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Abstract

We propose PIGLeT: a model that learns phys-

ical commonsense knowledge through interac-

tion, and then uses this knowledge to ground

language. We factorize PIGLeT into a physi-

cal dynamics model, and a separate language

model. Our dynamics model learns not just

what objects are but also what they do: glass

cups break when thrown, plastic ones don’t.

We then use it as the interface to our language

model, giving us a unified model of linguis-

tic form and grounded meaning. PIGLeT can

read a sentence, simulate neurally what might

happen next, and then communicate that re-

sult through a literal symbolic representation,

or natural language.

Experimental results show that our model ef-

fectively learns world dynamics, along with

how to communicate them. It is able to cor-

rectly forecast “what happens next” given an

English sentence over 80% of the time, outper-

forming a 100x larger, text-to-text approach by

over 10%. Likewise, its natural language sum-

maries of physical interactions are also judged

by humans as more accurate than LM alter-

natives. We present comprehensive analysis

showing room for future work.

1 Introduction

As humans, our use of language is linked to the

physical world. To process a sentence like “the

robot turns on the stove, with a pan on it” (Figure 1)

we might imagine a physical Pan object. This

meaning representation in our heads can be seen

as a part of our commonsense world knowledge,

about what a Pan is and does. We might reasonably

predict that the Pan will become Hot – and if

there’s an Egg on it, it would become cooked .

As humans, we learn such a commonsense world

model through interaction. Young children learn

to reason physically about basic objects by manip-

ulating them: observing the properties they have,

Language ModelPIGLeT
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The robot turns on the 
stove, with a pan on it.

isBroken: True

isCooked: False

Temperature: RoomTemp

Name: Egg
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<heatUp, Pan>

Physical Dynamics Model

The pan is now hot and 
the egg becomes cooked.

Figure 1: PIGLeT. Through physical interaction in a 3D

world, we learn a model for what actions do to objects.

We use our physical model as an interface for a lan-

guage model, jointly modeling elements of language

form and meaning. Given an action expressed symbol-

ically or in English, PIGLeT can simulate what might

happen next, expressing it symbolically or in English.

and how they change if an action is applied on

them (Smith and Gasser, 2005). This process is

hypothesized to be crucial to how children learn

language: the names of these elementary objects

become their first “real words” upon which other

language is scaffolded (Yu and Smith, 2012).

In contrast, the dominant paradigm today is to

train large language or vision models on static

data, such as language and photos from the web.

Yet such a setting is fundamentally limiting, as

suggested empirically by psychologists’ failed at-

tempts to get kittens to learn passively (Held and

Hein, 1963). More recently, though large Trans-

formers have made initial progress on benchmarks,

they also have frequently revealed biases in those

same datasets, suggesting they might not be solv-

ing underlying tasks (Zellers et al., 2019b). This

has been argued philosophically by a flurry of re-

https://rowanzellers.com/piglet


2041

The robot throws the 
vase onto the coffee 

table.
The robot is holding a vase, and there is 
a laptop on the coffee table that is on.

The laptop and the vase both break, with the vase 
shattering into smaller pieces, and the laptop powers off.
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Figure 2: PIGPeN, a setting for few-shot language-world grounding. We collect data for 280k physical interactions

in THOR, a 3D simulator with 20 actions and 125 object types, each with 42 attributes (e.g. isBroken). We annotate

2k interactions with English sentences describing the initial world state, the action, and the action result.

cent work arguing that no amount of language form

could ever specify language meaning (McClelland

et al., 2019; Bender and Koller, 2020; Bisk et al.,

2020); connecting back to the Symbol Grounding

Problem of Harnad (1990).

In this paper, we investigate an alternate strategy

for learning physical commonsense through inter-

action, and then transferring that into language.

We introduce a model named PIGLeT, short for

Physical Interaction as Grounding for Language

Transformers. We factorize an embodied agent into

an explicit model of world dynamics, and a model

of language form. We learn the dynamics model

through interaction. Given an action heatUp ap-

plied to the Pan in Figure 1, the model learns that

the Egg on the pan becomes Hot and Cooked , and

that other attributes do not change.

We integrate our dynamics model with a pre-

trained language model, giving us a joint model

of linguistic form and meaning. The combined

PIGLeT can then reason about the physical dynam-

ics implied by English sentences describing actions,

predicting literally what might happen next. It can

then communicate that result either symbolically

or through natural language, generating a sentence

like ‘The egg becomes hot and cooked.” Our sep-

aration between physical dynamics and language

allows the model to learn about physical common-

sense from the physical world itself, while also

avoiding recurring problems of artifacts and biases

that arise when we try to model physical world

understanding solely through language.

