∂∫ ∫J r v r p k k v vE, , k .  (4-37) 

 
According to Ohm’s law (equation (2-12), we can express the conductivity as: 

 

 ( ) 0

34
ij i j

fe
v v dσ τ

επ
∂

= −
∂∫ k k .  (4-38) 

 

In most cases the relaxation time as a function of energy can be expressed as 0
sEτ τ= , 

where  depends on the scattering type (Table 4). As a result, in the case of parabolic 

dispersion, we are able to obtain a simple formula for the conductivity [38]: 

s

 

 ( )1 2σ η+= sNF .  (4-39) 

 

Thus the piezoresistive coefficients as a function of the dopand concentration and 

temperature can, in the case of the energy dependent relaxation time, be expressed as a 

function of + 1 2s  order Fermi integral: 
 

 ( ) ( )
( )
( )

s+1 2
0

s+1 2

´300
300

η
π π

η
=d d

F
n ,T n ,

T F
.  (4-40) 

 

According to the above equation, at low doping concentrations, there is higher stress 

sensitivity but stronger temperature dependence. As doping concentrations becomes 

higher than 1020 3−cm , the temperature dependence becomes indiscernible, but the 

sensitivity to stress decreases strongly. For sensors applications, such as thermally 

driven AFM cantilevers, with the width of thermal ranges usually required, these 

devices will almost certainly have to balance the sensitivity requirements with the 

temperature dependence of the piezoresistive coefficients. 
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Scattering center Scattering center Scattering mechanism  Scattering mechanism  Fermi 
integral 
Fermi 
integral 
order-s order-s 

Phonons-longitudinal acoustic 

 

dominant at intermediate and 

high temperatures 

 

Longitudinal acoustic phonons cause 

modulations of the band gap of the 

semiconductor through a deformation 

potential and thereby partial reflection 

of electron wave functions, which leads 

to a change in the electron wave vector. 

-1/2 

[45],[46] 

Optical phonons 

dominant at  high temperatures 

Interact with the carriers through a 

deformation potential mechanism in 

nonpolar semiconductors. 

1/2 

[45],[46] 

Ionized impurities 

dominant at low temperatures 

and dopand materials 

Cause deflection of the trajectories of 

carriers due to the Coulomb potential. 3/2 

[46],[47] 

Neutral impurities 

dominant at low ionized impurity 

density and low temperatures 

Various different models, which either 

treat neutral impurities as a Hydrogen 

atom immersed in a liquid with a certain 

dielectric constant or take into account 

that neutral impurities get easily ionised. 

0 

[48],[49] 

Table 4 Important scattering centers. 
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Chapter 5 

Piezoresistive effect in quantum wells 

 

In biotechnology, microelectronics, and materials science, many products require a 

detailed understanding of microscopic and sub-microscopic fabrication methods. For the 

measurement equipment this is translated into demanding sensitivity requirements. 

Highly  sensitive measurements become possible as the probe technology allows  scaling 

of the electronic devices into the nanometer range. For scanning probe the maximal 

mechanical stress induced in the bended cantilever beam is located at the beam surface. 

Consequently, thin piezoresistors placed on the beam surface are desirable in order to 

ensure maximal sensitivity. Therefore, it is very important to understand the influence 

of the reduction and thickness scaling on the piezoresistive effect, which was presented 

in the previous chapter. 

In this chapter we will present a model of the piezoresistivity effect in ultrathin 

piezoresistors by investigating the transport properties of the carriers under quantum 

confinement conditions in z direction. 

 

 

5.1 Quantum confinement - 2D electron gas 
 

The dimensional scaling of electronic devices leads to electron confinement in a space 

with the size , comparable with the deBroglie wavelength of electron. Following the 

results from the quantum mechanical problem of a particle in a box [26] the 

confinement energy in a quantum well can be expressed as: 

L

 

 
2 2 2

,

2
,

; 1,2.
2

   
π

= =l t
i

l t

i
E i

m L
.. ,  (5-1) 
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lm tm

l tm m>

where  and  are the electrons longitudinal and transversal effective masses, 

respectively. This mean that, under the quantum confinement, for piezoresistors along 

the [100] direction of the silicon crystal, the confinement energy of two longitudinal 

valleys will be smaller than the confinement energy of the another four transverse 

valleys. This splitting of the valley energies is related to the difference of longitudinal 

and transverse effective mass in z direction ( ). Since the longitudinal effective 

mass for electron in silicon is five times larger than the transverse effective mass, the 

electron in the longitudinal valleys 3i will have five-times smaller confinement energy 

than the electrons in valleys 1i and 2i (Figure 5.1a). As we received energy subbands of 

the conduction valleys, it is necessary to obtain subband occupations. Since the 

subband density of states is constant with energy, the occupation comes from the first-

order Fermi integral, which is analytically integrable. In the electron case, we can write 

the occupation as [50]: 

where  and  are the electrons longitudinal and transversal effective masses, 

respectively. This mean that, under the quantum confinement, for piezoresistors along 

the [100] direction of the silicon crystal, the confinement energy of two longitudinal 

valleys will be smaller than the confinement energy of the another four transverse 

valleys. This splitting of the valley energies is related to the difference of longitudinal 

and transverse effective mass in z direction ( ). Since the longitudinal effective 

mass for electron in silicon is five times larger than the transverse effective mass, the 

electron in the longitudinal valleys 3i will have five-times smaller confinement energy 

than the electrons in valleys 1i and 2i (Figure 5.1a). As we received energy subbands of 

the conduction valleys, it is necessary to obtain subband occupations. Since the 

subband density of states is constant with energy, the occupation comes from the first-

order Fermi integral, which is analytically integrable. In the electron case, we can write 

the occupation as [50]: 

lm tm

lm m>

  

  ( )
2

ln 1
i f BE E k Ti

i

m
n e

π
−⎡ ⎤= +⎢ ⎥⎣ ⎦

,  (5-2) 

 

where  is the in-plane effective mass of the iim th subband. In our case, for electrons in 

the longitudinal valleys, we have im mt= . Whereas for those in the transverse valleys, 

we have i l tm m=

m

m . The reason why we do not use  as in-plane effective mass for 

electrons in the transverse valleys is because the in-plane mass tensor in this case has 

different values along the x and y direction, which suggests an ellipsoidal shape for the 

constant energy surface. 

lm

For the value , accepted in the example,  for the first longitudinal subband 

(valley 3

10L n= iE

1) is equal to . The corresponding energies for the first transversal 

subbands (valleys 1

4.1meV

1 and 21) are quite considerable (19.7 ). Thus the dominant 

electron population is occurring for the valley 3

meV

1. 

Similarly to the case presented in the section 4.1, under stress along [100] direction the 

energy of the subband along xk  direction (valleys 11 and 12) will rise (Figure 5.1b).  
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Figure 5.1 The conduction band isoenergetic energy lines (120meV) for a 

quantum well in a) relaxed and b) stressed silicon. 
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As the main part of conductivity is due to the dominant populated subband 31 and the 

conductivity change under the stress is due to the minor populated subband 11, we can 

expect lower values of the piezoresistive coefficients for the case of n-type quantum 

confined piezoresistivity. This can be seen from the Figure 5.2, where the piezoresistive 

coefficients are presented as a function on the quantum well thickness. 

As the main part of conductivity is due to the dominant populated subband 31 and the 

conductivity change under the stress is due to the minor populated subband 11, we can 

expect lower values of the piezoresistive coefficients for the case of n-type quantum 

confined piezoresistivity. This can be seen from the Figure 5.2, where the piezoresistive 

coefficients are presented as a function on the quantum well thickness. 

 

 

 

Figure 5.2 Piezoresistive coefficients in n-type quantum well vs. the quantum well thickness. 
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s it was pointed out in the previous chapter, the degeneracy between the heavy and 
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s a result of the above presented analysis we can conclude that cantilevers with n-

.2 Quantum confinement effect - 2D hole gas 

s it was pointed out in the previous chapter, the degeneracy between the heavy and 

AA

type piezoresistors, thinner than 20nm, offer low deflection sensitivity.  

 

type piezoresistors, thinner than 20nm, offer low deflection sensitivity.  
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AA

the light hole bands close to the the light hole bands close to the Γ  point makes the ( )E k  energy dispersion complex 

and therefore leads to more complicated mechanism of the p-type piezoresistance in 

comparison with the n-type piezoresistance. The aim of this section is to study the 

space confinement influence on the valence band structure and consequently on the p-

type piezoresistance. Since under confinement the translation invariance along the z 

direction is broken, now we have to interpret and substitute into the kp Hamiltonian, 

given by equation (4-16), the component of the wave vector zk  with the differential 
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operator − ∂ ∂i z . Thus the wave functions of the quantum states, in presence of a 

confinement potential qwV , and the corresponding subband dispersion curves are 

solutions of the respective eigenvalue problem: 

 

( ) ( ) ( ) ( ) ( )6

1

, , 0,µν µν ν ν ν
ν

δ
+

=

⎡ ⎤∂
= −

∂
 

⎛ ⎞ + − Ψ = Ψ =⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦
∑ x yi k x k yqw

x yH k k V E F z e
z

r r .  (5-3) 

 

s

zk i

A  1..6µ = , the above equation represents a coupled set of six, second-order differential 

equations. Further the problem will be handled by expanding the wave functions in 

Fourier series: 

 

( ) ,

2
,pik z

p p

p

F z F e k p
L

ν ν
π

= =∑ ,  (5-4) 

 

here  is the periodic length of the structure (which, because of the solution method, w  L

is implicitly assumed to be a superlattice). A finite number p  of pk  vectors are taken 

in consideration. Substituting the Fourier expanded wave functions, equation (5-4) into 

the equation (5-3), then multiplying from the left side by any one conjugate harmonic, 

integrating and finally using the orthogonality of plane waves we arrive at the following 

equation: 

 
6

, ,

1

0pq pq p

p

H E Fµν µν ν
ν

δ δ
=

⎡ ⎤− =⎣ ⎦∑∑ ,  (5-5) 

 

here the matrix elementsw  , pqHµν  have the following form: 

 

( )
2

,

2

q p

L
ik z ik zqw

pq

L

H e H Vµν µν
−

−

= +∫ e .  (5-6) 

 

quation (5-5) presents an equation for eigenvalues and eigenvectors of a E 6 6p p×  

matrix. 

The fact that the charge distribution reacts on the confining potential, which itself 

determines the charge distribution, imposes a stringent self-consistency requirement on 
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the energy level calculations. This requirement is accounted for by the self-consistent 

solution of equation (5-5), with a modified confining potential 

the energy level calculations. This requirement is accounted for by the self-consistent 

solution of equation (5-5), with a modified confining potential ( )qw qw
scV V e= + Φ r , 

together with the Poisson’s equation: 

 

 
2

4sc eπ ⎛∂ Φ
= − ⎜

2

,2
1..6 

pik z

p p a I

d occupied p

n F e n
z

ν
νε −

=

⎞
− ⎟⎜ ⎟∂ ⎝ ⎠

∑ ∑ ,  (5-7) 

where 

 

dε  is the dielectric constant of the material, a In −  is the density of ionised 

cceptor impurities and a pn  is the two dimensional electron concentration of the pth 

subband, which is expressed as: 

 

 ( )( ){ } 2
2 1 ,

4

x y

x y

dk dk
f E k k

π
−∫ .  (5-8) 

 

ing the thermodynamical and electrical 

quilibrium conditions of the structure. These conditions will give us the following 

p pn =

The Fermi energy will be calculated us

e

requirements: constant level of the Fermi energy and charge balance, expressed as: 

 

 ( )
1 2 

 ;− − −
= =

+
∑ a

p a I a I

n
n n n .  (5-9)

a fE E kT
occupied p e

 

This method allows us to obtain the band structure 

 

( ),p x yE k k in the x yk k−  plane, 

sing the following interaction procedure:  

nction fr  Schr

3. son’s equation (5-7) and obtain the new approach for the self-

g the whole procedure. 

 

The is  in relaxed and strained structure, 

re plotted in Figure 5.3 and Figure 5.4. The simulations were done for 60 harmonics 

u

1. Obtain solutions for the energy and wave fu om the ödinder 

equation (5-5). 

2. Use the energy and wave functions to obtain the charge density. 

Solving the Poi

considered potential. 

4. Test out for convergence. If the potential is converged then stop. Otherwise we 

continue with repeatin

oenergetic lines for a 9nm  thick quantum well,

a
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A

 interested in the calculation of the piezoresistive 

r a theory of the piezoresistive effect for the case of a two-

imensional electron (hole) gas was developed. Based on numerical calculations we can 

( 60p = ) in a grid of 200x200 points. Figure 5.3 shows the first three subbands, which 

correspond to the first heavy, light and split-off subbands, respectively, however, 

F  5.4 shows also the second three subbands, which are far away and are not 

included in further calculations. 

s the valence-band structure in the quantum well and its dependence on the strain is 

already obtained, we are again

igure

coefficients. From the Figure 5.3, it can be clearly seen that the stress has a minimal 

influence on the band edge energy levels. On the other hand, the isoenergetic line 

shapes are strongly deformed due to the stress. In contrast to the piezoresistive 

coefficients in the 3D p-type piezoresistors, both the longitudinal and transversal 

piezoresistive coefficients in the quantum well are determined by mass changes of the 

majority populated first heavy hole subband. Since the deformation of the isoenergetic 

lines shape for the heavy hole subband is significant, the calculated change of the 

effective mass is very large. As a result the magnitude of the p-type quantum well 

piezoresistive coefficients (Table 5) are bigger in comparison to the bulk p-type 

piezoresistive coefficients.  

