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Abstract

Recent advances in image-based 3D human shape

estimation have been driven by the significant improvement

in representation power afforded by deep neural networks.

Although current approaches have demonstrated the po-

tential in real world settings, they still fail to produce

reconstructions with the level of detail often present in the

input images. We argue that this limitation stems primarily

form two conflicting requirements; accurate predictions

require large context, but precise predictions require high

resolution. Due to memory limitations in current hardware,

previous approaches tend to take low resolution images as

input to cover large spatial context, and produce less precise

(or low resolution) 3D estimates as a result. We address

this limitation by formulating a multi-level architecture that

is end-to-end trainable. A coarse level observes the whole

image at lower resolution and focuses on holistic reasoning.

This provides context to an fine level which estimates highly

detailed geometry by observing higher-resolution images.

We demonstrate that our approach significantly outperforms

existing state-of-the-art techniques on single image human

shape reconstruction by fully leveraging 1k-resolution input

images.

1. Introduction

High-fidelity human digitization is the key to enabling a

myriad of applications from medical imaging to virtual real-

ity. While metrically accurate and precise reconstructions of

humans is now possible with multi-view systems [12, 26], it

has remained largely inaccessible to the general community

due to its reliance on professional capture systems with strict

environmental constraints (e.g., high number of cameras,

controlled illuminations) that are prohibitively expensive

and cumbersome to deploy. Increasingly, the community has

turned to using high capacity deep learning models that have

shown great promise in acquiring reconstructions from even

a single image [19, 42, 30, 1]. However, the performance

∗Website: https://shunsukesaito.github.io/PIFuHD/

Figure 1: Given a high-resolution single image of a person,

we recover highly detailed 3D reconstructions of clothed

humans at 1k resolution.

of these methods currently remains significantly lower than

what is achievable with professional capture systems.

The goal of this work is to achieve high-fidelity 3d

reconstruction of clothed humans from a single image at

a resolution sufficient to recover detailed information such

as fingers, facial features and clothing folds (see Fig. 1).

Our observation is that existing approaches do not make

full use of the high resolution (e.g., 1k or larger) imagery

of humans that is now easily acquired using commodity

sensors on mobile phones. This is because the previous

approaches rely on holistic reasoning to map between the

2D appearance of an imaged human and their 3D shape,

where, in practice, down-sampled images are used due to

the prohibitive memory requirements [19, 42]. Although

local image patches have important cues for detailed 3D

reconstruction, these are rarely leveraged in the full high-

resolution inputs due to the memory limitations of current

graphics hardware.

Approaches that aim to address this limitation can be

categorized into one of two camps. In the first camp, the

problem is decomposed in a coarse-to-fine manner, where

high-frequency details are embossed on top of low-fidelity

surfaces. In this approach, a low image resolution is used
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to obtain a coarse shape. Then, fine details represented

as surface normal [51] or displacements [3] are added by

either a post-process such as Shape From Shading [14] or

composition within neural networks. The second camp

employs high-fidelity models of humans (e.g., SCAPE [5])

to hallucinate plausible detail. Although both approaches

result in reconstructions that appear detailed, they often do

not faithfully reproduce the true detail present in the input

images.

In this work, we introduce an end-to-end multi-level

framework that infers 3D geometry of clothed humans at

an unprecedentedly high 1k image resolution in a pixel-

aligned manner, retaining the details in the original inputs

without any post-processing. Our method differs from

the coarse-to-fine approaches in that no explicit geometric

representation is enforced in the coarse levels. Instead,

implicitly encoded geometrical context is propagated to

higher levels without making an explicit determination about

geometry prematurely. We base our method on the recently

introduced Pixel-Aligned Implicit Function (PIFu) represen-

tation [35]. The pixel-aligned nature of the representation

allows us to seamlessly fuse the learned holistic embedding

from coarse reasoning with image features learned from the

high-resolution input in a principled manner. Each level

incrementally incorporates additional information missing

in the coarse levels, with the final determination of geometry

made only in the highest level.

Finally, for a complete reconstruction, the system needs

to recover the backside, which is unobserved in any single

image. As with low resolution input, missing information

that is not predictable from observable measurements will

result in overly smooth and blurred estimates. We overcome

this problem by leveraging image-to-image translation net-

works to produce backside normals, similar to [30, 11, 39].

Conditioning our multi-level pixel-aligned shape inference

with the inferred back-side surface normal removes ambi-

guity and significantly improves the perceptual quality of

our reconstructions with a more consistent level of detail

between the visible and occluded parts.