We study this through a new environment and

evaluation setup called PIGPeN, short for Physical

Interaction Grounding Paired with Natural Lan-

guage. In PIGPeN, a model is given unlimited ac-

cess to an environment for pretraining, but only 500

examples with paired English annotations. Models

in our setup must additionally generalize to novel

‘unseen’ objects for which we intentionally do not

provide paired language-environment supervision.

We build this on top of the THOR environment

(Kolve et al., 2017), a physics engine that enables

agents to perform contextual interactions (Fig 2)

on everyday objects.

Experiments confirm that PIGLeT performs well

at grounding language with meaning. Given a sen-

tence describing an action, our model predicts the

resulting object states correctly over 80% of the

time, outperforming even a 100x larger model (T5-

11B) by over 10%. Likewise, its generated natural

language is rated by humans as being more correct

than equivalently-sized language models. Last, it

can generalize in a ‘zero-shot’ way to objects that

it has never read about before in language.

In summary, we make three key contributions.

First, we introduce PIGLeT, a model decoupling

physical and linguistic reasoning. Second, we in-

troduce PIGPeN, to learn and evaluate the transfer

of physical knowledge to the world of language.

Third, we perform experiments and analysis sug-

gesting promising avenues for future work.

2 PIGPeN: A Resource for

Neuro-Symbolic Language Grounding

We introduce PIGPeN as a setting for learning and

evaluating physically grounded language under-

standing. An overview is shown in Figure 2. The

idea is that an agent gets access to an interactive

3D environment, where it can learn about the world

through interaction – for example, that objects such

as a Vase can become Broken if thrown. The goal

for a model is to learn natural language meaning

grounded in these interactions.

Task definition. Through interaction, an agent

observes the interplay between objects o ∈ O (rep-

resented by their attributes) and actions a ∈ A
through the following transition:

{o1, . . . ,oN}
| {z }

~o, state pre-action

×a → {o0
1, . . . ,o

0
N}

| {z }

~o0, state post-action

. (1)

Actions change the state of a subset of objects:

turning on a Faucet affects a nearby Sink , but it

will not change a Mirror on the wall.
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To encourage learning from interaction, and not

just language, an agent is given a small number

of natural language annotations of transitions. We

denote these sentences as s~o, describing the state

pre-action, sa the action, and s~o0 the state post-

action respectively. During evaluation, an agent

will sometimes encounter new objects o that were

not part of the paired training data.

We evaluate the model’s transfer in two ways:

a. PIGPeN-NLU. A model is given object states

~o, and an English sentence sa describing an ac-

tion. It must predict the grounded object states

~o
0 that result after the action is taken.

b. PIGPeN-NLG. A model is given object states

~o and a literal action a. It must generate a

sentence s~o0 describing the state post-action.

We next describe our environment, feature rep-

resentation, and language annotation process.

2.1 Environment: THOR

We use AI2-THOR as an environment for this task

(Kolve et al., 2017). In THOR, a robotic agent

can navigate around and perform rich contextual

interactions with objects in a house. For instance,

it can grab an Apple , slice it, put it in a Fridge ,

drop it, and so on. The state of the Apple , such as

whether it is sliced or cold, changes accordingly;

this is not possible in many other environments.

In this work, we use the underlying THOR sim-

ulator as a proxy for grounded meaning. Within

THOR, it can be seen as a ‘complete’ meaning rep-

resentation (Artzi et al., 2013), as it fully specifies

the kind of grounding a model can expect in its

perception within THOR.

Objects. The underlying THOR representation

of each object o is in terms of 42 attributes; we pro-

vide a list in Appendix B. We treat these attributes

as words specific to an attribute-level dictionary;

for example, the temperature Hot is one of three

possible values for an object’s temperature; the

others being Cold and RoomTemp .

Actions. An action a in THOR is a function that

takes up to two objects as arguments. Actions are

highly contextual, affecting not only the arguments

but potentially other objects in the scene (Figure 2).

We also treat action names as words in a dictionary.

Filtering out background objects. Most ac-

tions change the state of only a few objects, yet

there can be many objects in a scene. We keep an-

notation and computation tractable by having mod-

els predict (and humans annotate) possible changes

of at most two key objects in the scene. As knowing

when an object doesn’t change is also important,

we include non-changing objects if fewer than two

change.