 

In summary, in this chapte

d

predict the behaviour of their piezoresistive coefficients with respect to the piezoresistor 

thickness. We found that the 2D piezoresistive coefficients in n-type silicon drop when 

the electron localisation increases. On the other hand, the increase of the hole 

localisation leads to enhancement of the p-type piezoresistive coefficients. Moreover, 

recently a technology which allows formation of ultra shallow (7nm) junctions [51],[52] 

was demonstrated. Thus, it can be possible to produce a sensitive piezoresistive 

cantilever using the phenomena of the enhancement of the p-type 2D piezoresistive 

coefficients.  
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Figure 5.3 The isoenergetic lines related to the first three valence band subbands in a 9nm 

5. Piezoresistive effect in quantum wells.

f)

e)

d)

c) 

b) 

a)

thick relaxed (a,b,c) and stressed quantum well (d,e,f). 
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f)

e)

d)

c) 

b) 

a)

Figure 5.4 The isoenergetic lines related to the second three valence band subbands in a 9nm 

thick relaxed (a,b,c) and stressed (d,e,f) quantum well.  
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  Without stress Without stress With 108Pa Stress in 
[110] direction 

With 108Pa Stress in 
[110] direction 

Heavy holes

 
  

m1hh(II)/m0 0.428 0.725 

m1hh(⊥)/m0
0.428 0.277 

n1hh/(n1hh+n1lh) 0.562 0.558 
 
Light holes 

  

m1lh(II)/m0 0.353 0.313 

m1lh(⊥)/m0
0.353 0.462 

n1lh/(n1hh+n1lh) 0.438 0.442 

 
Piezoresistive 
coefficients 

  

πl [Pa-1] 

πt[Pa-1] 

152x10-11 (bulk 72.9x10-11) 

-163x10-11(bulk -60.5x10-11) 

 Table 5 Calculated piezoresistive coefficients in 9nm p-type SiO -Si-SiO   2 2

quantum wells at room temperature and acceptor concentration nn=1022m-3. 
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Chapter 6 

Thermo-Mechanical analysis of the cantilever beams 

 

The key component of the atomic force microscope is a cantilever with an integrated 

tip and deflection sensor. The goal of this chapter is to describe the possibility of the 

integration of an additional actuator to the piezoresistive cantilever. 
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variation 
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sample 
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Figure 6.1 Hierarchy of the influenced cantilever resonance frequency  

shift by different mechanisms. 

 

The analysis of the following mechanical cantilever parameters will be presented: 

stiffness constant, cantilever resonance frequency, as well as the mechanisms for 

inducing frequency shifts according to Figure 6.1. Such an analysis is necessary for the 

proper theoretical classification of the cantilever sensor with respect to fulfilment of the 

required measurement parameters. A basic theoretical model for a simple rectangular 

cantilever will be given. After that the actuation mechanism of the bimorph actuator 

will be discussed. Moreover a close form expression for the bending of the multi-layer 

composite cantilever, appropriate for numerical analysis will be demonstrated. A 
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thermal model was developed in order to predict the total electrical power necessary to 

drive the cantilever. 

In order to optimise the piezoresistive sensitivity of the cantilever and to integrate the 

thermal actuator, some restrictions on the cantilever design are dictated. Such a 

cantilever has a more complex structure and geometry and the use of finite element 

modelling (FEM) in order to analyse those structures is necessary. The FEM 

simulations will be done with the programme ANSYS [53]. 

 

 

6.1 Quasi - Statical Beam deflection under axial and transverse 

load 

 

In this section we will present the basic principles and equations, which describe the 

bending of a rectangular cantilever beam under axial and transversal load.  

We consider the differential section of a cantilever beam as it is shown in Figure 6.2, 

where a single beam segment has been curved as a result of the acting forces. Our goal 

is to find the differential equation that governs the deflection of a beam under 

transversal and axial loading. 

 

 

Figure 6.2 A differential segment of the bending beam. 

 

 

 



 6.1. Quasi - Statical Beam deflection under axial and transverse load 

 

 

53

The stain of segment  segment , is 

efined like: 

cd , which has a distance z  to the ’neutral plain’ ab

d

 

 xx

cd ab
S

ab

−
= .  (6-1) 

The curvature of the beam for the small deflection is equal to the second derivative of 

e deflection. We therefore start by considering the radius of curvature . From 

 

th r

geometrical considerations we can express the length of the segments ab  and cd  

through the radius of curvature r  as: 

 
 ab rdϑ= ,  (6-2) 

nd a

( )cd r z dϑ= −

e strain is the difference between the length of the segment at the neural axis 

nd the length of the segment at a posit

.  (6-3)  

ab  As th

a ion z , the strain of the segment cd  cd  

becomes: 

 

 = −xx
z

S
r

.  (6-4) 

 

The relation between stress and the strain is given by Hooke’s law: 

 

 = = −xx xx
z

T YS Y
r

.  (6-5) 

 

Force equilibrium conditions can be applied to obtain the position of the neutral plane 

nd its curvature radius . Specifically the internal forces caused by the stress 

 

a r

distribution acting over the cross section A  have to balance the external applied force 

xN  so that the resultant force must be equal to zero: 

 

x xx

A

N T dA= ∫ .  (6-6) 
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Equilibrium conditions can be used to relate the applied external moment M , to the 

generated moment from the internal resulting stress. Specifically the internal moment, 

aused by the distributed stress over the cross section, has to balance the applied 

 

c

moment: 

 

= = −
2Yz

∫ ∫xx

A A

M zT dA dA
r

.  (6-7) 

efining the second moment of the area as: 

 

I z dA , (6-8) 

e finally come to the Euler-Bernoulli equation

how the beam bends under different load moments: 

 

 

D

≡ ∫ 2 
A

 

w  [54], which allows us to understand 

 

ξ∂
≈ = −

∂

2

2

1 M

r YIx
,  (6-9) 

here

 

 ξw  is the beam deflection. 

For the case of a cantilever with length  under the influence of a concentrated point 

rce exerted on a free end of the cantilever, the moment is . Using 

n  deflection as: 

 

l

F ( )−F l xfo

equatio  (6-9) we can express the

 

( )
ξ

−2 3

6

Fx l x

YI
= .  (6-10) 

hile many striking qualitative properties of the investigated sample are revealed in 

topographic and friction data, developing a fundamental understanding of these 

henomena requires a quantitative analysis. Moreover, for biological samples, where the 

 

W

p

cantilever acting as a spring has to compensate forces under 1nN, the use of soft 
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cantilevers is necessary. Thus, whatever type of cantilever or detection method is 

employed, the measured deflection signals must be accurately calibrated to the load 

force. This requires, among other cantilever parameters, knowing the normal force 

constant of the cantilever, which describes its response due to the applied concentrated 

load. Unfortunately many of the commercial cantilevers have been formed in a V shape 

and their calibration is a rather complicated task. Experimentally the normal spring 

constant can be determined from the gravimetric method [55]. Theoretically the spring 

constant can be estimated using algebraic formulas or calculations based on numerical 

methods. Formulae for the force constants of simple rectangular-shaped microfabricated 

cantilevers beam are based on equation (6-10) when =x l . For a silicon 

( = 170Y GPa ) cantilever with length µ562 m , width µ220 m  and thickness µ4.7 m  the 

spring constant is 5.47 N m . 

A for the maximal sensitiv e piezoresistors should be placed to the 

place of maximal he

s we know ity, th

stress. T  idea demonstrated firstly in [56],[57] is that, with 

ations we can calculate that 

t

 the 

minimal changes on the rectangular cantilever shape we can control the position on the 

maximal stress with respect to the length position. With such a design now the four 

arms of the piezoresistive Wheatstone bridge (see Section 6.6) are under concentrated 

stress. Such cantilever has a shape, which is different from the rectangular one and the 

spring constant can’t be estimated from the formulae valid for a simple rectangular 

shape. The spring constant has to be estimated from FEM calculations, which describe 

the cantilever deflection under concentrated normal load.  

Figure 6.3 shows the deflection of the cantilever, with more complicated design, 

obtained from FEM simulations. As a result of these simul

he spring constant is 5N/m. Comparing with the spring constant of a rectangular 

cantilever we find that the modified cantilever is less stiff by about 10%. It can also be 

clearly seen that the maximal stress with respect to the placement of piezoresistros in z 

direction will occur at the surface. This dictates the necessity of the thin, surface 

placed, piezoresistors, the theory of which was discussed in the previous chapters. 

The cantilever sensors are typically coated with a thin over-layer material (e.g. gold) to 

enhance laser reflectivity. This layer produces a surface stress and affects

mechanical properties of the cantilever. Furthermore, depending on the 

microfabrication process or operational environments, mechanical stress can also be 
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introduced into the cantilever. This is particularly true for silicon nitride cantilevers as 

they are produced by chemical vapour deposition resulting in an amorphous structure 

with uncertain stoichiometry and residual stress. Direct measurement of the stress, in 

the case of multilayer cantilever is difficult due to the inherent complexity. A statical 

analysis of the film stress measurements can be used, where the cantilever beam 

technique is performed [58] to detect changes in the cantilever curvature according the 

Stoney’s theory [59]. 

The influence of the surface stress on the dynamical properties of the cantilever will be 

discussed in the next section, where the vibration theory for the cantilever beam in case 

 

ation distributions obtained 

from the finite element method simulations. 

 

 

.2 Structural dynamics of the cantilever beam 

The previous section has described the static (DC) AFM operation mode, where the 

p-sample force is translated into a deflection and the surface topography is obtained 

of general force load will be considered. 

 

Figure 6.3 Deflection and deform

 

6

 

ti

as a function ( ), , tip samplez x y F const− = . In the following we will describe the dynamic 

(AC) operation modes, where the cantilever is intentionally vibrated. The measured 

quantities are the resonance frequency, the amplitude of oscillation and the phase shift. 

Any one of them can be used as a feedback parameter to track the surface topography.  
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n regimes of AC-AFM. 

The m e teral 

solution and stability compared to DC measurements. The dynamic detection mode 

Oscillations in AC measurements can take place in contact, noncontact and 

intermittent contact (known also as tapping mode [19]) - Figure 6.4. Today, two major 

detecting techniques have been developed in order to map the sample topography and 

potentials in noncontact and intermittent contact AC-SPM modes. In the first one, 

known as amplitude modulation (AM-[60]), the oscillation amplitude of the cantilever 

vibrating at or near free resonance frequency is used as a feedback parameter to track 

the changes of the force gradient at the sample surface. In the second one, known as 

frequency modulation (FM-[17]), the cantilever is kept oscillating at the resonance 

frequency with a fixed amplitude by applying a feedback through the oscillation control 

amplifier. The information parameter in the FM detection scheme is the instantaneous 

changes of the frequency due to the changing force gradient. 

 

Figure 6.4 Schematic representation of the possible operatio

Force 

intermittent contact 

(big oscillation amplitude) tip-sample 

distance 

repulsive 

force 

attractive 

force 

noncontact region 

(small oscillation amplitude) 

contact 

region 

 

ain ben fits of such resonant beam transducers are their potential for high la

re

of the cantilever was preferred in our experimental arrangement due to its higher 

sensitivity compared to the static detection. 
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Compared to the detection of a quasistatic force in DC operation mode, the response of 

the cantilever in the AC mode is in any case more complex and deserves more detailed 

erent situations that we consider: First, the 

discussion. In most cases the treatment of the dynamical behaviour of the flexural 

cantilever beam is based on the simple theory presented in the previous section, where 

the periodically variable transversal load plays a major role for the driving force. The 

experimental results have indicated that the stress effects have significant influence on 

the resonance character, [61],[62], and sensitivity of the micro cantilever devices. As the 

stability of the resonance frequency is important, the theoretical understanding of 

stress influences is necessary in order to optimise the structural parameters and to 

improve the performance of the devices. The stress can arise from the thermal load as 

well as from residual strain. Also, due to operation in ambient conditions, the surface of 

the cantilever has the possibility to absorb molecules (chemisorption or physisorption), 

which can induce significant surface stress. 

The applied correction to the usually exploiting beam vibration theory is connected 

with the axial force. There are two very diff

beam can be in tensile axial stress, which tends to keep the beam straight, and we 

expect that the stress makes the beam stiffer. Second, the beam can be in compressive 

stress, which tends to increase the deflection, i.e. it makes the beams less stiff. 

Let’s now consider the general case of the beam subject to a multiple load, Figure 6.5. 
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Figure 6.5 A General case of the cantilever beam load. 
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The concentrated force load contains transversal, , and axial, , components. The 

distributed applied load per unit length is decomposed into two components 

SF NF

xp  and 

zp . In order to obtain the equilibrium, the total force acting on the cantilever must be 

zero. The balance of the applied forces acting upon an infinitesimal beam element , 

projected on the x direction is: 

dx

 

 2

2

0 ,

0 .
ξ ξ ξ

=
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⎞

∑ x

N S
N N x S S
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  (6-11) 

This leads to: 

 

 N
x S

dF d d
p F

dx dx dx

ξ⎛ ⎞= − − ⎜ ⎟
⎝ ⎠

.  (6-12) 

 

The force balance in the  direction is: z
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This results to: 

 

 S
z N

dF d d
p F
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.  (6-14) 

 

For the balance of the bending moments around the y-axis we can write: 
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combining with the force balance equations we have: 

 

 = S
dM

F
dx

.  (6-16) 

 

Considering the equations (6-9), (6-16) and (6-14) we receive the basic differential 

equation for the beam bending in case of general force load: 

 

 
ξ ξ⎛ ⎞ ⎛ ⎞−⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠

2 2

2 2 N
d d d d

YI F p
dx dxdx dx

= z .  (6-17) 

 

From the equations (6-9), (6-16) and (6-13) we arrive at an equation for the axial force 

distribution: 

 

 
ξ ξ⎛ ⎞⎛ ⎞

= − − ≈ −⎜ ⎜ ⎟⎜ ⎟⎜ ⎝ ⎠⎝ ⎠

2

2
N

x
dF d d d d

⎟⎟ xp YI p
dx dx dx dx dx

.  (6-18) 

 

In order to find the response of the cantilever beam, both equations (6-18) and (6-17) 

have to be solved, respectively. 

The dynamical deflection of the cantilever ( ),x tξ  can be described by the 

inhomogeneous differential equation (6-17) and the assumption that the distribution 

load zp  is expressed by the inertial force ( )ρ ξ− ∂2 ,tA x t : 

 

 ( ) ( ) ( )ρ ξ ξ ξ∂ ∂ ∂
+ −

∂ ∂ ∂

2 4 2

2 4 2
, , NA x t YI x t F x t

t x x
=, 0 ,  (6-19) 

 

where ρ  is the density per unit length.  

For the case of dumping, which will be considered later, the distributed force 

( ∂ ∂,f x x t )

)

 has to be taken into account. 

For determination of the eigenfrequencies of the cantilever (and characterising of our 

sensor) we have to solve the equation (6-19) by variable separation 

( ) ( ) (ξ υ τ=x ,t x t : 
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( )

( )

( )

( )

( )

( )

υ υτ ρ ρ
τ υ υ

= − +

4 22

4 22

NFYI d dd x xt
A Adx dxdt

t x x
.  (6-20) 

 

As the right hand side of equation (6-20) is independent from , and the left hand side 

is independent from , the equation is true for all values of  and . Then both sides 

of the equation can be assumed to be equal to an arbitrary constant. Using a constant 

x

t x t

ω− 2 , the local and the time dependent part of the equation (6-20) can be separated 

into two independent differential equations: 

 

 ( ) ( )τ ω τ+ =
2

2
2

0
d

t t
dt

,  (6-21) 

and 

 ( ) ( ) ( )ρ ω− −
4 2

2
4 2

0NFd d A
v x v x v x

YI YIdx dx
= .  (6-22) 

 

The equation (6-21) represents the harmonic oscillator equation with radial frequency 

ω  and has the solution ( ) ωτ = i tt e . 