The main contributions in this work consists of:

• an end-to-end trainable coarse-to-fine framework for

implicit surface learning for high-resolution 3D clothed

human reconstruction at 1k image resolution.

• a method to effectively handle uncertainty in unob-

served regions such as the back, resulting in complete

reconstructions with high detail.

2. Related Work

Single-View 3D Human Digitization Single-view 3D

human reconstruction is an ill-posed problem due to the

fundamental depth ambiguity along camera rays. To over-

come such ambiguity, parametric 3D models [5, 27, 18, 33]

are often used to restrict estimation to a small set of model

parameters, constraining the solution space to a specifically

chosen parametric body model [7, 22, 20, 46, 33, 47].

However, the expressiveness of the resulting models is

limited by using a single template mesh as well as by

the data on which the model is built (often comprised

mainly of minimally clothed people). While using a

separate parameteric model can alleviate the limited shape

variation [6], large deformations and topological changes are

still non-trivial to handle with these shape representations.

Researchers have also proposed methods that do not

use parametric models, but rather directly regress “free-

form” 3D human geometry from single views. These

approaches vary their directions based on the input and

output representation that each algorithm uses. Some

methods represent the 3D output world via a volumetric

representation [42]. Of particular relevance to this work

is the DeepHuman [49] approach of Zheng et al., where a

discretized volumetric representation is produced by the

network in increasing resolution and detail. Additional

details using surface normals are embossed at the final

level. While this method obtains impressive results, the

cubic memory requirement imposed by the discrete voxel

representation prevents obtaining high resolution simply by

naively scaling the input resolution. Alternative methods

consider additional free-form deformation on top of a

parametric model space [1], and there exist also multiple

approaches that predict depth maps of the target people as

output [40, 11, 39].

The recently introduced Pixel-Aligned Implicit Function

(PIFu) [35] does not explicitly discretize the output space

representation but instead regresses a function which de-

termines the occupancy for any given 3D location. This

approach shows its strength in reconstructing high-fidelity

3D geometry without having to keep a discretized represen-

tation of the entire output volume in memory simultaneously.

Furthermore, unlike implicit surface representations using

a global feature vector [29, 32, 10], PIFu utilizes fully

convolutional image features, retaining local details present

in an input image.

High-Resolution Synthesis in Texture Space A number

of recent approaches pursue reconstructing high-quality

3D texture or geometry by making use of a texture map

representation [48, 41, 23] on which to estimate geometric

or color details. Particularly, the Tex2Shape approach of

Alldieck et al. [3] aims to reconstruct high quality 3D

geometry by regressing displacements in an unwrapped UV

space. However, this type of approach is ultimately limited

by the topology of the template mesh (exhibiting problems

when representing different topologies, such as required

by different hair styles or skirts) and the topology chosen

for the UV parameterization (e.g., visible seam artifacts
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around texture seams). Recent approaches leverage neural

network models to predict intermediate texture or depth

representations that are then used to reconstruct final 3D

geometry output [36, 49].

Our work is also related to approaches that produce high

quality or high resolution synthetic human images. Recent

methods consider producing high quality synthetic faces to

overcome limitations of original GAN-based approaches [43,

21]. Similar trade-offs are pursued in semantic segmentation

tasks [8, 9].

3. Method

Our method builds on the recently introduced Pixel-

aligned Implicit Function (PIFu) framework of [35], which

takes images with resolution of 512×512 as input and

obtains low-resolution feature embeddings (128×128). To

achieve higher resolution outputs, we stack an additional

pixel-aligned prediction module on top of this framework,

where the fine module takes as input higher resolution

images (1024×1024) and encodes into high-resolution

image features (512×512). The second module takes

the high-resolution feature embedding as well as the 3D

embeddings from the first module to predict an occupancy

probability field. To further improve the quality and fidelity

of the reconstruction, we first predict normal maps for the

front and back sides in image space, and feed these to the

network as additional input. See Fig. 2 for an overview of

the method.