Exploration. Any way of exploring the environ-

ment is valid for our task, however, we found that

exploring intentionally was needed to yield good

coverage of interesting states. Similar to prior work

for instruction following (Shridhar et al., 2020), we

designed an oracle to collect diverse and interest-

ing trajectories {~o,a, ~o0}. Our oracle randomly

selects one of ten high level tasks, see Appendix B

for the list. These in turn require randomly choos-

ing objects in the scene; e.g. a Vase and a Laptop

in Figure 2. We randomize the manner in which

the oracle performs the task to discover diverse

situations.

In total, we sampled 20k trajectories. From these

we extracted 280k transitions (Eqn 1’s) where at

least one object changes state, for training.

2.2 Annotating Interactions with Language

2.2.1 Data Selection for Annotation

We select 2k action state-changes from trajectories

held out from the training set. We select them while

also balancing the distribution of action types to

ensure broad coverage in the final dataset. We are

also interested in a model’s ability to generalize to

new object categories – beyond what it has read

about, or observed in a training set. We thus se-

lect 30 objects to be “unseen,” and exclude these

from paired environment-language training data.

We sample 500 state transitions, containing only

“seen” objects to be the training set; we use 500 for

validation and 1000 for testing.

2.2.2 Natural Language Annotation

Workers on Mechanical Turk were shown an envi-

ronment in THOR before and after a given action

a. Each view contains the THOR attributes of the

two key objects. Workers then wrote three En-

glish sentences, corresponding to s~o, sa, and s~o0

respectively. Workers were instructed to write at a

particular level of detail: enough so that a reader

could infer “what happens next” from s~o and sa,

yet without mentioning redundant attributes.We

provide more details in Appendix C.

3 Modeling PIGLeT

In this section, we describe our PIGLeT model.

First, we learn a neural physical dynamics model
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The robot is holding a glass vase.

The robot throws the vase.

Language 
Model

Size: medium

isPickedUp: True

isTurnedOn: False

isBroken: False

Name: Vase

Object
Encoder

Action: 
ThrowHeldObjectAt

Target: Floor

Action
Encoder

Action 
Application

.

.

.

.

.

.
Object

Decoder

Size: medium

isPickedUp: False

isTurnedOn: False

isBroken: True

Name: Vase

~o
<latexit sha1_base64="Tk3HXnFVIrKVryije/QEdnLVRCo="></latexit> ~o

0
<latexit sha1_base64="dSJfxBPnRwowtpN8zynXN7N+BKY="></latexit>

a
<latexit sha1_base64="elI5FeejPpeM9uUnRf3IQjSevxU="></latexit>

Tenc
<latexit sha1_base64="FAlDcCJyxBBe5Frg+r9it6VUkmA="></latexit>

Tdec
<latexit sha1_base64="2gP2+xYkdi+qahQkMatfm5CHGxA="></latexit>

MLPapply
<latexit sha1_base64="zPFXFrp2Awq1em5tGLQOTqO0h4o="></latexit>

ha
<latexit sha1_base64="IpTzzwZ9IjK0OgGcISMVC68hBQ0="></latexit>

ho1<latexit sha1_base64="CqR6VsVzGuZlPuXKLqpMZY9btz4="></latexit>

ho2<latexit sha1_base64="QDwIL9dC1n1EUQ5JgckmT4EFRp4="></latexit>

ĥ
o
�

1<latexit sha1_base64="0abHHpkgF29PUVVxn/YJE6aKEYY="></latexit>

ĥ
o
�

2<latexit sha1_base64="lCctrn5jUI+pPItihMG7PAcLL3k="></latexit>

sa
<latexit sha1_base64="LeR1JAfP96tE2MTQrXBVv0E7xEo="></latexit>

TLM
<latexit sha1_base64="bWXv2O8NNh4H6P1ViAQ01k2Mz6E=">AAADK3icfVJLb9NAEN6aAsU8mpYjF4sICXGIbECCYwU9cKCilZq2UhJF483YWWUf1u4YGiz/Eq5w5NdwAnHlf3ST+IATykir+fab585OWkjhKI5/bgU3tm/eur1zJ7x77/6D3c7e/pkzpeXY50Yae5GCQyk09kmQxIvCIqhU4nk6e7uwn39E64TRpzQvcKQg1yITHMhT487uUAFN06w6rcfV+6N63OnGvXgp0SZIGtBljRyP94Lt4cTwUqEmLsG5QRIXNKrAkuAS63BYOiyAzyDHgYcaFLpRtey8jp54ZhJlxvqjKVqyf0dUoJybq9R7Lvp067YF+S/boKTs9agSuigJNV8VykoZkYkWY4gmwiInOfcAuBW+14hPwQInP6xWFVVKEtZ8ar2k4iB5m8ktFFPBL9usRenE5/YYrklpDflP0XmbTVX7Xlq5lsxY3CyRGjMjSN21hQ/R/5bFIz+5DwVaIGOfVUOwuYLLumr0/9yEXrl5HYah35tkfUs2wdnzXvKiF5+87B68aTZohz1ij9lTlrBX7IC9Y8eszzgr2Rf2lX0Lvgc/gl/B75VrsNXEPGQtCf5cARg6DUM=</latexit>

Language 
Model

TLM
<latexit sha1_base64="bWXv2O8NNh4H6P1ViAQ01k2Mz6E="></latexit>

The vase breaks and is no 
longer being held.