If we define ω ρ≡4 2k A YI  and β = 2NF YI  and assume a trial solution 

( ) λυ = xx Ce  for the equation (6-22), we lead to an equation for λ : 

 

 λ βλ− − =4 2 42 k 0 .  (6-23) 

 

The general solution (6-22) can be found in the following forms: 

 

 ( )ν −= + + +1 1 2
1 2 3 4

ik x ik x k x k xx C e C e C e C e − 2 ,  (6-24) 

 

where β β± ≡ ± + +2 4
1ik i k  and β β± ≡ ± + −2 4

2k k  are solutions of the 

equation (6-23). 

The equation (6-24) presents the general solution of the fourth-order differential 

equation. The exact shape function can be found considering the boundary conditions. 
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As many factors can influence the cantilever operation, different boundary conditions 

need to be assumed. The boundary conditions however, normally are only an 

approximation to the real practical problems. Examples of typical boundary conditions 

are presented in Table 6. 

At the fixed end we found that the deflection and slope must be equal to zero. The 

other end of the cantilever can have different boundary conditions. Usually in models 

presented in the literature, a free end, where the bending moment  and shear force 

 are considered to be equal to zero, is discussed. The nonuniform mass distribution 

due to the tip can be approximated by the inertia load [63]. 
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∂
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2
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Table 6 The possible boundary conditions for the cantilever end. 

 

In the non-contact AFM the long-range attractive forces between cantilever tip and the 

sample surface are derived from the Van-der-Waals interaction [64]. The influence of 

this interaction onto the cantilever vibration can be modelled if we consider at the 
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4

cantilever end a spring, which can be also nonlinear [65]. This means that we have 

spring load boundary conditions. 

The influence of the axial force load into the resonance frequency on microbridges, 

fixed-fixed boundary conditions, has been discussed in [66]. 

In the frame of this work we will consider an axially force load cantilever beam with 

fixed-free end boundary conditions. Applying to the general solution, given by (6-24), 

fixed-free end boundary conditions (see Table 6) we get a homogeneous system of four 

linear equations for the unknowns . This system has a nontrivial 

solution only if the wave numbers 

1 2 3, ,  and C C C C

( )nkl  of the cantilever are solutions of the following 

equation: 

 

 
( ) ( )
( ) ( )

( ) ( )
( ) ( )

+ −
= −

+ +

2 2 2 2
1 2 2 1 1 2 2 1 2 1

2 2
2 2 1 1 2 2 1 1

cos cosh sin sinh

sin sinh cos cosh

k k l k k l k k k l k k k l

k k l k k l k k l k k l
.  (6-25) 

 

The solutions (  of this equation, which can be calculated numerically, depend on 

the dimensionless axial force 

)nkl

β 2l . Using the definition of the wave numbers the 

resonance frequency depends on the axial force like: 

 

 
( )

ω
ρ

=
2

2

kl YI

Al
  (6-26) 

 

The above equation can be used to calculate the resonance frequency dependence on 

the axial force only in the case of a rectangular cantilever. Therefore, we will follow a 

procedure in which all calculations are performed in the FEM tool and which could be 

applied to other structures with non-trivial geometries, even with multiple materials. 

An example of the natural frequencies and mode shapes of a nonuniform 

microcantilever beam is presented in Figure 6.6. Resonance frequencies were computed 

as eigen frequencies of the undamped cantilever. Figure 6.6a,b and c show the eigen 

frequencies and shapes of the first three transverse vibration modes. The simulations 

show the existence of a shear vibration modus Figure 6.6d with a frequency near to the 

second transverse vibration modus Figure 6.6b. Usually, share vibration modes 
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presented in Figure 6.6-d,e and f does not appear in the cantilever spectrum. This is 

related to the symmetry of the cantilever beam. Moreover the existence of non 

vibrating points at higher vibration modes make detection of the cantilever bending 

through a reflecting laser beam difficult. 

 
 

Figure 6.6 The eigen oscillation modes of the cantilever. 

 

The effect of constant axial tensile (Figure 6.7a) and compressive (Figure 6.7e) force 

load on the natural frequencies and mode shapes of the first three transverse vibration 

modes is discussed below. Figure 6.7b, c and d show the influence of tensile axial force 

load, while Figure 6.7f, g and h show the influence of compressive axial force load. This 

analysis was performed with the help of the frequency modal analysis just after the 

static solution was obtained for each axial load. It can clearly be seen that the 

resonance frequency of the cantilever depends strongly on the applied axial force. Based 
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on such principles Harley and Kenny [67],[68] demonstrate very sensitive devices 

capable of detection extremely low forces (in range of aN). On the other hand the 

analysis provided above shows the inapplicability (as the image has to be obtained for 

the fixed frequency shift) of the FM detection scheme in case of bimorph actuating 

cantilever, where an axial force exist - see also section 6.4. 

 
 

Figure 6.7 Influence of the axial stress on the eigen oscillation frequency of the first three 

transversal modes of the cantilever. 
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6.3 Multi-modes analysis of the periodic force driven cantilever 

with damping 

 

In the previous section was discussed the free vibration of the cantilever, where the 

total energy remains constant during the whole time. However, in practice the stored 

mechanical energy in the cantilever always gets converted into heat due to dissipative 

forces. The process of energy dissipation is called damping. With respect to the TM-

AFM, where the tip strikes the sample surface, the energy dissipation is involved. 

Moreover, TM-AFM allows locally mapping of this process and obtaining information 

of the material properties in the nanometer scale. 

Therefore in this section the influence of damping over the parameters of the TM-AFM 

imaging will be discussed.  

The dissipation term is usually included after the variable separation into equation 

(6-21) or into equivalent mass-spring system. Such model can be applied if the 

dissipations are homogeneous. The damping of vibrating AFM cantilevers is caused by: 

i) internal losses in the cantilever beam and losses to any surrounding fluid in which 

the cantilever vibrates and ii) losses due to interaction of the cantilever tip and the 

sample surface. Therefore, the damping force in general is inhomogeneous, which lead 

to the coupling between the cantilever eigen modes. Below we will demonstrate the 

basic multi-mode method, which can be applied in the case of inhomogeneous energy 

dissipation. 

In the multi-mode analysis the dissipation term is introduced before the equation of 

motion of the total system is decomposed. The equation of motion of the cantilever 

beam subjected to time varying forces (concentrated ( ),fF x t  and distributed ( ),p x t ) 

in presence of damping ( )xγ  is: 

 

 ( ) ( ) ( ) ( ) ( ) (ρ ξ ξ γ ξ∂ ∂ ∂
+ − = +

∂∂ ∂

2 4

2 4
, , , , fA x t YI x t x x t p x t F x

tt x
),t .  (6-27) 

 

To solve the above equation, the deflection ( ),x tξ  is expanded as a superposition of 

basic functions: 
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) ,  (6-28) ( ) ( ) (
1

, m m
m

x t x tξ υ τ
∞

=

= ∑

where the basic functions ( )υm x  are the solutions of the free vibrating cantilever-

equation (6-22). The displacements ( )υm x  are components of an orthogonal complete 

system. Substituting the equation (6-28) into the equation of motion (6-27), 

multiplying by ( )υn x  and integrating over the cantilever length we receive the 

following equation: 

 

 ( ) ( ) ( ) ( ) ( )τ γ τ κ τ∂ + ∂ + = +∑2
n t n nm t m n n n n

m

m t t t p t F t

x

x

, (6-29) 

 

where, [69], the n-th modal mass, spring constant, damping coefficient, distributed force 

and force are defined respectively as: 

 

 , (6-30) ( )ρ υ≡ ∫ 2

0

l

n nm A x d

 , (6-31) ( )( )κ υ≡ ∂∫
22

0

l

n x nYI x dx

 , (6-32) ( ) ( ) ( )γ γ υ υ≡ ∫
0

l

mn n mx x x d

 ( ) ( ) ( )υ≡ ∫
0

,
l

n np t p x t x dx , (6-33) 

 ( ) ( ) ( )υ=n n fF t x F t . (6-34) 

 

In such way (6-29) present a system of equations, which describes the coupling between 

the cantilever eigen modes due to the damping. 

Below we will consider the case of homogeneous dissipation. As a result, the solutions 

of the equation (6-29) are not mode coupled. Thus, we can solve the n-th equation 

individually, for example, knowing its impulse response behaviour. The impulse 

response  is defined as response of the cantilever to the Delta function ( )h t ( )δ t  

driving force. In physics the impulse response is usually called Green’s function. When 
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we know the impulse response of the cantilever we can calculate its response for each 

driving signal according to the convolution theorem: 

 

 . (6-35) ( ) ( ) ( )τ
∞

−∞

= −∫ ´ ´n n nt h t t F t dt́

 

The impulse response is taken like the Green’s function [70] for differential equation of 

the driven damped harmonic oscillator: 

 

 ( ) ( )
( ) ( )

( ) ( ) ( )γω ω ω
ω ω ω

+ − −− − − −

+ −

⎡ ⎤−
= Θ − − = Θ −⎢ ⎥

−⎢ ⎥⎣ ⎦

2´ ´ sin
´ ´

n nn n t mi t t i t t
nd

n
n n nd

e te e
h t t t t t

i m
,  (6-36) 

where 

 

 
γω ω ω ω γ ω κ± = − ± = − =2 2 ; 2  ;

2
n

n nd nd n n n n
n

i
m

m
n nm

)

.  (6-37) 

 

Introducing equation (6-36) into equation (6-35), for the periodically driven force 

(ω= cosnd nF f t , we obtain the solution: 

 

 ( ) ( ) ( )γτ ω θ ω ϕ−= − + +2cos cosn nt m
n n n n ndt A t B e t n ,  (6-38) 

 

where  

 

 

( ) ( )
( ) ( )

ωγθ
ω ωω ω ωγ

= =
−− +

2 22 22 2

; tann n n
n n

n n
n n n

f m
A

mm

.  (6-39) 

 

The above obtained results can be used to calculate the cantilever end amplitude 

behaviour ( ) ( )n n n
a L l Aυ=

( )
 as for a classical damped harmonic oscillator, driven with 

periodically force ω= cosF f td , if a mode dependent mass ( )2cl

n n n
m m , spring 

constant 

lν=

( )2cl

n n n
lκ κ ν=  and damping coefficient ( )2γ γ ν=cl

n n n
l  are introduced. 
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The solution has a steady part and a transient term. Initially, both motions are 

important, however after a time interval γ2 n nm  the transient term is reduced by a 

factor 1 e . The resulting motion will be dominated by the steady part of the solution, 

which has a harmonic behaviour with a phase lag with respect to the excitation force. 

When the derivative of the amplitude with respect to ω ωn  is equal to zero, we found 

that the amplitude has a maximum value at frequency ωnd . The damping coefficient 

γ n  determines the cantilever quality factor ω γ= n n nQ m . From equations (6-38) and 

(6-39) we can see that, cantilevers with high Q  (i.e. small nγ ) factor gives a higher 

sensitivity, but in the other hand the cantilever’s response with respect to the feedback 

system, due to the transient term, will be reduced. In such way the scan speed of TM-

AFM is limited by the speed of the feedback loop that maintains constant tapping 

amplitude. 

 

τosc=2Q/ωn
τthermoτosc=2Q/ωn
τthermo

Figure 6 8 Schematic representation of the TM-AFM imaging performed  .

iw th bimorph actuating cantilever. 

 

Figure 6.8 shows a schematic view of the TM-AFM, when the cantilever scans over a 

downward step. Such vertical steps provide a worst-case scenario limit to scanning 

speed. It can be seen the existing of two characteristic times: The first one 
osc

τ , as was 

already discussed, is connected with the time needed for the amplitude stabilization. 

The second one 
thermo

τ  depends on the time needed for the bimorph actuating cantilever 

to follow the profile and will be investigated also in this chapter - 6.5. 

Sulchek et al [71],[72] has proposed the feedback with active damping control, which 

allows decreasing of 
osc

τ  and increasing of the imagining speed. In this work (see 
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chapter 8.3) is used another method for reducing the time constant 2
osc n

Qτ ω= . The 

idea is based on increasing of the cantilever operation frequency. As we will see the 

cantilever geometry is fixed to thin and long cantilevers, which have low resonance 

frequency, thus the only way to use high frequency operation is to benefit from existing 

of the higher eigen modes at which the cantilever can vibrate. Furthermore, the phase 

angle changes will be used to image the sample surface. The image obtained in such 

way is called phase contrast or phase contrast image. This image often provides 

significantly more contrast than the topographic image and has been shown to be 

sensitive to material surface properties, such as stiffness, viscoelasticity, and chemical 

composition. Moreover, phase imaging in the higher eigen modes has an enhanced 

contrast [73]. 

In general, changes in phase angle during scanning are related to energy dissipation 

during tip-sample interaction and can be due to changes in topography, tip-sample 

molecular interactions, deformation at the tip-sample contact and even experimental 

conditions. Depending on the operating conditions, different levels of tapping force 

might be required to produce accurate, reproducible images on different samples. 

Further we will introduce the concept of transfer function, which will be used for the 

force sensitivity analysis (see chapter 7.2). Applying the Fourier transform to equation 

(6-29) will lead to a solution in the frequency domain: 

 

 ( ) ( ) ( )τ ω ω=n n nH F ω , (6-40) 

 

where the transfer function, ( )ωH , is equal to the Fourier transform of the impulse 

response  and is defined as:  ( )h t

 

 ( )ω
ω γ ω

=
− + +2

1
n

n n

H
m i nk

. (6-41) 

 

From the above analysis it can be seen that the cantilever oscillations are determined 

by the resonance frequency, amplitude and the phase, which depend on environment 

conditions and on the tip-sample interactions. Thus observing any of these three 

oscillations parameters during the sample scanning give us the possibility of surface 
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roughness mapping. The resonance frequency, the amplitude and the phase are also 

mode dependent according to equations (6-30) to (6-34). 

 

 

6.4 Multi-layer cantilever beam with an embedded thermal 

actuator 

 

As was pointed out in the previous section the scanning speed of the TM-AFM is 

limited due to the actuation time constant of the piezotube feedback loop that keeps 

the tapping amplitude constant. This limitation can be overcome by reducing the size 

of the system and consequently its inertia. In this manner it is possible to significantly 

increase the scanning speed. Furthermore, by increasing the sensitivity of the tapping 

probe the signal to noise ratio can be improved thus leading to a further reduction in 

the time constant needed for stable feedback loop operation. Two issues are considered 

as fundamentals in the realization of this idea: i) integration of the piezoresistive read-

out to the cantilever (see section 6.6) and ii) actuator integration for converting the 

signal from electrical to mechanical domain. 