3.1. PixelAligned Implicit Function

We briefly describe the fundation of PIFu introduced in

[35], which constitutes the coarse level of our method (upper

half in Fig. 2). The goal of 3D human digitization can be

achieved by estimating the occupancy of a dense 3D volume,

which determines whether a point in 3D space is inside the

human body or not. In contrast to previous approaches,

where the target 3D space is discretized and algorithms

focus on estimating the occupancy of each voxel explicitly

(e.g., [51]), the goal of PIFu is to model a function, f(X),
which predicts the binary occupancy value for any given 3D

position in continuous camera space X = (Xx,Xy,Xz) ∈
R

3:

f(X, I) =

{

1 if X is inside mesh surface

0 otherwise,
(1)

where I is a single RGB image. Since no explicit 3D

volume is stored in memory during training, this approach

is memory efficient, and more importantly, no discretization

is needed for the target 3D volume, which is important in

obtaining high-fidelity 3D geometry for the target human

subjects. PIFu [35] models the function f via a neural

network architecture that is trained in an end-to-end manner.

Specifically, the function f first extracts a image feature

embedding from the projected 2D location at π(X) = x ∈

R
2, which we denote by Φ (x, I). Orthogonal projection

is used for π, and thus x = π(X) = (Xx,Xy). Then, it

estimates the occupancy of the query 3D point X, and thus:

f(X, I) = g (Φ (x, I) , Z) , (2)

where Z = Xz is the depth along the ray defined by the

2D projection x. Note that all 3D points along the same ray

have exactly the same image features Φ (x, I) from the same

projected location x, and thus the function g should focus on

the varying input depth Z to disambiguate the occupancy of

3D points along the ray. In [35], a Convolutional Neural

Network (CNN) architecture is used for the 2D feature

embedding function Φ and a Multilayer Perceptron (MLP)

for the function g.

A large scale dataset [34] synthetically generated by

rendering hundreds of high quality scanned 3D human mesh

models is used to train the function f in an end-to-end

fashion. Unlike voxel-based methods, PIFu does not produce

a discretized volume as output, so training can be performed

by sampling 3D points and computing the occupancy loss

at the sampled locations, without generating 3D meshes.

During inference, 3D space is uniformly sampled to infer

the occupancy and the final iso-surface is extracted with a

threshold of 0.5 using marching cubes [28].

Limitations: The input size as well as the image feature

resolution of PIFu and other existing work are limited to

at most 512×512 and 128 × 128 in resolution respectively,

due to memory limitations in existing graphics hardware.

Importantly, the network should be designed such that

its receptive field covers the entire image so that it can

employ holistic reasoning for consistent depth inference—

thus, a repeated bottom-up and top-down architecture with

intermediate supervision [31] plays an important role to

achieve robust 3D reconstruction with generalization ability.

This prevents the method from taking higher resolution

images as input and keeping the resolution in the feature

embeddings, even though this would potentially allow

the network to leverage cues about detail present only at

those higher resolutions. We found that while in theory

the continuous representation of PIFu can represent 3D

geometry at an arbitrary resolution, the expressiveness of

the representation is bounded by the feature resolution in

practice. Thus, we need an effective way of balancing

robustness stemming from long-range holistic reasoning and

expressiveness by higher feature embedding resolutions.

3.2. MultiLevel PixelAligned Implicit Function

We present a multi-level approach towards higher fidelity

3D human digitization that takes 1024×1024 resolution

images as input. Our method is composed of two levels
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Figure 2: Overview of our framework. Two levels of pixel-aligned predictors produce high-resolution 3D reconstructions. The

coarse level (top) captures global 3D structure, while high-resolution detail is added by the fine level.

of PIFu modules: (1) a coarse level similar to PIFu [35],

focusing on integrating global geometric information by

taking the downsampled 512 × 512 image as input, and

producing backbone image features of 128× 128 resolution,

and (2) a fine level that focuses on adding more subtle

details by taking the original 1024×1024 resolution image as

input, and producing backbone image features of 512×512

resolution (four times higher resolution than the implemen-

tation of [35]). Notably, the fine level module takes 3D

embedding features extracted from the coarse level instead

of the absolute depth value. Our coarse level module is

defined similar to PIFu, but as a modification (Sect 3.3) it

also takes predicted frontside and backside normal maps:

fL(X) = gL
(

ΦL (xL, IL,FL,BL, ) , Z
)

, (3)

where IL is the lower resolution input and FL and BL are

predicted normal maps at the same resolution. xL ∈ R
2 is

the projected 2d location of X in the image space of IL. The

fine level is denoted as

fH(X) = gH
(

ΦH (xH , IH ,FH ,BH , ) ,Ω(X)
)

, (4)

where IH , FH , BH are the input image, frontal normal map,

and backside normal map respectively at a resolution of

1024×1024. xH ∈ R
2 is the 2d projection location at high

resolution, and thus in our case xH = 2xL. The function

ΦH encodes the image features from the high-resolution

input and has structure similar to the low-resolution feature

extractor ΦL. A key difference is that the receptive field

of ΦH does not cover the entire image, but owing to its

fully convolutional architecture, a network can be trained

with a random sliding window and infer at the original

image resolution (i.e., 1024 × 1024). Finally, Ω(X) is a 3D

embedding extracted from the coarse level network, where

we take the output features from an intermediate layer of gL.