Action 
Summarizer

MLP∆
<latexit sha1_base64="J5yL7sR91yRU8/LfFSoplTfAVlE="></latexit>

s�o�
<latexit sha1_base64="99UQbAsrvAY02F4vviNX5hJslv0="></latexit>

Figure 3: PIGLeT architecture. We pretrain a model of physical world dynamics by learning to transform objects ~o

and actions a into new updated objects ~o0. Our underlying world dynamics model – the encoder, the decoder, and

the action application module, can augment a language model with grounded commonsense knowledge.

from interactions, and second, integrate with a pre-

trained model of language form.

3.1 Modeling Physical Dynamics

We take a neural, auto-encoder style approach to

model world dynamics. An object o gets encoded

as a vector ho ∈ R
do . The model likewise encodes

an action a as a vector ha ∈ R
da , using it to ma-

nipulate the hidden states of all objects. The model

can then decode any object hidden representation

back into a symbolic form.

3.1.1 Object Encoder and Decoder

We use a Transformer (Vaswani et al., 2017) to

encode objects into vectors o ∈ R
do , and then

another to decode from this representation.

Encoder. Objects o are provided to the encoder

as a set of attributes, with categories c1,..., cn. Each

attribute c has its own vocabulary and embedding

Ec. For each object o, we first embed all the at-

tributes separately and feed the result into a Trans-

former encoder Tenc. This gives us (with position

embeddings omitted for clarity):

ho = Tenc

⇣

E1(o1), . . . ,Ecn(ocn)
⌘

(2)

Decoder. We can then convert back into the origi-

nal symbolic representation through a left-to-right

Transformer decoder, which predicts attributes one-

by-one from c1 to cn. This captures the inherent

correlation between attributes, while making no in-

dependence assumptions, we discuss our ordering

in Appendix A.2. The probability of predicting the

next attribute oci+1 is then given by:

p(oci+1|ho,o:ci)=Tdec

⇣

ho,E1(o1),...,Eci(oci)
⌘

(3)

3.1.2 Modeling actions as functions

We treat actions a as functions that transform the

state of all objects in the scene. Actions in our

environment take at most two arguments, so we

embed the action a and the names of its arguments,

concatenate them, and pass the result through a

multilayer perceptron; yielding a vector representa-

tion ha.

Applying Actions. We use the encoded action

ha to transform all objects in the scene, obtaining

updated representations ĥo
0 for each one. We take

a global approach, jointly transforming all objects.

This takes into account that interactions are contex-

tual: turning on a Faucet might fill up a Cup if

and only if there is one beneath it.

Letting the observed objects in the interaction

be o1 and o2, with encodings ho1
and ho2

respec-

tively, we model the transformation via the follow-

ing multilayer perceptron:

[ĥ
o
0

1
, ĥ

o
0

2
] = MLPapply

⇣⇥
ha,ho1

,ho2

⇤⌘

. (4)

The result can be decoded into symbolic form

using the object decoder (Equation 3).

3.1.3 Loss function and training

We train our dynamics model on (~o,a,~o0) transi-

tions. The model primarily learns by running ~o,a

through the model, predicting the updated output

state ĥo
0 , and minimizing the cross-entropy of gen-

erating attributes of the real changed object ~o0. We

also regularize the model by encoding objects ~o, ~o0

and having the model learn to reconstruct them. We

weight all these cross-entropy losses equally. We

discuss our architecture in Appendix A.1; it uses

3-layer Transformers, totalling 17M parameters.
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3.2 Language Grounding

After pretraining our physical dynamics model, we

integrate it with a Transformer Language Model

(LM). In our framework, the role of the LM will

be to both encode natural language sentences of

actions into a hidden state approximating ha, as

well as summarizing the result of an interaction

(~o,a,~o0) in natural language.

Choice of LM. Our framework is compatible

with any language model. However, to explore the

impact of pretraining data on grounding later in

this paper, we pretrain our own with an identical

architecture to the smallest GPT2 (Radford et al.