In the present and following section will be considered the aspects of actuator 

integration. 

Discussions about bending beams are usually limited: i) to beams with at least one 

longitudinal plane of symmetry with the load applied in the plane of symmetry or ii) to 

symmetrical beams composed of longitudinal elements of similar material or iii) to 

initially straight beams with constant cross section and longitudinal elements of the 

same length. If any of these assumptions is violated, the simple equations, which 

describe the beam bending stress and strain, are no longer applicable. This section 

discusses multi-layers cantilevers, which provide a possibility of actuation due to the 

different respond to some stimulus such as magnetic field, an electrical field, a vapour 

or light. In particular we will discuss the thermal bimorph as a driving mechanism of 

our cantilever. 

Actuators based on the thermal bimorph effect are favourable due to their large 

actuation range and fabrication simplicity due to simple planar processes realized by 
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metal deposition techniques. The electro-thermal actuation can be used to follow the 

topography of the sample for measurements in the constant force mode and to excite 

the cantilevers at their resonance frequency for dynamic mode imaging. Thermal 

bimorph actuators can be placed at different locations along the length of the 

cantilever. An aluminium heating resistor can form the actuators and in such a way the 

dissipated heat in the resistors will increase the temperature. As a result, due to the 

difference in thermal expansion coefficients of the silicon, metal and oxide layers, the 

increasing temperature leads to a deflection of the cantilevers. The efficiency of such 

actuation can be made high enough, by optimising the bending analysis of the multi-

layer cantilever. 

As in section 6.1, the predictions of the cantilever beam tip deflection will be found by 

utilizing the Euler-Bernoulli method. In the case of a multi-layer beam, the equation 

(6-5) of the stress component of the i-th layer has to be rewritten as: 

 

 − −⎛ ⎞= = − +⎜ ⎟
⎝ ⎠

0i i i ext i o
xx i xx i xx xx

z z
T Y S Y S S

r
.  (6-42) 

 

This equation can be understood very well if we consider in more detail the steps, 

which have to be followed in order to ensure a stable beam made from an individual 

layer: 

1) Let us assume that we have a few individual layers with equal length, but 

different widths and thicknesses. 

2) Let some external influence induce a different strain  to the layers. −i ext
xxS

3) In order to construct a multi-layer beam we have to ensure again the equal 

length of all layers. This can be done if we apply an additional stress 

 to every i-th layer. By this way all layers have again same length, 

but now the resultant force will not be zero. In order to ensure the condition of 

zero summing force, we have to add an additional unknown strain  to every 

layer. 

−− i ext
i xxY S

0
xxS

4) Such composite will be unstable and will tend to bend in order to ensure zero 

resultant moment. The bending will induce an additional strain (  to 

the summary strain. 

)−0 /iz z r
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Introducing equation (6-42) into equations (6-6) and (6-7) will lead us to the following 

system for the bending radius and strain at the neutral plane: 

 

 
( ) ( )
( ) ( )

Λ

Λ

⎡ ⎤ ⎧ ⎫ +⎧ ⎫⎪ ⎪ =⎨ ⎬ ⎨ ⎬⎢ ⎥ +⎪ ⎪ ⎩ ⎭⎩ ⎭⎣ ⎦

0

1

N Nxxtot tot

tot tot

Y Yz F FS

Yz YI M Mr
,  (6-43) 

 

where: 

 ≡ ∫( ) ( )tot

A

Y Y z dA ,  (6-44) 

 ≡ ∫( ) ( )tot

A

Yz Y z zdA ,  (6-45) 

 ,  (6-46) ≡ ∫ 2( ) ( )tot

A

YI Y z z dA

 Λ ≡ ∫ ( ) ( )ext
N xx

A

F Y z S z dA ,  (6-47) 

 Λ ≡ ∫ ( ) ( )ext
xx

A

M Y z S z zdA .  (6-48) 

 

As can be seen from the upper equations the Euler-Bernoulli method has two 

advantages: i) It simplifies the analysis of composite beams with different thicknesses 

and mechanical properties. This is accomplished by introducing ( )tot
Y  and an ( , 

which respectively play a role of effective Young’s modulus and effective moment of 

inertia about the chosen bending axis. This axis can be chosen based on convenience. 

For this design, the axis was chosen to lie at the bottom layer. ii) The choose of the 

bending axis is arbitrary, i.e. no need to know the neutral axis of the beam to calculate 

the bending curvature for the general case. In addition to 

)tot
YI

( )tot
Y  and , the 

Euler-Bernoulli method calculates a coupling term, 

( )tot
YI

( )tot
Yz . This term couples the 

moment calculated from the arbitrary axis to neutral axis. It also couples the 

extensional force to the curvature of the beam about the neutral axis. When the 

arbitrary bending axis and the neutral axis coincide, taking into account step 3 from 

the algorithm of composite beam construction, ( ) = 0
tot

Yz . This equation can be used 

for investigation of the neutral axis position. It has to be noted that for multi-layer 
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beam the neutral axis does not, in general, correspond to the axis at which the 

cantilever is unstrained. Instead, the neutral axis merely indicates the position in the 

composite beam about which the coupling term disappears. 

This method is also suitable to analyse the tip deflection due to residual stress after the 

device realisation. This can be done if we translate, for each beam layer, the residual 

stress to force and moment terms. Than so obtained force and moment terms have to 

be substituted into the equation (6-43). Thus we can determine the strain at the 

neutral axis and the beam curvature. 

For the numerical analysis of the external induced bending, we have to find a close 

form expression for the curvature of the multi-layer cantilever. In the case when there 

are no external loads applied at the tip of the cantilever beam, the solutions of the 

equation (6-43) give us the following expressions for the curvature of the beam and the 

strain at the neutral plane: 

 

 
( ) ( )

( ) ( ) ( )
Λ Λ−

=
− 2

1 Ntot tot

tot tot tot

M Y F Yz

r Y YI Yz
,  (6-49) 

 
( )

Λ=0 N
xx

tot

F
S

Y
.  (6-50) 

 

In the case of thermal actuation the induced strain is −i ext
xxS α ∆i i  where T α  is the 

coefficient of thermal expansion. The loading force and moment are determined by the 

thermally induced force  and moment ΛNF ΛM  according equations (6-47) and (6-48), 

respectively. 

As we get acceptable equations for numerical investigation, it is essential to apply an 

optimisation analysis to the actuation possibility of the multi-layer cantilever. The 

basic point of such optimisation will be a deflection of the cantilever end ξ = 2 2l r  as 

a function of the material properties and geometry. In the real system the material of 

one layer of the bimorph cantilever is fixed by technological constrains. In our case this 

is the silicon layer. The second material has to be chosen with possible different 

coefficient of thermal expansion with respect to the first material. For determination 

we will look for material with bigger coefficient of thermal expansion. One of the 

possible materials is aluminium, which is also compatible with the MEMS technology. 
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After the determination of the materials, it is necessary to obtain an optimum with 

respect to the geometry. The results of the geometry optimisation analysis are 

presented in Figure 6.9. 

  

d)c) 

b)a) 

Figure 6.9 Bimorph cantilever deflection efficiency vs. the thickness  

at 1K temperature increasing. 

 

From Figure 6.9a it can be seen that the induced response from the uniform 

temperature increase by 1K vanishes for thin aluminium layer, after that it reaches a 

maximum value and then it drops to zero for very thick aluminium layer. The 

maximum amplitude depends very strongly on the thickness of the base silicon layer as 

its value increases with decreasing of the silicon layer thickness. This thickness cannot 

be infinitesimal and its minimum value depends on the used technology. The influence 

of the ratio between the layers width over the deflection efficient is presented as well in 
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Figure 6.9b. It can be seen that the response has a maximum value for the layers with 

an equal width. When the aluminium layer is deposited on the top of the cantilever, it 

is necessary to have an electrical and thermal isolation between the aluminium and the 

silicon layer. This means that we have to use an additional dielectric layer, which is 

usually a silicon dioxide. As it is shown in Figure 6.9c this layer need to be very thin. 

Figure 6.9d presents the case, when the aluminium layer is on the backside of the 

cantilever and the silicon dioxide layer is on the top of the cantilever. However, the 

introduction of the silicon dioxide layer negatively affects the bimorph actuation 

efficiency. 

As it was shown, under the thermal load the cantilever will stretch and bend. In 

addition, it has to be noted that the expressions (6-49) and (6-50) give two different 

detection possibilities. The first one is related to the stationary bending and the second 

one is related to the axial force, which according to section 6.2 indicates the changing 

in the resonance frequency. As the strain component is induced by the temperature 

change, the bimorph actuation always has an influence on the cantilever eigen 

frequencies. The dependence of the thermally induced stress on the thickness of the 

actuating aluminium layer is demonstrated in Figure 6.10. 

Figure 6.10 The thermally induced stress vs. Al layer thickness.  
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6.5 Analysis of the thermal actuators 

 

The optimum deflection values of the bimorph cantilever were obtained from the 

previous section in case of uniform temperature distribution. In this section we will 

present a complete thermo-mechanical FEM analysis in order to predict the behaviour 

of real thermally driven cantilever device. A novel approach of the excitation of the 

mechanical vibration of micromechanical cantilever called “thermal drive“ will be 

presented. Usually thermal actuation in MEMS is a direct result of incorporating tiny 

resistive heaters. These heaters can be controlled to heat locally specific areas or layers 

as in the case of a bi-layer actuator. The cantilevers developed in frames of this thesis 

were designed to accept a thermal input by passing a current through the aluminium 

(metal) layer or embedding resistor into the silicon layer. Resistive heating in the 

resistive element will raise the temperature of the beam. However the mismatch of the 

thermal expansion coefficients would cause the beam to bend. Two parameters are 

addressed to the actuator: i) consumed power needed to achieve a specified maximum 

bending deflection and ii) the actuating time. 

The mechanical deflection is caused by the electrically induced thermal energy. Thus, 

the bending theory presented in the previous section has to be applied with the heat 

flow equation, which its solution will give the profile of the temperature distribution 

through the cantilever. From the heat transfer theory it is known that in most cases 

the heat conduction process conforms the Fourier law, which considers that the heat 

flux is proportional to the temperature’s gradient. When the thermal conductivity, , 

is constant, the energy balance for an arbitrary volume leads to the following three-

dimensional heat equation. 

thk

 

 2ρ ∂
− ∇ =

∂ th

T
C k T

t
q ,  (6-51) 

 

where:  is the specific heat and C q  is the generated heat density per unit time. 

In order to solve the heat equation, the thermal diffusivity as well as the initial and 

boundary conditions must be satisfied. Generally there are three basic kinds of 
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boundary conditions [74]: Dirichlet, Neumann and mixed conditions. Criteria, which are 

used in order to apply the proper boundary conditions, are described below: 

 

i) If the walls have a prescribed temperature, they are called isothermal. The case 

of isothermal wall belongs to the Dirichlet type of boundary conditions (i.e. 

0 .
wall

T T con= = st ). When the product of the specific heat per unit volume 

and the thermal conductivity of the wall material substantially exceeds the 

corresponding value for the surrounding gas, the assumption of isothermal 

walls is usually applicable [75]. 

ii) If the temperature derivative normal to the boundary, i.e. the heat flux, q , 

over the boundary, is defined, the Neumann boundary conditions are achieved 

(i.e. .
wall

T co∂ ∂ =n nst ). A particularly important special case is when there is 

no heat flux crossing the boundary i.e. the heat flux is zero, such boundary is 

called an adiabatic boundary. This case occurs on a boundary that is perfectly 

insulated. 

iii) Dirichlet and Neumann boundary conditions may also be combined to form a 

third type of boundary condition, called a mixed condition. This boundary 

condition can be applied to all interface boundaries when the convective heat 

transfer is approximated according to the Newton’s law of cooling (i.e. 

.( )amb bodyq h T T= − ) and the case of radiative heat transfer (i.e. 4

SBq Tεσ= ) is 

valid. In the literature sometimes the convective boundary condition is called 

Robin’s boundary condition [74]. 

 

The boundary conditions needed for the cantilever modelling will be assumed in the 

following way: Since the bulk of the cantilever is a large heat sink, the cantilever to 

bulk interface will be kept at room temperature. All other walls of the cantilever will be 

considered as adiabatic (in the case of vacuum). In the case of air some of the walls 

(which have a relatively large area) will be considered as convective. As we will work 

with relatively low temperatures, the thermal radiation will be totally ignored. 

The methods for solving the heat equation can be divided into two general groups: 

analytical and numerical ones. Here we are focused on the numerical method by 

employing FEM. Generally, analytical methods allow solutions in the form of a single 
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formula of the whole structure. However, in most cases it is difficult to find such a 

solution due to the fact, that real structures have very complex shapes or boundary 

conditions. 

Figure 6.11 presents the temperature distribution and the corresponding bimorph 

bending for three positions of the heating resistor. The cantilever has the following 

geometrical dimensions: length µ562 m , width µ220 m , thickness of the silicon layer 

µ0.8 m  and the thickness of the aluminium layer µ0.8 m . The heating element was 

simulated as an embedded resistor (with dimensions µ µ µ170 ,10 ,0.4m m m ). The 

applied electrical power in all cases was µ272 W . 
 

Figure 6.11 The bimorph effectivety vs. the heating element position.  

 

The resistor was placed near the cantilever end, on the middle and near to the 

cantilever base respectively. As can be seen from the figure the temperature increasing 

and the corresponding bending efficiently with respect to the consuming power decrease 
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when the resistor is placed near the cantilever base. This means, that for the maximal 

temperature increase at fixed power, the resistor has to be as far as possible from the 

base of the cantilever. The temperature increase for the last case is about 1K and the 

distribution is nearly uniform. The corresponding bending deflection is µ2.23 m . This 

value is in an agreement with the obtained analytical results - Figure 6.9a. 

In order to verify the FEM simulations, the calculations were done for cantilevers with 

the aluminium layer as resistive heater, which are currently available in our lab; Figure 

6.12. 

 

Figure 6.12 a) Scanning electron microscopy micrograph of the cantilever device; b) cross-

Figure 6.13 FEM calculation of the temperature distribution in comparison with 

 

b)a) 

 

section of the cantilever, where the thickness of Si=5µm, SiO2=1.3µm and Al=1.3µm are 

visible. 

the result obtained from the STM measurement. 
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Figure 6.13 illustrates a comparison between the experimental measurements of the 

i

, the estimated cantilever bending of the 

 

ncreasing temperature due to the applied electrical power 1mW  and a FEM 

simulation. It can be noticed that a good agreement between the simulations and 

experimental results has been achieved.  