Because the fine level takes these features from the first

pixel-aligned MLP as a 3d embedding, the global reconstruc-

tion quality should not be degraded, and should improve

if the network design can properly leverage the increased

image resolution and network capacity. Additionally, the

fine network doesn’t need to handle normalization (i.e.,

producing a globally consistent 3D depth) and therefore

doesn’t need to see the entire image, allowing us to train it

with image crops. This is important to allow high-resolution

image inputs without being limited by memory.

3.3. FronttoBack Inference

Predicting the accurate geometry of the back of people is

an ill-posed problem because it is not directly observed in the

images. The backside must therefore be inferred entirely by

the MLP prediction network and, due to the ambiguous and

multimodal nature of this problem, the 3D reconstruction

tends to be smooth and featureless. This is due in part to the

occupancy loss (Sect. 3.4) favoring average reconstructions

under uncertainty, but also because the final MLP layers

need to learn a complex prediction function.

We found that if we instead shift part of this inference

problem into the feature extraction stage, the network can

produce sharper reconstructed geometry. To do this, we

predict normal maps as a proxy for 3D geometry in image

space, and provide these normal maps as features to the

pixel-aligned predictors. The 3D reconstruction is then

guided by these maps to infer a particular 3D geometry,

making it easier for the MLPs to produce details. We

predict the backside and frontal normals in image space

using a pix2pixHD [44] network, mapping from RGB color

to normal maps. Similarly to recent approaches [30, 11, 39],

we find that this produces plausible outputs for the unseen

backside for sufficiently constrained problem domains, such

as clothed humans.

3.4. Loss Functions and Surface Sampling

The specifics of the loss functions used can have a strong

effect on the details recovered by the final model. Rather

than use an average L1 or L2 loss as in [35], we use an
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extended Binary Cross Entropy (BCE) loss [51] at a set of

sampled points,

Lo =
∑

X∈S

λf∗(X) log f{L,H}(X)

+(1− λ) (1− f∗(X)) log
(

1− f{L,H}(X)
)

,

(5)

where S denotes the set of samples at which the loss is

evaluated, λ is the ratio of points outside surface in S , f∗(·)
denotes the ground truth occupancy at that location, and

f{L,H}(·) are each of the pixel-aligned implicit functions of

Sect. 3.2. As in [35], we sample points using a mixture of

uniform volume samples and importance sampling around

the surface using Gaussian perturbation around uniformly

sampled surface points. We found that this sampling scheme

produces sharper results than sampling points proportionally

to the inverse of distance from the surface. In fact, a

mixture of Gaussian balls on the surface has higher sampling

density near regions with high curvature (up to the inverse

of Gaussian ball radius). Since curvature is the second-order

derivative of surface geometry, importance sampling based

on curvature significantly enhances details and fidelity.

4. Experimental Results

Datasets. To obtain high-fidelity 3D geometry and corre-

sponding images, we use RenderPeople data [35], which

consists of commercially available 500 high-resolution

photogrammetry scans. We split the dataset into a training

set of 450 subjects and a test set of 50 subjects and render

the meshes with precomputed radiance transfer [38] using

163 second-order spherical harmonics from HDRI Haven1.

Each subject is rendered from every other degree in yaw

axis with an elevation fixed with 0◦. Unlike [35], where

clean segmentation mask is required, we augment random

background images using COCO [24] dataset, removing the

need of segmentation as pre-process.

Implementation Details. The image encoders for both

the low-resolution and high-resolution levels use a stacked

hourglass network [31] with 4 and 1 stacks respectively,

using the modification suggested by [16] and batch nor-

malization replaced with group normalization [45]. Note

that the fine image encoder removes one downsampling

operation to achieve large feature embedding resolution. The

feature dimensions are 128× 128× 256 in the coarse level

and 512 × 512 × 16 in the fine level. The MLP for the

coarse-level image encoder has the number of neurons of

(257, 1024, 512, 256, 128, 1) with skip connections at third,

fourth, fifth layers. The MLP for the fine-level image

encoder has the number of neurons of (272, 512, 256, 128, 1)
with skip connections at second and third layers. Note

1https://hdrihaven.com/

(a) Input (b) Sliding window wo/ 3D context (c) Sliding window w/ 3D context

Front Side Front Side

Figure 3: Sliding window without 3D-aware context infor-

mation, shown in (b), fails to learn plausible 3D geometry.