(2019); 117M). To handle both classification and

generation well, we mask only part of the attention

weights out, allowing the model to encode a “prefix”

bidirectionally; it generates subsequent tokens left-

to-right (Dong et al., 2019). We pretrain the model

on Wikipedia and books; details in Appendix D.

We next discuss architectural details of perform-

ing the language transfer, along with optimization.

3.2.1 Transfer Architecture

English actions to vector form. Given a natu-

ral language description sa of an action a, like

“The robot throws the vase,” for PIGPeN-NLU, our

model will learn to parse this sentence into a neural

representation ha, so the dynamics model can sim-

ulate the result. We do this by encoding sa through

our language model, TLM , with a learned linear

transformation over the resulting (bidirectional) en-

coding. The resulting vector hsa
can then be used

by Equation 4.

Summarizing the result of an action. For

PIGPeN-NLG, our model simulates the result of an

action a neurally, resulting in a predicted hidden

state ĥo for each object in the scene o. To write

an English summary describing “what changed,”

we first learn a lightweight fused representation

of the transition, aggregating the initial and final

states, along with the action, through a multilayer

perceptron. For each object oi we have:

h∆oi
= MLP∆([hoi

, ĥ
o
0

i
,ha]). (5)

We then use the sequence [h∆o1 ,h∆o2 ] as bidi-

rectional context for our our LM to decode from.

Additionally, since our test set includes novel ob-

jects not seen in training, we provide the names of

the objects as additional context for the LM genera-

tor (e.g. ‘Vase, Laptop’); this allows a LM to copy

those names over rather than hallucinate wrong

ones. Importantly we only provide the surface-

form names, not underlying information about

these objects or their usage as with few-shot scenar-

ios in the recent GPT-3 experiments (Brown et al.,

2020) – necessitating that PIGLeT learns what these

names mean through interaction.

3.2.2 Loss functions and training.

Modeling text generation allows us to incorporate

a new loss function, that of minimizing the log-

likelihood of generating each s~o0 given previous

words and the result of Equation 5:

p(s
post
i+1

|s~
o
0,1:i

) = TLM(h∆o1 ,h∆o2 , s~
o
0,1:i

). (6)

We do the same for the object states s~o pre-action,

using hoi
as the corresponding hidden states.

For PIGPeN-NLU, where no generation is

needed, optimizing Equation 5 is not strictly nec-

essary. However, as we will show later, it helps

provide additional signal to the model, improving

overall accuracy by several percentage points.

4 Experiments

We test our model’s ability to encode language into

a grounded form (PIGPeN-NLU), and decode that

grounded form into language (PIGPeN-NLG).

4.1 PIGPeN-NLU Results.

We first evaluate models by their performance on

PIGPeN-NLU: given objects ~o, and a sentence sa

describing an action, a model must predict the re-

sulting state of objects ~o
0. We primarily evaluate

models by accuracy; scoring how many objects for

which they got all attributes correct. We compare

with the following strong baselines:

a. No Change: this baseline copies the initial state

of all objects ~o as the final state ~o
0.

b. GPT3-175B (Brown et al., 2020), a very large

language model for ‘few-shot’ learning using

a prompt. For GPT3, and other text-to-text

models, we encode and decode the symbolic

object states in a JSON-style dictionary format,

discussed in Appendix A.4.

c. T5 (Raffel et al., 2019). With this model, we

use the same ‘text-to-text’ format, however

here we train it on the paired data from PIG-

PeN. We consider varying sizes of T5, from

T5-Small – the closest in size to PIGLeT, up

until T5-11B, roughly 100x the size.

d. (Alberti et al., 2019)-style. This paper origi-

nally proposed a model for VCR (Zellers et al.,
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Model
Accuracy (%)

Val
Test

Overall Seen Unseen

No Change 27.4 25.5 29.9 24.0

te
x

t-
to

-t
ex

t

GPT3-175B (Brown et al., 2020) 23.8 22.4 22.4 21.4
T5-11B (Raffel et al., 2019) 68.5 64.2 79.5 59.1
T5-3B 66.6 63.3 77.1 58.7
T5-Large 56.5 54.1 69.2 49.1
T5-Base 56.0 53.9 69.2 48.8
T5-Small 39.9 36.2 57.0 38.0

B
E

R
T

st
y

le Alberti et al.2019, Pretrained Dynamics 61.3 53.9 71.4 48.1
Alberti et al.2019 9.7 6.8 16.2 3.7
G&D2019, Pretrained Dynamics 43.8 35.3 60.9 26.9
G&D2019 15.1 11.3 23.1 7.3