When the applied electrical power is 15mW

cantilever end was 1.67µm  (Figure ). This result was compared with the 

interferometer measurements (New View 3D Surface Profilers from Zygo) presented in 

Figure 6.15. Unfortunately the size of the interferometer camera was not big enough to 

nvestigate the entire cantilever. Thus the bending distribution measurement has been 

taken in the range of 0

 6.14

i

µm  to 360µm  along the cantilever length. As it can be seen 

(Figure 6.15), if there is no applied power, the cantilever is already bended due to the 

ompressive stress in the SiOc 2 layer. When the electrical power of 15mW is applied to 

the aluminium heater the bending at the position 360µm  increase 412nm . This 

experimentally obtained result was predicted from the FEM simulation presented in 

Figure 6.14. 

 with 

The above considerations provided static cantilever actuation as a response to the DC 

voltage ( dcV ) applied to the heather. In order to realise a high speed TM-AFM we use 

the above presented bimorph actuator to both: drive the cantilever at its resonance 

frequency, and to provide z-actuation (needed for the feedback loop, which controls the 

distance between the tip and the sample). For this reason, cantilever excitation is done 

by periodic heating, which is realised by applying an AC voltage ( acV ). The heating 

power is a square of the electrical voltage sum: 

 

( )2 2 21 1
sin 2( 2 sin sin )dc ac dc dc ac ac

Heater Heater

P V V t V V V t V
R R

tω ω ω= + = + +  .  (6-52) 

 

 can be seen that the input signal power has three components: steady component, It

component with frequency ω  and component with frequency 2ω . Moreover the 

detected signal on the piezoresistive read-out will contain also three components. Since 

the 2ω  component depends only on the amplitude of the AC signal, it was taken for 

the imaging purpose. In such way, the cantilever has to be excited to oscillate at the 
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resonance frequency 2r rf ω π=  by driving signal with radial frequency ω  equal to 

2ωr . 

 

Figure 6.14 FEM calculations of the temperature distribution along the cantilever 

length and following deflection distribution. 

 

Figure 6.15 White light interferometer measurement of the deflection  

distribution along the cantilever length. 
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Integration of the thermal actuator with the cantilever results in a compactness of the 

scanning head. This is essentially true for an array of cantilevers where it is necessary 

to control the distance between the sample and the tip of each cantilever. 

Figure 6.16 shows the temperature evaluation of the cantilever when the square-wave 

heat impulse is applied. As it can be seen, the integrated thermal bimorph z-actuation 

has a relatively slow response. This behaviour is due to the time needed for reaching 

stable temperature distribution and extending the temperature wave along the whole 

cantilever. The time needed for this process is always limited by the thermal diffusivity 

ρ≡ thD k C . At a given cantilever length  the maximum frequency is l 2πD l , e.g. in 

the 500 mµ  silicon cantilever the maximal frequency is less than 100 . Hz

 

Figure 6.16 Evaluation of the max. temperature with respect to the input impulse. 

 

The slowness of the cantilever response with respect to the heating pulse can be 

avoided if we design the heating element uniform to the cantilever length. Such 

geometry of the heater allows an actuation response frequency even up to megahertz. 

This mechanism is connected with the fact that at the beginning the temperature 

increases as a result of the stored thermal energy in the heating element. As the stored 

thermal energy by the fixed power density is proportional to the time, the temperature 

will also rise. In the aluminium the power density of 32.43 µnW m  will give a 
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temperature increment about 1  for time of 1mK sµ , such temperature increase is 

enough to actuate the optimised bimorph cantilever with amplitude of few nanometers 

needed for the TM-AFM. This also will be proved experimentally in chapter 8.3. It has 

to be noted that this design allows driving the cantilever at its resonance frequency, 

however the stable oscillations are reached after 10 .  ms

Finally, we can conclude that we can also benefit from the integrated thermal bimorph 

actuator in case of array of cantilevers scanning in parallel. Then each cantilever can be 

driven in resonance modes with few hundred kilohertz. Simultaneously the z control 

distance, which insure following of the topology,  will be with frequency of few hundred 

Hertz. 

 

 

6.6 Analysis of the piezoresistive sensor 

 

To realise a fast TM-AFM system it is necessary to have a thermally actuating 

cantilever, which has to be able to detect the oscillation amplitude and its changes 

when the cantilever tip approaches the sample surface. There are many sensing 

methods that may be employed - interferometric, optical and capacitance. The 

disadvantage of these methods is the requirement of external sensing element. 

Following the aim of this work, an integrated piezoresistive sensor, the theory of which 

was already discussed, is chosen. 

As mentioned previously, the change in resistance of a piezoresistive transducer can be 

sensed with relatively simple interface circuits. One of these circuits is a Wheatstone 

bridge, which is shown in Figure 6.17. 

In our design we use a full Wheatstone bridge configuration, where all four resistors are 

placed on the cantilever beam and act as a piezoresistive transducers. The output 

voltage, outU , is depended on the changing of the piezoresistor values , which are 

directly proportional to the strain on the cantilevered beam: 

∆ iR

 

 1 3 2

4
4∆ + ∆ − ∆ − ∆

=out in
R R R R

U U
R

.  (6-53) 
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Figure 6.17 Wheatstone Bridge configuration. 

 

For a balanced bridge circuit, we have that 0∆ =iR . When the cantilever is bended a 

changing in the resistance 1 3 π∆ = ∆ = t xxR R T R  and 2 4 π∆ = ∆ = l xxR R T R  occurs. This 

leads to the following expressions for outU : 

 

 
( )

2

π π−
= − l t

out in xxU U T .  (6-54) 

As can be seen from the analysis, if the piezoresistive coefficients and input voltage are 

known, the stress (strain) and therefore the bending of the beam can be directly related 

to the output voltage of the Wheatstone bridge. 

The values of the piezoresistors, incorporated in the device, in the Wheatstone bridge, 

are governed by the following relationship: 

 

 
ρ

= r r

r

L
R

A
,  (6-55) 

 

where: R is the resistance value of each resistor in the bridge, ρr  is the resistivity of 

the doped silicon,  is the length of the resistor and  is the cross-sectional area of 

the resistor. The resistance has to be chosen in such a way that it will give minimum 

noise contribution (see section 7.4). 

rL rA
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It must be pointed out that all bridge resistors are located on the beam and need to be 

adjusted for two aspects. First, there will be an offset in the designed nominal resistor 

value due to the induced residual stress from fabrication process. The curvature of the 

cantilever presented in Figure 6.15 is evidence for this. According to equation (6-54), 

this will lead to an initial offset of the Wheatstone bridge. The second adjustment must 

be applied in order to compensate the resistivity variation due to the temperature 

change in the piezoresistive layer. This temperature changing is due to the heating of 

the bridge (Figure 6.18) and the heating from the aluminium layer (Figure 6.13). 

a) 

b) 

Figure 6.18 a) Maximal temperature as a funct on on the power dissipating in the Wheatstone 

bridge b) The temperature distribution of the cantilever -T

i

max has to be taken from a).  
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The resistance shift can be calculated from the following relation: 

 
 ∆ = ∆ × × SiR T R TCR ,  (6-56) 

 

where, TCR  is a temperature coefficient of resistance. 

The piezoresistors were placed in Wheatstone bridge configurations to provide simple 

signal amplification and first order temperature compensation as it can be seen from 

the following analysis: 

 

 

( )3 1
2 4 1

0

3 1
3 1 ,

2 2

rL
R R r

Si R
r r

r r r r
Si R Si R r

r r

x T T
R R TCR T dx

L A

RL L
TCR T TCR T L

A A

ρ

ρ ρ

−⎡ ⎤
∆ = ∆ = + =⎢ ⎥

⎣ ⎦
∆ ∆⎛ ⎞= + − =⎜ ⎟

⎝ ⎠

∫

2 2

R
+

  (6-57) 

 

where,  and  are the temperature of the transversal piezoresistors. However, we 

have assumed that the temperature is linearly distributed along the longitudinal 

piezoresistors and it’s value increases from  to . 

1RT 3RT

1RT 3RT

Using equation (6-53) we can see that the above configuration of the Wheatstone 

bridge really enables a first order temperature compensation. In reality the piezoresitors 

have different TCR s [76], which of course lead to additional fluctuations in the output 

voltages. As it can be seen from the FEM calculations presented in Figure 6.18, for 

piezoresistors with nominal  and typically used input voltage  (dissipating 

power is 250

2K Ω 0.7V

Wµ ), the maximal temperature increase is less than one Kelvin. 
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Chapter 7 

Fundamental limitation of sensitivity by Noise 

 

During the weak signal measurement experiments, the measured signal is always 

limited by the spontaneous fluctuation in the physical variables of the system called 

noise. The presence of the noise is a significant problem in every precise weak signal 

measurement, therefore the study of its phenomenological behaviour is very important. 

For that reason, the estimation and reduction of the noise is one of the most important 

issues for determination and improvement of the piezoresistive AFM sensors ultimate 

sensitivity. Since the piezoresistors are the crucial component of the sensors, they also 

will be examined for their noise characteristics. 

In this chapter we will study the noise in cantilever-based sensors. 

 

 

7.1 Introduction and basic mathematical methods 

 

Noise is a stochastic process consisting of a randomly time varying function. In such 

way the single system need to be discussed statistically. One can define different 

quantities for time and ensemble average. In noise time averages theory the 

exploitation quantities are: mean (first order average), mean square (second order 

average), and autocorrelation function, which are defined as: 

 

 ( ) ( )
2

2

1
lim

T

T
T

x t x
T→∞

−

= ∫ t dt ,  (7-1) 

 

 ( ) ( )
2
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2

1
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T

T
T

x t x
T→∞

−

= ∫ t dt ,  (7-2) 
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 ( ) ( ) ( ) ( ) ( )
2

2

1
lim

T

T
T

S t x t x t t x t x t t dt
T→∞

−

≡ + = +∫´ ´ ´ .  (7-3) 

When  the autocorrelation function becomes equal to the mean square value. 0t =´

The power spectrum density (noise spectrum) is defined as: 

 

 ( )
( ) 2

lim
T

X i
S

T

ω
ω

→∞
= ,  (7-4) 

where ( )X iω  is the Fourier transform of the function ( )x t : 

 

 ( ) ( ) i t
X i x t e

ωω
∞

−

−∞

= ∫ .  (7-5) 

 

The Parseval theorem [77] is given by following expression: 

 

 ( ) ( ) ( ) ( )1 2 1 2

1

2
ω ω ω

π

∞ ∞
∗ ∗

−∞ −∞

=∫ ∫x t x t dt X i X i d .  (7-6) 

 

Applying the Parseval theorem to the functions ( ) ( )1x t x t=  and ( ) ( )2x t x t τ= + , 

dividing both sides of the resulting expression by T  and taking a limit as T , we 

obtain: 

→ ∞

 

 ( ) ( )1

2

t
S t S e d

ωω ω
π

∞

−∞

= ∫ ´´ .  (7-7) 

 

The given relation between the autocorrelation function and the noise spectrum is 

known as Wiener-Khintchine theorem [78] and it is widely used in the noise theory. 

The importance of this theorem is, that the autocorrelation function can be expressed 

as an inverse Fourier transform of the power spectral density: 
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7.2 Thermal Noise 

 

There are two types of intrinsic noise in every physical system: thermal noise and 

quantum noise. These two types of noise cannot be eliminated even when the system is 

perfectly constructed and operated. However we will not consider the quantum noise 

since for the cantilever modes the relation Bk Tω  is satisfied. 

A conductor is the simplest physical system, which produces intrinsic noises. The 

physical origin of thermal noise in a macroscopic conductor is a “Random-walk“ of 

thermally-fluctuated electrons. An electron undergoes a Brownian motion via collisions 

with the lattices in the conductor. A. Einstein first studied the statistical properties of 

such a Brownian particle. His explanation of the thermal noise in the conductors is 

based on a microscopic approach. 

Nyquist employed a completely different approach to this problem [79]. He introduced 

the concept of a mode for the system by using a transmission line cavity terminated by 

two conductors, and then applied the equipartition theorem of thermodynamics to 

these transmission line modes. In this way he was able to explain the thermal noise 

without going into the details of a microscopic electron transport process. Nyquist’s 

approach is very general and it can be easily extended to include quantum noise, which 

is important for high frequency and low temperature case. 

Similarly to the electrons in the conductor, the micromechanical cantilevers are 

susceptible to thermo-mechanical noise resulting from molecular excitation. As the 

microcantilever sensors are designed for small signal measurements, the thermo-

mechanical noise could set the limit on the lowest measurable displacement of the 

micro beam. The thermo-mechanical noise arises due to the Brownian motion of the 

particles in the surrounding medium, that is, agitation of the floating-element structure 

due to collisions from the particles in the surrounding gas. The collisions caused 

displacement, which sets the limit on the smallest detectable force induced 

displacement. 

Based on equipartition theorem, in the same way like Nyquist, we will demonstrate the 

minimum detectible force by the cantilever-based sensors. 
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According to equation (6-29), the cantilever behaviour can be modelled as a simple 

harmonic oscillator of frequency j k mω = . The expectation value for the total energy 

of the quantized harmonic oscillator of frequency ω is [80]: 

 

 
/ 1

B

B

k T

Bk T
k T

e

ω

ω
ω <<

≈
−

.  (7-8) 

 

As the expected value of the potential energy is a half of the expected value of total 

energy, we have: 

 

 ( )21 1

2 2
Bk t k Tτ = .  (7-9) 

Taking into account, that the mean square is given by equation (7-7) for , using 

the Parseval theorem, going from displacement noise spectrum 

0t =´

( )Sτ ω  to the force 

noise spectrum ( )FS ω  according to equations (7-4) and (6-40) and assuming that the 

force noise spectrum is white, finally we obtain:  
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In many experiments our measurements have been taken over a limited frequency 

bandwidth ω∆ , however, for a small frequency interval ω∆  around the resonance, we 

have for the force noise: 

 

 2 2
r

r

F FF S d S

ω ω

ω ω

ω ω
+∆

−∆

= = ∆∫ .  (7-12) 

 

Thus the force noise spectrum results in a thermal force noise 2 FS ω∆  and the 

minimum detectable force can be expressed as:  
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 min 4 Bkk T
F

Q

ω
ω
∆

= .  (7-13) 

 

The above presented theory is a particular case of most general fluctuation dissipation 

theorem (FDT), established by Callen [12]. FDT gives the relationship between the 

spectrum of the thermal noise and the dissipation of systems as 

( ) ( )2 Im /
B

S k T Hωω ω=  [80]. In such manner, the thermal noise is related to the 

dissipation. The physical origin of the dissipation channels have to be studied in order 

to obtain an optimal cantilever beam geometry. Several kinds of the dissipation, which 

can limit the minimum detectable force, will be introduced in the following sections. 