RenderPeople Buff

Methods Normal P2S Chamfer Normal P2S Chamfer

Fine module only 0.213 4.15 2.77 0.229 3.63 2.67

Fine module + Global image feature 0.165 2.92 2.13 0.183 2.767 2.24

Single PIFu 0.109 1.45 1.47 0.134 1.68 1.76

Ours (ML-PIFu, end-to-end) 0.117 1.66 1.55 0.147 1.88 1.81

Ours (ML-PIFu, alternate) 0.111 1.41 1.44 0.133 1.63 1.73

Ours with normals 0.107 1.37 1.43 0.134 1.63 1.75

Table 1: Quantitative evaluation on RenderPeople and BUFF

datasets for single-view reconstruction. Units for point-to-

surface and Chamfer distance are in cm.

that the second MLP takes the output of the fourth layer

in the first MLP as 3D embedding Ω ∈ R
256 instead of

absolute depth value together with high-resolution image

features ΦH (xH , IH ,FH ,BH) ∈ R
16, resulting in the

input channel size of 272 in total. The coarse PIFu module

is pre-trained with the input image resized to 512× 512 and

a batch size of 8. The fine PIFu is trained with a batch size

of 8 and a random window crop of size 512× 512. We use

RMSProp with weight decay by a factor of 0.1 every 10
epochs. Following [35], we use 8000 sampled points with

the mixture of uniform sampling and importance sampling

around surface with standard deviations of 5cm and 3cm for

the coarse and fine levels respectively.

The surface normal inference uses a network architecture

proposed by [17], consisting of 9 residual blocks with

4 downsampling layers. We train two networks that

predict frontside and backside normals individually with

the following objective functions:

LN = LV GG + λl1Ll1, (6)

where LV GG is the perceptual loss proposed by Johnson et

al. [17], and Ll1 is the l1 distance between the prediction

and ground truth normals. The relative weight λl1 is set

to 5.0 in our experiments. We use the aforementioned 450
RenderPeople training set to generate synthetic ground truth

front and backside normals together with the corresponding

input images. We use Adam optimizer with learning rate of

2.0× 10−4 until the convergence.
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(a) Input (b) Fine module only (c) Fine module + Global image feature (d) Single-level PIFu (e) Multi-level PIFu

Figure 4: Qualitative evaluation of our multi-level pixel-aligned implicit function on samples from RenderPeople and

BUFF [50] datasets. We compare the results of our method with the results of other alternative designs.

(a) Input (b) PIFu (c) Ours wo/ normal (d) Ours w/ normal

Figure 5: Conditioning 3D inference with the predicted

backside surface normal improves fidelity of the missing

region.

4.1. Evaluations

Ablation Study. We evaluate our multi-level pixel aligned

implicit functions with several alternatives to assess the

factors that contribute to achieving high-fidelity reconstruc-

tions. First, we assess the importance of 3D embedding that

accounts for holistic context for high-resolution inference.

To support larger input resolution at inference time, we

train the network with random cropping of 512 × 512
from 1024 × 1024 images, similar to 2D computer vision

tasks (e.g., semantic segmentation). We found that if our

fine level module is conditioned on the absolute depth

value instead of the learned 3D embedding, training with

sliding window significantly degrades both training and test

accuracy (see Fig. 3). This illustrates that 3D reconstruction

using high-resolution features without holistic reasoning

severely suffers from depth ambiguity and is unable to

generalize with input size discrepancy between training and

inference. Thus, the combination of holistic reasoning and

high-resolution images features is essential for high-fidelity

3D reconstruction.

Second, we evaluate our design choice from both robust-

ness and fidelity perspective. To achieve high-resolution

reconstruction, it is important to keep feature resolution

large enough while maintaining the ability to reason holisti-

cally. In this experiment, we implement 1) a pixel-aligned

implicit function using only our fine-level image encoder

by processing the full resolution as input during training,

2) conditioning 1) with jointly learned global feature using

ResNet34 [13] as a global feature encoder in spirit to [15],

3) a single PIFu (i.e., our coarse-level image encoder) by

resizing input to 512 × 512, 4) our proposed multi-level

PIFu (two levels) by training all networks jointly (ML-PIFu,

end-to-end), and 5) ours with alternate training of the coarse

and fine modules (ML-PIFu, alternate).