PIGLeT 81.8 81.1 83.8 80.2

Attribute-level accuracy (Test-Overall,%)

size distance mass Temperature isBroken

8-way 8-way 8-way 3-way boolean

83.2 84.1 96.3 86.0 94.8

73.7 77.0 89.5 84.2 94.7
83.9 88.9 94.3 95.4 98.1
81.6 90.0 94.0 95.6 98.4
81.8 84.6 94.3 96.3 95.8
81.1 87.5 93.6 96.1 96.5
82.2 84.9 93.8 89.6 93.5

87.7 87.6 97.5 93.4 97.5
53.4 43.6 84.0 88.1 95.1
83.0 86.9 94.0 93.7 97.4
68.6 47.3 82.2 88.3 95.8

92.3 91.9 99.2 99.8 99.0

Table 1: Overall results. Left: we show the model accuracies at predicting all attributes of an object correctly. We

compare PIGLeT with ‘text-to-text’ approaches that represent the object states as a string, along with BERT-style

approaches with additional machinery to encode inputs or decode outputs. PIGLeT outperforms a T5 model 100x

its size (11B params) and shows gains over the BERT-style models that also model action dynamics through a

language transformer. Right: we show several attribute-level accuracies, along with the number of categories per

attribute; PIGLeT outperforms baselines by over 4 points for some attributes such as size and distance.

2019a), where grounded visual information is

fed into a BERT model as tokens; the trans-

former performs the grounded reasoning. We

adapt it for our task by using our base LM

and feeding in object representations from our

pretrained object encoder, also as tokens. Our

object decoder predicts the object, given the

LM’s pooled hidden state. This is “pretrained

dynamics,” we also consider a version without

a randomly initialized dynamics model.

e. (Gupta and Durrett, 2019)-style. Thiso paper

proposes using Transformers to model physical

state, for tasks like entity tracking in recipes.

Here, the authors propose decoding a physical

state attribute (like isCooked ) by feeding the

model a label-specific [CLS] token, and then

mapping the result through a hidden layer. We

do this and use a similar object encoder as our

(Alberti et al., 2019)-style baseline.

We discuss hyperparameters in Appendix A.3.

Results. From the results (Table 1), we can draw

several patterns. Our model, PIGLeT performs best

at getting all attributes correct; doing so over 80%

on both validation and test sets, even for novel

objects not seen during training. The next clos-

est model is T5-11B, which scores 68% on vali-

dation. Though when evaluated on objects ‘seen’

during training it gets 77%, that number drops by

over 18% for unseen objects. On the other hand,

PIGLeT has a modest gap of 3%. This suggests that

our approach is particularly effective at connecting

unpaired language and world representations. At

Model Accuracy (val;%)

PIGLeT, No Pretraining 10.4

PIGLeT, Non-global MLPapply 72.0

PIGLeT, Global MLPapply 78.5

PIGLeT, Global MLPapply, Gen. loss (6) 81.8

PIGLeT, Symbols Only (Upper Bound) 89.3

Table 2: Ablation study on PIGPeN-NLU’s validation

set. Our model improves 6% by modeling global dy-

namics of all objects in the scene, versus applying ac-

tions to single objects in isolation. We improve another

3% by adding an auxiliary generation loss.

the other extreme, GPT3 does poorly in its ‘few-

shot’ setting, suggesting that size is no replacement

for grounded supervision.

PIGLeT also outperforms ‘BERT style’ ap-

proaches that control for the same language model

architecture, but perform the physical reasoning

inside the language transformer rather than as a

separate model. Performance drops when the phys-

ical decoder must be learned from few paired exam-

ples (as in Gupta and Durrett (2019)); it drops even

further when neither model is given access to our

pretrained dynamics model, with both baselines

then underperforming ‘No Change.’ This suggests

that our approach of having a physical reasoning

model outside of an LM is a good inductive bias.

4.1.1 Ablation study

In Table 2 we present an ablation study of PIGLeT’s

components. Of note, by using a global represen-

tation of objects in the world (Equation 4), we get
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over 6% improvement over a local representation

where objects are manipulated independently. We

get another 3% boost by adding a generation loss,

suggesting that learning to generate summaries

helps the model better connect the world to lan-

guage. Last, we benchmark how much headroom

there is on PIGPeN-NLU by evaluating model per-

formance on a ‘symbols only’ version of the task,

where the symbolic action a is given explicitly to

our dynamics model. This upper bound is roughly

7% higher than PIGLeT, suggesting space for future

work.