Sources of the loss are classified into the two categories: in the first category, the 

sources of the loss are external and in the second category, the sources of the 

dissipation are inside in the cantilever itself (internal losses). 

 

 

7.3 Energy dissipation 
 

The energy dissipation can be parameterised by the quality factor-Q, which is defined 

as a ratio between the stored vibrational energy storedE  and the total energy loss per 

cycle : dissE∆

 

 
1

2

diss

stored

E
Q

Eπ
∆

= .  (7-14) 

 

As can be seen from the previous section, the thermo-mechanical noise is related to the 

quality factor of the cantilever. Therefore a high quality factor is needed to reduce the 

noise level. For sensor applications resonance frequency shifting can be determined very 

precisely if the resonator has a higher quality factor, leading to greater sensitivity. 

The energy dissipation represents the loss due to the various dissipation mechanisms. 

In such a way the Q factor is determined from the contribution of individual quality 

factors which characterize the different dissipations (energy losses), according to the 

following relation: 
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1 1

iiQ Q
= ∑ . (7-15) 

 

The loss mechanisms can be classified as extrinsic and intrinsic losses. The extrinsic 

losses are independent from the material itself, but they are influenced by the design of 

the structure. In a properly chosen environment conditions the extrinsic losses can be 

made a negligibly low. Thus the dissipation is dominated by the intrinsic losses in the 

material of the cantilever. 

The extrinsic losses are expressed as viscous damping, which can be described by the 

forces proportional to the velocity. In order to describe the intrinsic losses, the complex 

spring constant model [81] is frequently used. This model is an extension to the Hooke’s 

law. This extended Hooke’s law expresses the fact, that the strain phase of the spring 

lags behind that of the restoring force. The material property causing the phase lag is 

called anelasticity. 

 

 

7.3.1 Air damping 

 

According to Blom [82], the air damping can be separated into an intrinsic, a 

molecular, and a viscous region. In the intrinsic region, the air friction is not a 

significant source of energy loss and the dominant dissipation mechanisms will be 

described in the next subsections.  

Generally, the interaction of the surroundings with the beam can be summarized by a 

drag force , which is pressure depending. At low pressure, the collisions of the air 

molecules with the cantilever surface can be considered independent of each other. This 

region is also known as a Knudsen region. The energy losses due to the drag force 

depend on the cantilever geometry, operation eigenmode and pressure. The quality 

factor increase linear by a pressure decrease. However, it also depends on cantilever 

width, reciprocal cantilever length and wave number like a squared power law. The 

drag
F
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experimental study of the Knudsen effect and its influence on micro-cantilever 

operation can be found in reference [83].  

For higher pressure, in the viscous region, the gas acts as a viscous fluid. Assuming 

that the air is incompressible and that the Reynolds number is small (no turbulences) 

the force on the surface can be calculated using the Navier-Stokes and the continuity 

equations [84]. The beam will be approximated with a row of spheres vibrating 

independently of each other [85], because it is difficult to determine the velocity field of 

the air around the vibrating beam. The results of this theory are that the quality factor 

increases with reducing the cantilever length. Therefore, shorter cantilevers are 

preferable to be used for AFM in air and liquid environments [86]. 

According to Hoummady, [87], an additional improving of the sensitivity to the force 

gradient is possible when the cantilever operates at a higher resonant mode. 

Completely theoretical and experimental researches also confirm the enhancement of 

the quality factor for higher order vibration modes [88]. 

For the cantilevers operating in vacuum, the experiment shows a reduction of the 

quality factor at higher resonance modes [89]. The most important dissipation 

mechanisms in intrinsic region (pressure less than 1mTorr) are: clamping losses, 

thermoelastic losses and losses connected with cantilever surface. 
 

 

 

7.3.2  Clamping losses 

 

Since the real elements are never been perfectly rigid, the energy can be dissipated from 

the vibrating cantilever to the supporting structure, where local deformations can 

occur. At the contact area between the beam and the clamp, a slide occurs when the 

beam bends [90]. Using the result from Hosaka [91], the quality factor for clamping 

losses can be expressed as 3 32.17 l t . When the ratio between the length and thickness 

of the cantilevers is about 50 , the quality factor due to the clamping losses will be 

more than . This value is two orders of magnitude greater than the 52.5 10×
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experimentally measurement values. Thus we can conclude that, the clamping losses do 

not limit  of the cantilevers. Q

 

 

7.3.3 Thermoelastic losses 

 

Similarly like the interaction of the cantilever with the thermal bath of the 

environment, the interacting of the cantilever vibration with the bath of the thermally 

exited elastic modes will produce energy dissipation and therefore noise. Thus such 

energy dissipation is called thermoelastic damping (TED). The thermally exited elastic 

modes are caused by an inhomogeneous strain of an elastic body. Since the thermal 

expansion coefficient is not equal to zero, the strain changes the temperature in the 

elastic body. If the strain is inhomogeneous, a gradient of temperature occurs, however, 

heat flows to compensate this gradient of temperature. The elastic energy is dissipated 

due to this heat flow. The details of the process of the thermoelastic damping for 

anelastic solids are described in the original work of Zener [92],[93]. Further research is 

given in [94]. Roszhart [95] observed experimentally the thermoelastic damping in 

single-crystal silicon microresonators at room temperature 

The physical model for the thermoelastic coupling in case of cantilever beam is based 

on the following equations: 
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⎛ ⎞∂ ∂ ∂
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where T

A

I zTdA≡ ∫ . 

The first equation follows from the equation of the cantilever motion (6-19). The axial 

force is due to the temperature fluctuations. The second equation is the rewritten heat 

equation (6-51) in presence of thermoelastic coupling. The power of the thermal source 

is equal to the change of the inside energy of the medium T d  for time .  ij ijS dt
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The solutions of the beam motion equation coupled with the thermoelastic equation are 

given in [96]. As a result the losses due to the thermoelastic dumping can be described 

with the following quality factor: 
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where the dimensionless variable depends on thermal diffusivity, cantilever thickness 

and cantilever resonance frequency and is expressed as: 2nt Dζ ω≡ . 

According to equation (7-18), Figure 7.1 shows the quality factor due to the 

thermoelastic losses as a function of the cantilever thickness. The cantilever length was 

562 mµ . The Q  factor of the very thin cantilevers (under 5 mµ ), which are operating at 

one of the first three eigenmodes is not limited by TED. For shorter cantilevers, the 

increase of the resonance frequency leads to shift of the curves to wards the down left 

corner. Therefore for shorter and relatively thick cantilevers we can expect than the 

TED will limit the Q  factor under 10 . 4

 

Figure 7.1 The thermoelast cally limed quality factor for the first three  i

imodes as a funct on of the cantilever thickness  
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As a consequence of the above analysis we can conclude, that for thinner cantilevers 

there is another loss mechanism, which limits the quality factor below . 410

 

 

7.3.4 Losses connected with the surface 

 

Changes between the properties of the bulk material and the environment are occurred 

in interface regions. It can be expected that for micro-cantilevers, where the volume of 

the interface region and the volume of the bulk are of the same order, the influence of 

the surface properties will take also an important place. Yasumura et al. stated in a 

literature review that the Q-factor decreases with decreasing oscillator dimensions [16]. 

This suggests that the dominant loss mechanisms in thin cantilevers are surface related. 

Unfortunately, loss mechanisms at the surface are still not well understood, but the 

experimental trend is that the Q-factor decreases with the scaling of the cantilever 

dimensions. 

The surface imperfections such as: oxide layer [97], nature water layer [98] and metal 

coating [99] can be significant loss channels in the ultra-thin cantilevers. An additional 

treatment of the cantilever surface can reduce surface losses [100]. 
 

 

7.4 Piezoresistor detection noise 
 

The noise sources, which were studied in the previous section, are connected to the 

mechanical cantilever response. In order to detect this response we have to transform 

the mechanical signal to an electrical one. As was discussed before, this transducers are 

piezoresistors configured in an Wheatstone bridge. The electrical noise due to the 

piezoresistive detection method contributes to the noise following from the detecting 

mechanical noise. Hence the electrical noise can reduce additionally cantilever’s 

sensitivity and it is important to study the possible noise sources in piezoresistors. 
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The observed voltage and applied force are connected through equations (6-5), (6-9) 

and (6-54). In the frequency domain the connection between the output voltage and 

the applied force is: 
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This equation is valid for the case of thin surface piezoresistors, placed at the cantilever 

base and the force applied at the cantilever end. 

 

 

7.4.1 Johnson noise 

 

In 1927, Johnson [101] discovered that the noise power spectrum of a conductor is 

independent of its material and the measurement frequency. Under thermal equilibrium 

the noise properties are determined only by the temperature T and the electrical 

resistance R:  

 

 ( ) ( )2
4U JN out BS Uω ω− = = k TR .  (7-20) 

 

For measurements on the resonance this noise limits the minimum detecting force, in 

the frequency interval ω∆ , to the following value: 
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According to equation (7-19) if we increase the bridge supply voltage U , the voltage 

output will increase linearly. However, it has to be noted that the increasing power 

dissipation 

in

2
inP U R=  will increase linearly the resistors’ temperature T T , 

(Figure 6.18). Thus the Johnson noise level will be independent on the power for the 

low temperature operation T  and will be reduced for room temperature operation 

0 aP= +

→0 0
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of the cantilever. On the other hand the temperature of the cantilever will also rise and 

the force resolution will be decreased. As a result the TED will increase and the noise 

level will rise linearly with the temperature. But if the TED is not the dominant 

dissipation mechanism (for example cantilever operating in air) the increase of the 

bridge voltage will also increase the noise level (due to the increasing temperature of 

the surrounding gas) as a square root of the temperature and thus we can expect better 

signal to noise ratio. 

 

 

7.4.2 1/f noise 

References“1-f noise QuantumBib.pdf

Practically in all electronic and optical devices, in addition to the Johnson noise, there 

exist noise, which obeys the inverse frequency power law. Since its spectral density is 

inversely proportional to the frequency the noise is known as 1/f noise. After the first 

observation of this noise in an electronic system, made by Johnson [102], an enormous 

amount of experimental data has been accumulated on 1/f noise in various materials 

and systems. The 1/f noise is ubiquitous but no universal physical mechanism has been 

proved definitively as the cause for it.  

In 1969 Hooge [103] has proposed an empirical relation for the 1/f noise in 

homogeneous samples: 

 

 ( ) 2
1

1αω− = H
U / f

e

S U
N f

,  (7-22) 

 

where U  is the bias voltage across a resistor with a total number of carriers eN  and Hα  

is a dimensionless parameter. Thus the model contains empirical parameter unlike 

thermal noise. In other words, 1/f noise can be modelled empirically but cannot be 

predicted a priori. 

If the 1/f noise is the dominant noise source for measurements on the resonance, the 

minimum detecting force in the frequency interval ω∆ , has the following value: 
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Thus the 1/f spectrum makes measurements at low frequencies more difficult. It can 

also be seen that the increase of doping concentration can improve the force resolution. 

Usually, the physical explanation of the 1/f noise is based on charge trapping behaviour 

of defects and impurities at the Si/SiO2 interface. An other mechanism proposed 

includes a temperature fluctuation model [104] and a quantum mechanical model [105]. 

A new physical model was developed by Aldert van der Ziel [106] for explaining the 

dependence of the Hooge noise in a MOSFET. Long channel MOSFETs exhibit less 1/f 

noise since larger gate oxide capacitances smooth the fluctuations in the channel charge 

[107].  

The dimensionless parameter Hα  is process dependent and therefore surface treatments 

and an appropriate anneal must be chosen to minimize the noise [108]. 

 

 

7.5 Force resolution optimisation 
 

All the noise sources mentioned above are incoherent. Therefore the total random noise 

is calculated by taking the square root of the sum of the squares of all the incoherent 

noise sources. From this viewpoint, the cantilever resolution can be improved by the 

optimisation of the following parameters: cantilever geometry, properties and operation 

conditions of the piezoresistors, as well as the choice at which eigen frequency mode the 

cantilever should operate. 

 

Geometry: Cantilevers for high force resolution should be as narrow as the technology 

limitations allow. The cantilever thickness has to be reduced. For cantilever operated 

under air conditions, the length should be minimal. Cantilevers, operating in vacuum, 

have to be extended to the length at which the cantilever resonance frequency will be 

equal to the minimum possible operation frequency with respect to noise. 

Piezoresistors: At high dopant concentrations there are many carriers, and therefore the 

Hooge noise is reduced. At low concentrations the sensitivity is highest, which gives the 
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best resolution for cantilevers limited by Johnson noise. Hence, we prefer low doped 

piezoresistors, which are high voltage biased in order to improve the signal to noise 

ratio. 

Operation frequency: A cantilever optimised in such a way has a low fundamental eigen 

frequency, which limits the measurement speed (see Chapter 6.3). Thus we prefer the 

measurements in higher eigenfrequency modes. Another benefit is the improved 

coupling between the mechanical system and the piezoresistors following from the fact 

that the slope of the cantilever near the base is higher. This can give a higher stress 

and improves the signal from the Wheatstone bridge. 

 

Table 7 gives examples of the minimum detectable force by cantilevers with different 

geometry. All calculations were done for the mode independent quality factor 420Q = , 

Hooge parameter  and doping concentration for the piezoresistors was 

. The oscillation amplitude was 10 .  

910α −=H

22 310en m−= nm

It can be seen that the 1/f and Johnson noise contributions are negligible compared 

with the thermo-mechanical noise. For all type of cantilevers the thermo-mechanical 

noise increase for higher modes, and this is due to the fact that the possibility of the 

increasing of the quality factor for the higher modes was not taken into account. 

In this work cantilevers with geometry corresponding to the type 1 were fabricated. 

The typical measured noise spectrum of a cantilever is shown in Figure 7.2 (the 

measurements were performed with SPM-1000 control system manufactured by RHK). 

The experiment was done for two cases: i) the supply voltage Uin=0V and ii) the 

supply voltage Uin=1V. In such way it was easy to distinguish the contribution of every 

noise source. The experimentally estimated level of the Johnson noise was 
81 5 10. V Hz−× . This value is in good agreement with the theoretical value for the 

Wheatstone bridge with four equivalent resistors - 84 4 1 29 10.Bk TR V Hz−× ≈ ×  

(T=300K, R=2.5KΩ). The 1/ f  noise is significant up to a few hundred Hertz. For 

higher frequencies the dominant noise source for measurements in air is the thermo-

mechanical cantilever noise, which can limit the minimum detectible force (for 

theoretically estimated value see Table 7).  

The cantilevers of type 2,3 and 4, which are with improved geometry, have to be done 

in future work. 
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№ Geometry 

l    w    t 

[ ]mµ  

eigen 

mode 

fres
 

[ ]KHz  

k 

 

[ ]N m

Temp. 