Figure 4 and Table 1 show our qualitative and quantitative

evaluation using RenderPeople and BUFF [50] dataset. We

compute point-to-surface distance, Chamfer distance, and

surface normal consistency using ground truth geometry.

Large spatial resolution of feature embeddings (512× 512)

greatly enhance local details compared with a single-level

PIFu whose backbone feature resolution (128 × 128) is

spatially 4 times smaller. On the other hand, due to the

limited design choices for high resolution input, using

local feature suffers from overfitting and robustness and

generalization becomes challenging. While adding global

context helps a network reason more precise geometry,

resulting in sharper reconstruction, lack of precise spatial

information in the global feature deteriorates the robustness.

This problem becomes more critical in case of non-rigid

articulated objects [35]. Also, we found that alternatively
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(a) Input (d) PIFu(c) Tex2Shape (e) DeepHuman(b) Ours (Multi-level PIFu)

Figure 6: We qualitatively compare our method with state-of-the-art methods, including (c) Tex2shape [3], (d) PIFu [35], and

(e) DeepHuman [51], on the People Snapshot dataset [2]. By fully leveraging high-resolution image inputs, (b) our method

can reconstruct higher resolution geometry compared to the existing methods.

training the coarse and fine modules results in higher

accuracy than jointly training them in an end-to-end manner.

We also evaluate the importance of inferring backside nor-

mal to recover detail on the occluded region. Figure 5 shows

that PIFu that takes only input image suffers from blurred

reconstruction on the missing regions due to ambiguity. On

the other hand, directly providing guidance by facilitating

image-to-image translation networks significantly improves

the reconstruction accuracy on both front and back side with

more realistic wrinkles. Since the pixel-aligned implicit

functions are computationally expensive to differentiablly

render on a image plane, solving sub-problems in the image

domain is a practical solution to address the completion task

with plausible details.

4.2. Comparisons

We qualitatively compare our method with state-of-the-

art 3D human reconstruction methods with various shape

representations on the publicly available People Snapshot

dataset [2]. The shape representations include multi-scale

voxel (DeepHuman) [51], pixel-aligned implicit function

(PIFu) [35], and a human parametric model with texture map-

ping using displacements and surface normals (Tex2shape)

[3]. While Tex2shape and DeepHuman adopt a coarse-to-

fine strategy, the results show that the effect of refinement is

marginal due to the limited representation power of the base

shapes (See Fig. 6). More specifically, a voxel representation

limits spatial resolution, and a template-based approach has

difficulty handling varying topology and large deformations.

Although the template-based approach [3] retains some

distinctive shapes such as wrinkles, the resulting shapes lose

the fidelity of the input subject due to the imperfect mapping

from image space to the texture parameterization using the

off-the-shelf human dense correspondences map [4]. In

contrast, our method fully leverages the expressive shape

representation for both base and refined shapes and directly

predicts 3D geometry at a pixel-level, retaining all the details

that are present in the input image. More qualitative results

can be found in Figure 7.

5. Discussion and Future Work

We present a multi-level framework that performs joint

reasoning over holistic information and local details to arrive

at high-resolution 3D reconstructions of clothed humans

from a single image without any additional post processing

or side information. Our multi-level Pixel-Aligned Implicit

Function achieves this by incrementally propagating global

context through a scale pyramid as an implicit 3D embedding.

This avoids making premature decisions about explicit

geometry that has limited prior approaches. Our experiments

demonstrate that it is important to incorporate such 3D-

aware context for accurate and precise reconstructions.

Furthermore, we show that circumventing ambiguity in

the image-domain greatly increases the consistency of 3D

reconstruction detail in occluded regions.

Since the multi-level approach relies on the success of

previous stages in extracting 3D embeddings, improving

the robustness of our baseline model is expected to directly

merit our overall reconstruction accuracy. Future work may

include incorporating human specific priors (e.g., semantic

segmentations, pose, and parametric 3D face models) and

adding 2D supervision of implicit surface [37, 25] to further

support in-the-wild inputs.
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Input Reconstructed geometry Input Reconstructed geometry

Figure 7: Qualitative results on Internet photos. These results demonstrate that our model trained by synthetically generated

data can successfully reconstruct high-fidelity 3D from the humans in real world data.
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