4.2 PIGPeN-NLG Results

Next, we turn to PIGPeN-NLG: given objects ~o,

and the literal next action a, a model must generate

a sentence s~o0 describing what will change in the

scene. We compare with the following baselines:

a. T5. We use a T5 model that is given a JSON-

style dictionary representation of both ~o and a,

it is finetuned to generate summaries s~o0 .

b. LM Baseline. We feed our LM hidden states

ho from our pretrained encoder, along with

its representation of a. The key difference be-

tween it and PIGLeT is that we do not allow it

to simulate neurally what might happen next –

MLPapply is never used here.

Size matters. Arguably the most important factor

controlling the fluency of a language generator is

its size (Kaplan et al., 2020). Since our LM could

also be scaled up to arbitrary size, we control for

size in our experiments and only consider models

the size of GPT2-base (117M) or smaller; we thus

compare against T5-small as T5-Base has 220M

parameters. We discuss optimization and sampling

hyperparameters in Appendix A.3.

Evaluation metrics. We evaluate models over

the validation and test sets. We consider three

main evaluation metrics: BLEU (Papineni et al.,

2002) with two references, the recently proposed

BERTScore (Zhang et al., 2020), and conduct a

human evaluation. Humans rate both the fluency of

post-action text, as well as its faithfulness to true

action result, on a scale from −1 to 1.

Results. We show our results in Table 3. Of note,

PIGLeT is competitive with T5 and significantly

outperforms the pure LM baseline, which uses a

pretrained encoder for object states, yet has the

physical simulation piece MLPapply removed. This

suggests that simulating world dynamics not only

allows the model to predict what might happen

Model
BLEU BERTScore Human (test; [91, 1])

Val Test Val Test Fluency Faithfulness

T5 46.6 43.4 82.2 81.0 0.82 0.15
LM Baseline 44.6 39.7 81.6 78.8 0.91 -0.13

PIGLeT 49.0 43.9 83.6 81.3 0.92 0.22

Human 44.5 45.6 82.6 83.3 0.94 0.71

Table 3: Text generation results on PIGPeN-NLG,

showing models of roughly equivalent size (up to

117M parameters). Our PIGLeT outperforms the LM

baseline (using the same architecture but omitting the

physical reasoning component) by 4 BLEU points, 2

BERTScore F1 points, and 0.35 points in a human eval-

uation of language faithfulness to the actual scene.

next, it leads to more faithful generation as well.

5 Analysis

5.1 Qualitative examples.

We show two qualitative examples in Figure 4, cov-

ering both PIGPeN-NLU as well as PIGPeN-NLG.

In the first row, the robot empties a held Mug that is

filled with water. PIGLeT gets the state, and gener-

ates a faithful sentence summarizing that the mug

becomes empty. T5 struggles somewhat, emptying

the water from both the Mug and the (irrelevant)

Sink . It also generates text saying that the Sink

becomes empty, instead of the Mug.

In the second row, PIGLeT correctly predicts the

next object states, but its generated text is incom-

plete – it should also write that the mug becomes

filled wtih Coffee. T5 makes the same mistake

in generation, and it also underpredicts the state

changes, omitting all changes to the Mug .

We suspect that T5 struggles here in part because

Mug is an unseen object. T5 only experiences it

through language-only pretraining, but this might

not be enough for a fully grounded representation.

5.2 Representing novel words

The language models that perform best today are

trained on massive datasets of text. However, this

has unintended consequences (Bender et al., 2021)

and it is unlike how children learn language, with

children learning novel words from experience

(Carey and Bartlett, 1978). The large scale of our

pretraining datasets might allow models to learn

to perform physical-commonsense like tasks for

wrong reasons, overfitting to surface patterns rather

than learning meaningful grounding.

We investigate the extent of this by training

a ‘zero-shot’ version of our backbone LM on

Wikipedia and books – the only difference is that
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The sink is now empty.

isFilledWithLiquid:True

Name: Sink

State pre-action

isPickedUp: True

isFilledWithLiquid:True

Name: Mug

<emptyLiquid,
Mug>

t

Ground truth post-
action states

Predicted post-action states

PIGLeT T5

The robot empties 
the mug.

isFilledWithLiquid:True

Name: Sink

isPickedUp: True

isFilledWithLiquid:False

Name: Mug

isFilledWithLiquid:False

Name: Sink

isPickedUp: True

isFilledWithLiquid:False

Name: Mug

isFilledWithLiquid:True

Name: Sink

isPickedUp: True

isFilledWithLiquid:False

Name: Mug

The mug is no longer 
filled with water.