T0    Tpr

[ ]K  

Fmin

th.  Jh.  1/f   sum 

fN Hz⎡ ⎤
⎣ ⎦  

(dF/dz)min 

sum 

N m Hzµ⎡ ⎤
⎣ ⎦

1  562  220  5 1  22.378   6.58 293  303  43   5.4   3.5   43.5 4.35 

  2  140.23    258 293  303 107   5.4   1.4    107 10.7 

  3  392.70   2026 293  303 180   5.4   0.8    180 18.0 

2 562   60   5 1   22.378   1.79 293  303  22   1.5    0.9     22 2.2 

  2  140.23    70.3 293  303  55   1.5    0.4     55 5.5 

  3  392.70    551 293  303  92   1.5    0.2     92 9.2 

3  562   60  0.5 1    2.237   0.002 293  303 2.3  0.015   0.03  2.3 0.23 

  2  14.023   0.078 293  303 5.5  0.015   0.01  5.5 0.55 

  3  39.270   0.62 293  303 9.2  0.015   0.01  9.2 0.92 

4  350   60  0.5 1    5.769   0.007 293  303 2.8  0.024   0.03  2.8 0.28 

  2  36.157   0.27 293  303 7.1  0.024   0.01  7.1 0.71 

  3  101.25   2.16 293  303 12   0.024   0.01  12 1.2 

  3  101.25   2.16 293  323 12   0.013   0.01  12 1.2 

  3  101.25   2.16 273  303 11   0.023   0.01  11 1.1 

Table 7 Minimum force and force gradient limited by different noise sources. 
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Figure 7.2 Noise spectrum from the cantilever.  
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Chapter 8 

Fabrication process and applications of the cantilever-

based sensors 

 

In this chapter the scenario of the piezoresistive cantilever fabrication will be given. 

After that a few applications of the cantilever based sensors will be demonstrated.  

 

 

8.1 Fabrication process 

 

The microbeam fabrication process is based on a double side micromachining concept 

[109],[110]. The developed sequence is conceived to enable fabrication of different 

micro-beam MEMS devices by simple modification of the lithography masks, with the 

general procedure remaining basically the same. 2 – 5 Ωcm n-type, <100> silicon wafers 

were used as a starting material. After initial cleaning, surface oxidation and 100 nm 

LPCVD silicon nitride deposition, first photolithography was performed to define a 

mask dot in the future tip area (Figure 8.1, step1.) The diameter of this dot determines 

the future tip height. Furthermore, the sharp tip for AFM applications was formed by 

anisotropic under-etching of silicon in hot TMAH or KOH solution (Figure 8.1, step 2.) 

[57],[111]. In a second lithography step (Figure 8.1, step 3.) p+ diffusion windows were 

opened and afterwards heavily doped p+ connections were created by high 

concentration boron diffusion, followed by high temperature drive-in. Silicon dioxide 

grown in this process protected against bare silicon surface exposed for the diffusion. In 

the subsequent processing step piezoresistors were formed by photolithography followed 

by moderate boron diffusion or alternatively, by 20 KeV boron implantation and 

thermal annealing (Figure 8.1, step 4.). Doping conditions as well as annealing 
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parameters were optimised to obtain high sensitivity of the piezoresistors. In the fourth 

lithography step contact holes were defined and etched in the oxide, to allow for 

connection of p+ diffusion regions with metal paths (Figure 8.1, step 5.). Then, a 1.0 

µm Al film was deposited using magnetron sputtering where electrical connections and 

the microheater were defined in the next lithography and metal etching (Figure 8.1, 

step 6.) step. This microheater can also be formed by specially developed thin film high 

expansion coefficient Cu/Au/Ta-alloy (two times higher than Al). In this way a basic 

electrical structure was formed in silicon. The sixth lithography was performed at the 

backside of the wafers to define the membrane area. It has to be noted however, that 

this backside pattern was aligned to the front side structure already formed in silicon, 

to ensure required future cantilever shape and proper location of the piezoresistors. 

Then a window with corner compensation structures was plasma etched in silicon 

nitride and oxide films at the backside of the wafer while the front side was protected 

by photoresist layer. A deep, anisotropic silicon etching (bulk micromachining) was 

done in hot 30% KOH solution, to create 15 µm thick silicon membrane in the future 

beam area (Figure 8.1, step 7). In the most simple experimental set-up, the front side 

of the wafer with electronic structure already formed, was protected by placing the 

wafer in a chuck. Alternatively, we used boron doped silicon glass/refractory metal film 

double layer or KOH resistant polymer film for front side protection. The etching was 

stopped when the membrane thickness has reached the desired thickness of the 

cantilever. Finally, in the last step, the shape of the cantilever was cut in the 

membrane and the whole microprobe structure was formed by front side lithography, 

followed by silicon plasma etching with gas chopping technique [112] (Figure 8.1, step 

8) and removing of photoresist in oxygen plasma (Figure 8.1, step 9). It has to be 

noted that after formation of the tip for AFM applications, a thickness of the 

photoresist has to be chosen carefully throughout the processing sequence, to protect 

the high tip during specific processes (e.g. front side silicon etching — step 8). 
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Figure 8.1 Fabrication flow chart of Si-micro-beam. 
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8.2 Cantilever beam with porous silicon element as a sensor 

 

Recently, increasing effort has been spent into the development of cantilever-based 

chemical sensors [113]. As it was already discussed, the main motivation for the 

application of cantilevers as chemical sensors is based on the advantages, which are 

offered by their small size, high sensitivity and the possibility of integration of 

transducer, actuator and read-out unit on the same chip. For the application as a 

chemical sensor we developed a cantilever with porous silicon element Figure 8.2a. 

Porous silicon has a number of interesting features, which makes it a promising 

material for micro- and nanofabrication. The most important features are its large 

inner surface and high chemical activity. 

The cantilever has been mounted on a piezoelectric actuator and placed in the chamber 

with controlled atmosphere. Resonance curves of the cantilever have been measured by 

sweeping the excitation frequency of the piezoelectric actuator and monitoring the 

resulting beam deflection. The deflection has been measured by use of a piezoresistive 

circuit located at the support of the cantilever and additionally by monitoring of a laser 

beam reflected from the device. 

The resonance curves for relative humidity of 10% and 80% are shown in Figure 8.2b. 

It may be noted, that the quality factor of the beam (which is inversely proportional to 

the width of the resonance curve) first decreases with humidity then increases after 

reaching a minimum. This effect may be related to mechanical behavior of water inside 

the pores. For medium humidity relatively large water droplets can move inside pores 

dissipating mechanical energy. For low humidity the energy dissipation is smaller due 

to the small amount of water. For large humidity considerable filling of the pores 

hinders movement of water droplets inside pores and thus decreases energy dissipation. 

A comparison of our results with those reported for cantilever coated with other 

materials (like gelatin, gold [61] or carbon nitride [114]) proves that the application of 

the porous silicon dramatically enhances the absorption efficiency. The most obvious 

explanation of this observation is a very high specific surface of this adsorbent. 

Applications of such a device include humidity and gas detection. 
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When characterizing a piezoresistive cantilever beam with a porous silicon element we 

has obtained a more complicated frequency spectrum with more than one resonance 

peak in the frequency range up to 100 KHz, in comparison with the simple cantilever 

beam. This behaviour can be explained with the fact that for the given cantilever 

geometry the fundamental and higher eigenmodes for both transversal (bending) and 

share (torsion) modes fall in the working frequency range. For our method of 

piezoresistive detection of the cantilever bending it was not possible for us to identify 

the various peaks with regard to their oscillation modes. In order to identify the 

experimental peaks a FEM simulation were used. From the obtained results it was 

possible to explain the experiment and identify very correctly all peaks in the frequency 

spectrum range with the corresponding oscillation modes (Figure 8.2b) [119]. 

a) 

b) 

Porous 
element 

 
 

Figure 8.2 a) The T-shaped cantilever with a porous silicon element and the SEM view of  

a porous silicon layer (A - surface, B - cross-section) b) Frequency spectrum of a cantilever 

beam with porous silicon element for different humidity (10% and 80% ). 
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8.3 Cantilever beam for high speed AFM in higher eigenmodes 
 

In this section we will present a micromachined AFM cantilever with an integrated 

piezoresistive sensor and thermal bimorph actuator for high-speed tapping-mode AFM 

phase-imaging in higher eigenmodes. Tapping Mode Atomic Force Microscopy (TM-

AFM) allows imaging with nanometer-scale resolution, where the tip strikes the surface 

with negligible force. This technique is a promising candidate in non-contact and 

damage free sub 50nm Critical Dimension (CD) measurement applications. In TM-

AFM [19] the cantilever is excited to oscillate close to its resonance. The topography 

information is collected from the phase lag between vibration excitation and response of 

the cantilever deflection sensor. This phase lag is related to the energy dissipated in the 

tip-sample interaction. The cantilever with an integrated piezoresistive sensor and 

thermal bimorph actuator offers two advantages for such a kind of measurements. 

First, cantilever probes based on the piezoresistive sensing principle, which was 

discussed in Chapter 4, provide a simple and convenient technique enabling easy access 

to novel applications of force microscopy. Second, due to the bimorph actuator, 

described in Chapter 6, a high deflection can be achieved. 

Figure 8.3 shows a piezoresistive cantilever with a thermal bimorph actuator and 

experimentally obtained piezoresistor response vs. drive frequency of the bimorph 

actuator for a free cantilever. It was possible to obtain the fundamental (f0=19kHz) and 

the next 3 natural modes (f1=162kHz, f2=348kHz, and f3=716kHz). 

In our set-up the cantilever is driven by thermal actuation at its resonant frequency 

(fres) by an AC current with frequency (fres/2), while applying a DC current provides a 

z-axis actuation. The magnitude of the DC current determinates the deflection of the 

cantilever, controlled by the PID feedback loop - Figure 8.4a. The DC biasing causes a 

shift in the resonance frequency - Figure 8.4b. This can be explained by the fact that 

due to the increase of the DC bias the temperature of the cantilever will increase and 

this will increase the compressive stress. The total AC driving power is below 1µW 

[120]. In this manner, a stable actuator and a soft cantilever for probing of the surface 

of the sample are provided. 
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Figure 8.3 Micromachined TM-AFM probe with integrated bimorph actuator, piezoresistive 

deflection sensor and Si-tip; Piezoresistor response vs. drive frequency of the  

 

bimorph actuator for a free cantilever. 

Figure 8.4 a) Schematic diagram of the experimental set-up and PLL PID feedback electronics 

b) Resonance frequency shift (first mode) vs. actuator DC bias for different pressures. 

 

Employing TM-AFM in higher eigenmodes we found, that the most sensitive mode of 

flexural vibration for an AFM cantilever is the first mode. However, the high-order 

vibration modes are more sensitive than the first mode when the contact stiffness is 

greater. These results are compatible with the theoretical results obtained by [121]. 

Figure 8.5a shows the measured topography of a chromium pattern on quartz with 

deposited a 5nm Pt film recorded with 5Hz and 10Hz. The height contrast between the 



 

 

 

8.3. Cantilever be

top of the Cr pattern (bright) and the quartz substrate between the features (dark) is 

40nm, as expected. The TM-AFM image reveals a cluster structure of the deposited Pt 

onto the Cr-pattern. From this observation one can conclude, that the Cr pattern is 

perfectly reproduced and in particular, some residual resist is present on the patterns. 

The vibration amplitude was 10nm, which means that the tip provides a complete 

approach-contact retraction cycle during each period of oscillation. Figure 8.5b depicts 

the tapping mode image of a Cr grating with a period of 1µm. The Cr-patterns are 

40nm high. The image was taken at 10Hz scan speed at the mechanical resonance 

frequency 716kHz. Images presented in Figure 8.5 were obtained employing the phase 

sig

The magnitude of cross coupling from actuator to sensor is an essential issue, since 

they are closely spaced due to their integration on the cantilever. We have evaluated 

the signal cross coupling from the thermal-actuator input to the piesoresistive sensor 

output. 

As was discussed in chapter 6.6, the heat used for actuation can induce a temperature 

gradient at the location of the Wheatstone bridge sensor and can lead to a large offset 

or signal drift of the sensor output. The sensor signal was measured as a function of the 

frequency at which the thermal-actuator was driven using a lock-in technique. At DC-

current level, the amount of cross coupling for a given actuator power is about 

3nV/mA. This relatively low cross-coupling shows that the full Wheatstone bridge 

configuration provides a good temperature compensation and confirms the theoretical 

results obtained in chapter 6.6. 

111am for high speed AFM in higher eigenmodes 

nal for distance regulation. 



 12 8. Fabrication process and applications of the 1 cantilever-based sensors

 

Figure 8.5  a) Typical image of profile measurements obtained with 5 Hz for Cr features of 

optical mask b) CD measurements with 10 Hz done on Cr features. 

a) 

b) 

 

 



 

 

 

8.4. Piezoresistive

8 iezoresistive cantilever as a tool for maskless lithography  
 

In the previous section it was discussed the imaging technique with the piezoresistive 

cantilever with an integrated actuator. In this section will be demonstrated the 

possibility of the bimorph actuated cantilever to be used as a tool for high resolution 

nanolitography. 

The Proximal Probe Nano-Lithography System (P2NLS) is a high resolution patterning 

technique that uses a sharp tip in close proximity to a sample to pattern nanometer-

scale features. The P2NLS may be used as a nanolithography tool for high resolution 

patterning of various materials where the field emission electrons emitted from a sharp 

tip are used to induce localized chemical changes or ablation in an organic polymer 

resist. P2NLS has a wide exposure latitude and high linearity in the dot-pixel-writing 

mode, and negligible proximity effects.  

For the sample preparation thin PMMA and calixaren [122] films on sputter deposed 

Au film on a silicon substrate are used. A micromachined AFM cantilever with an 

integrated silicon probe tip acts as a field emitter source of electrons. During the 

exposure process the field emission current from the tip was kept constant by a current 

feedback regulator. Moreover, to eliminate the problems of tip wear the atomic force 

microscopy principle based on the pizoresistive cantilever also was used for the distance 

control.  

Feature sizes below 25nm (see Figure 8.6) have been patterned in 100nm-thick organic 

resist. It can be seen that by patterning lines with P2NLS all individual features are 

ablative formed.  

In addition, in order to improve the throughput, this lithography technique can be 

easily adapted to multiple-tip arrays [123] where each cantilever has an integrated 

bimorph actuator to adjust the probe height. In such way, the P2NLS can provide an 

attractive alternative for high-resolution lithography because of its ability to maintain 

exact CD and alignment control. 

It was demonstrated that the atomic force microscope AFM operating in air may be 

used to pattern narrow features in resists or organic monolayers in a noncontact 

(maximum 100nm to the surface) lithography mode. The advanced features of P2NLS 

make it an ideal for sub 50nm lithography. Also, for many basic research applications, 

.4 P

113 cantilever as a tool for maskless lithography 
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the capabilities of P2NLS make it the preferred instrument, as shown by the fact that 

roximal Probe Nano-Lithography can be used for the fabrication of a wide variety of 

h resolution and fast imaging capabilities of the AFM for alignment 

P

nano-devices. Research areas include: quantum structures, optical structures, electro-

mechanical structures, such as M(N)EMS devices and ultra-small sensor fabrication. 

The noncontact mode AFM configuration allows extending the tip lifetime while 

retaining the hig

registration. 

Figure 8.6  SEM and AFM micrographs of features written by the Proximal Probe Nano-

Lithography System in a 50nm thick PMMA. 

 

 



 

 

 

Conclusions 

The major goal of the work described in this thesis has been to develop very sensitive 

force gradient sensors, which allow mapping of the sample surface topology at high 

speed. This problem involves two tasks. First, the integrated deflection sensor has to 

fulfil the requirements for high z-resolution. The second task to be addressed is an 

integrated actuating mechanism for high-speed imaging. 

In the context of the aims listed above, the following key results can be summarised. 

 

i) The piezoresistive deflection sensor has been chosen in order to replace the external 

laser detecting techniques and the resulting limits of the cantilever operation. 

Theoretical studies of the piezoresistive effect both in n- and in p-type bulk silicon have 

been conducted using the kp theory to obtain the band structure near the band edges 

with and without stress. As a result it was possible to obtain the piezoresisitive 

coefficients, which are in good agreement with published experimental data. Following 

the tendency of continuous improvement of the micro-fabrication technology, the model 

has been adapted for the calculation of the piezoresisitive coefficients in extremely thin 

surface ion-implanted piezoresistors  (2D case). Combining the kp method with the 

model of the carrier localisation, considerable progress have been achieved in the 

understanding of the piezoresistive effect in case of 2D. It has been found that the 

values of the n-type piezoresistive coefficients decrease with the degree of electron 

localisation. Moreover, for p-type piezoresistivity, which has a more complicated origin, 

the predicted values of the piezoresistive coefficients are higher (approximately two 

times for a 9nm quantum well) in the case of localised holes, than in the bulk.  

 

ii) of 

AFM sensors for fast  integrated actuator, 
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Actuator integration into the cantilever is an essential issue in the development 

imaging. The idea of cantilevers with an
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based on the bimorph effect has been theoretically and experimentally investigated. 

sing of the cantilever thickness. Therefore, 

allow a sufficient bimorph actuation. In this 

ns allow imaging of the sample topography.  

i) The dynamics of the vibrating cantilever (AC actuation) was studied in detail in 

tection method chosen in this 

 masks. 

urthermore, the obtained experimental results with this cantilever show that utilizing 

The bimorph actuation efficiency depends on the thickness ratio of the layers. 

Moreover, the efficiency increases with decrea

the cantilevers have to be thin in order to 

manner DC actuatio

 

ii

order to ensure proper integration of the actuator into the cantilever. The existing 

detecting techniques for the dynamic imaging of the sample surface were discussed. It 

has been found that due to the bimorph DC actuation the resonance frequency shifts. 

For this reason a resonance frequency shift detection technique cannot be used for 

AFM imaging with this type of actuation. Thus the de

work was based on the amplitude modulation or phase shift detection.  

 

iv) With respect to the cross-coupling between the bimorph actuator and the 

piezoresistive sensor, it has been found that the Wheatstone bridge configuration 

provides good enough temperature compensation. Observed coupling is based on 

electronic (capacitance) signal transfer from the actuator to the Wheatstone bridge. 

 

v) The optimal cantilever design with respect to the force sensitivity was discussed, 

developed and presented. It has been demonstrated that for imaging in ambient 

conditions the force sensitivity is limited by the thermo-mechanical cantilever noise. 

Additional noise sources, connected with the piezoresistive detection (1/f and Johnson 

noises), are negligible. 

 

vi) The proposed piezoresisive cantilevers with integrated bimorph actuators have been 

designed and fabricated considering the available theoretical knowledge.  

Experimentally, the fabricated piezoresistive AFM cantilevers have been successfully 

employed in critical dimension (CD) measurements of lithographic chromium

F

TM-AFM in higher eigenmodes is a suitable technique for realizing high-speed 

topography imaging. The method we have used for a constant force imaging is based 



 

 

 

Conclusions 

techniques. 

117

on the constant phase lag at higher eigenmodes of the cantilever. At higher eigenmodes, 

we can increase the bandwidth of imaging. The use of higher eigenmodes allows 

obtaining topographic images with high sensitivity and improves the force resolution. 

Thus, for reliable CD measurement and pattern imaging at higher eigenmodes, the use 

of a phase locked loop (PLL) phase shift detector is very suitable 

 

vii) It has been demonstrated that the fabricated cantilevers in the presented 

framework can be used in proximal probe lithography to pattern narrow (20nm) 

features in resists or organic monolayers in a noncontact (max. 100nm to the surface) 

lithography mode in air. Moreover, a new concept for high throughput based on array 

of bimorph actuated cantilevers was demonstrated [123]. 
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usammenfassung 

ß die Anforderungen für hohe 

z-Auflösung erfüllen. Die zweite Aufgabe besteht in der Entwicklung eines integrierten 

Aktuationsmechanismus für Hochgeschwindigkeits- Abbildungen. 

Im Rahmen der oben aufgelisteten Ziele können die folgenden Schlüsselresultate 

zusammengefasst werden. 

 

i) Der piezoresistive Auslenkungssensor wurde ausgewählt, um die externe Laser-

Detektions-Technik und die damit einhergehenden Grenzen des Cantilever-Betriebs zu 

ersetzen. Theoretische Untersuchungen des piezoresistiven Effekts sowohl in n- als auch 

in p-dotiertem Volumen-Silizium wurden mittels der kp-Theorie durchgeführt, um die 

Bandstruktur in der Umgebung der Bandkanten mit und ohne mechanische 

Spannungen zu erhalten. Als Ergebnis wurden die piezoresistiven Koeffizienten in guter 

Übereinstimmung mit publizierten experimentellen Daten erhalten. Entsprechend dem 

Trend der kontinuierlichen Verbesserung der Mikrofabrikations-Technologie wurde das 

Modell für die Berechnung der piezoresistiven Koeffizienten in extrem dünnen 

oberflächen-ionenimplantierten Piezoresistoren angepasst (2D-Fall). Durch 

Kombination der kp-Methode mit dem Modell der Ladungsträgerlokalisation wurde ein 

beträchtlicher Fortschritt im Verständnis des piezoresistiven Effekts im 

zweidimensionalen Fall erzielt. Es wurde gefunden, dass die Werte der piezoresistiven 

Koeffizienten für n-dotiertes Silizium mit dem Grad der Elektronenlokalisation fallen. 

Darüber hinaus sind die vorhergesagten piezoresitiven Koeffizienten für p-dotiertes 

 

 

 

 

Z
 

Das Hauptziel der in dieser Dissertation beschriebenen Arbeit war die Entwicklung 

hoch-empfindlicher Kraft-Gradienten-Sensoren, die es erlauben, die Oberflächen-

topologie mit hoher Geschwindigkeit abzubilden. Dieses Problem besteht aus zwei 

Aufgaben. Erstens, der integrierte Auslenkungs-Sensor mu
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ilizium, die eine kompliziertere Ursache haben, im Fall lokalisierter Löcher höher 

twa Faktor 2 für einen 9nm Quantentrog) als für das Volumen. 

) Die Integration des Aktuators in den Cantilever ist ein wesentlicher Punkt in der 

Entwicklung von AFM-Sensoren für schnelle Abbildungen. Das Konzept von 

rten auf dem Bimorph-Effekt basierenden Aktuatoren wurde 

eoretisch und experimentell untersucht. Die Effizienz des Bimorph-Aktuators hängt 

detailliert untersucht, 

echniken für dynamisches Abbilden der Probenoberfläche 

urden diskutiert. Es wurde herausgefunden, dass wegen der bimorphen DC-Aktuation, 

S

(e

 

ii

Cantilevern mit integrie

th

von dem Dickenverhältnis der Schichten ab. Darüber hinaus nimmt die Effizienz mit 

abnehmender Cantileverdicke zu. Deswegen müssen die Cantilever dünn sein, um eine 

ausreichende Aktuation nach dem Bimorph-Prinzip zu ermöglichen. In dieser Weise 

erlauben DC-Aktuationen die Abbildung der Probentopologie. 
 

iii) Die Dynamik der Cantilevervibration (AC-Aktuation) wurde 

um die geeignete Integration des Aktuators in den Cantilever sicherzustellen. Die 

existierenden Detektions-T

w

sich die Resonanzfrequenz verschiebt. Aus diesem Grund kann eine Detektion der 

Verschiebung der Resonanzfrequenz nicht zur AFM- Abbildung mit dieser Art von 

Aktuation verwendet werden. Deshalb basiert die Detektionsmethode, die in dieser 

Arbeit gewählt wurde, auf dem Prinzip der Amplitudenmodulation oder der 

Phasenverschiebungs-Detektion. 

 

iv) Im Hinblick auf ein Übersprechen zwischen der bimorphen Aktuation und dem 

piezoresistiven Sensor wurde herausgefunden, dass eine Wheatstone-

Brückenkonfiguration eine ausreichende Temperaturkompensation bietet. Das 

beobachtete Übersprechen stammt aus der elektronischen (kapazitiven) Signalkopplung 

vom Aktuator zur Wheatstone-Brücke. 

 

v) Der optimale Cantilever-Aufbau im Hinblick auf die Kraftempfindlichkeit wurde 

diskutiert, entwickelt und präsentiert. Es wurde gezeigt, dass für Abbildungen in 

normaler Umgebung die Kraftempfindlichkeit durch das thermo-mechanische 
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Cantileverrauschen begrenzt wird. Weitere Rauschquellen, die mit der piezoresistiven 

Detektion (l/f- und Johnson-Rauschen) sind vernachlässigbar. 

 

vi) Die vorgeschlagenen piezoresistiven Cantilever mit integrierten bimorphen 

Aktuatoren wurden unter Berücksichtigung der theoretischen Erkenntnisse entworfen 

und hergestellt. 

Die hergestellten piezoresistiven AFM-Cantilever wurden experimentell erfolgreich bei 

der Messung kritischer Dimensionen (CD - ”critical dimensions”) von lithographischen 

Chrommasken eingesetzt. Weiterhin zeigen die mit diesen Cantilevern erzielten 

experimentellen Resultate, dass der Einsatz von TM-AFM in höheren Eigenmoden eine 

geeignete Technik für die Verwirklichung von Hochgeschwindigkeits-

opographieabbildungen ist. Die von uns verwendete Methode für eine Abbildung bei 

 Rahmen dieser Arbeit hergestellten Cantilever für die 

proximal probe” - Lithographie zur Strukturierung von schmalen (20nm) Strukturen 

T

konstanter Kraft basiert auf der konstanten Phasenverschiebung bei höheren 

Eigenmoden des Cantilevers. Die Bandbreite der Abbildung kann bei höheren 

Eigenmoden erhöht werden. Die Verwendung höherer Eigenmoden erlaubt es, 

Topographieabbildungen mit hoher Empfindlichkeit zu erhalten und erhöht die 

Kraftauflösung. Daher ist die Verwendung eines Phase-Locked-Loop (PLL) 

Phasenverschiebungs-Detektors für die zuverlässige Messung kritischer Dimensionen 

(”CD measurements”) und Abbildung bei höheren Eigenmoden eine geeignete Technik. 

 

vii) Es wurde gezeigt, dass die im

”

in Photoresist oder organischen Monolagen in einem berührungslosen (maximal 100nm 

Abstand zur Oberfläche) Lithographiemodus an normaler Luft verwendet werden 

können. Darüberhinaus wurde ein neues auf einem Array von bimorph aktuierten 

Cantilevern basierendes Konzept für hohen Durchsatz vorgestellt  [123]. 
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Appendix 

 
In the table below are presented the values of the silicon and aluminium properties 

used in this work. 

 

 

Material Property Value Unit Ref. 

SILICON 
Crystal structure diamond  [115] 

Lattice constant 5.43 Å  [116] 
Density 2300 3kg m  [116] 

 

s
Compliance coefficients  [115] 

11 0.768 11 210 m N−   

s12 -0.214 11 210 m N−   
11 210 m N−  s44 1.26  

Boron acceptor energy level 45  

Energy gap 1.17 eV  [115] 

Phosphorus donor energy level 45 meV   

Dielectric constant 11.9   
Valence band parameters   [116] 

L -5.53 

meV  

( )2 2 em   

M -3.64 ( )2 2 em   

N -8.62 ( )2 2 em   

Spin-orbit splitting 44 [116] 

Deformation potential-VB   [32] 

meV  

( )2 3a l m= +  -5  eV  

( ) 3b l m= −  -1.92÷-4.84  eV  

3d n=  -5.1  eV  
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Deformation potential-CB   [116] 

dilatation 1.1  

share 10.5  

Conduction band parameter 

Ξ
d
 eV  

Ξu  eV  

Ξm  
71.58 ( )2 2 em  [117] 

Conduction band effective mass   [115] 

transversal 0.1905  

longitudinal 0.9163  

Piezoresistive coefficients n-type   [115] 

tm  em  

lm  em  

11 210 m N   π11
-102.2 −

π12
53.4 11 2−10 m N   

π44
-13.6 11 210 m N−   

Piezoresistive coefficients p-type   [115] 

π11
6.6 11 210 m N−   

π12
-1.1 11 210 m N−  

44
138.1 

 

π 11 210 m N−   

   
al expansion 

 
Coefficient of therm
at 300K 

2.616 6 110 K− −  

Conductivity at 300K 

[115] 

Thermal 156 1 1Wm K− −  [115] 

Specific heat at 300K 713 ( )J kgK  [115] 

Poisson′s ratio  

Young′s modulus [110] 

8 11

0.16818 -449.0539 +46487

2.061456 10

0.27  

( ) 4 3 25.973

2.319830 10

Y T T T

T

=

+ ×
 

18] 

2

T

− ×

[1

ALUMINUM 
Density 694 3kg m  

al expansion 

 

Coefficient of therm
at 300K 

23.3 6 110 K− −  

Thermal Conductivity at 300K 

 

236 1 1Wm K− −   

Specific heat at 300K 901 ( )J kgK   

Poisson′s ratio 
 0.33  

Young′s modulus 70 GPa   

Table 8 Material parameters employed in this w rk. o
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