The mug is now empty.

t

Temperature: RoomTemp

isFilledWithLiquid:False

Name: Mug

containsObject: Mug

isTurnedOn: False

Name: CoffeeMachine

<toggleObject,
CoffeeMaker>

The robot turns on 
the coffee maker.

The coffee machine 
becomes on.

The coffee machine is 
turned on.

Temperature: Hot

isFilledWithLiquid:True

Name: Mug

containsObject: Mug

isTurnedOn: True

Name: CoffeeMachine

Temperature: RoomTemp

isFilledWithLiquid:False

Name: Mug

containsObject: Mug

isTurnedOn: True

Name: CoffeeMachine

Temperature: Hot

isFilledWithLiquid:True

Name: Mug

containsObject: Mug

isTurnedOn: True

Name: CoffeeMachine

The coffee maker is now on and the 
mug is hot and filled with coffee.

Figure 4: Qualitative examples. Our model PIGLeT reliably predicts what might happen next (like the Mug be-

coming empty in Row 1), in a structured and explicit way. However, it often struggles at generating sentences for

unseen objects like Mug that are excluded from the training set. T5 struggles to predict these changes, for example,

it seems to suggest that emptying the Mug causes all containers in the scene to become empty.

Figure 5: PIGPeN-NLU performance of a zero-shot

PIGLeT, that was pretrained on Books and Wikipedia

without reading any words of our ‘unseen’ objects like

‘mug.’ It outperforms a much bigger T5-11B overall,

though is in turn beaten by PIGLeT on unseen objects

like ‘Sink’ and ‘Microwave.’

we explicitly exclude all mentioned sentences con-

taining one of our “unseen” object categories. In

this setting, not only must PIGLeT learn to ground

words like ‘mug,’ it must do so without having seen

the word ‘mug’ during pretraining. This is signifi-

cant because we count over 20k instances of ‘Mug’

words (including morphology) in our dataset.

We show results in Figure 5. A version of

PIGLeT with the zero-shot LM does surprisingly

well – achieving 80% accuracy at predicting the

state changes for “Mug” – despite never having

been pretrained on one before. This even out-

performs T5 at the overall task. Nevertheless,

PIGLeT outperforms it by roughly 7% at unseen

objects, with notable gains of over 10% on highly

dynamic objects like Toasters and Sinks.

6 Related Work

Grounded commonsense reasoning. In this

work, we study language grounding and common-

sense reasoning at the representation and concept

level. The aim is to train models that learn to ac-

quire concepts more like humans, rather than per-

forming well on a downstream task that (for hu-

mans) requires commonsense reasoning. Thus, this

work is somewhat different versus other 3D em-

bodied tasks like QA (Gordon et al., 2018; Das

et al., 2018), along with past work for measur-

ing such grounded commonsense reasoning, like

SWAG, HellaSWAG, and VCR (Zellers et al., 2018,

2019b,a). The knowledge covered is different, as it

is self-contained within THOR. While VCR, for in-

stance, includes lots of visual situations about what

people are doing, this paper focuses on learning the

physical properties of objects.

Zero-shot generalization. There has been a lot

of past work involved with learning ‘zero-shot’:

often learning about the grounded world in lan-

guage, and transferring that knowledge to vision.

Techniques for this include looking at word embed-

dings (Frome et al., 2013) and dictionary defini-

tions (Zellers and Choi, 2017). In this work, we

propose the inverse. This approach was used to

learn better word embeddings (Gupta et al., 2019)

or semantic tuples (Yatskar et al., 2016), but we

consider learning a component to be plugged into

a deep Transformer language model.

Past work evaluating these types of zero-shot

generalization have also looked into how well

models can compose concepts in language to-

gether (Lake and Baroni, 2018; Ruis et al., 2020).

Our work considers elements of compositional-

ity through grounded transfer. For example, in
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PIGPeN-NLG, models must generate sentences

about the equivalent of dropping a ‘dax’, despite

never having seen one before. However, our work

is also contextual, in that the outcome of ‘dropping

a dax’ might depend on external attributes (like

how high we’re dropping it from).

Structured Models for Attributes and Ob-

jects. The idea of modeling actions as functions

that transform objects has been explored in the

computer vision space (Wang et al., 2016). Past

work has also built formal structured models for

connecting vision and language (Matuszek et al.,

2012; Krishnamurthy and Kollar, 2013), we take a

neural approach and connect today’s best models

of language form to similarly neural models of a

simulated environment.

7 Conclusion

In this paper, we presented an approach PIGLeT for

jointly modeling language form and meaning. We

presented a testbed PIGPeN for evaluating our

model, which performs well at grounding language

to the (simulated) world.
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