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Pigs experimentally infected with Serpulina hyodysenteriae
can be protected from developing swine dysentery by feeding
them a highly digestible diet
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SUMMARY

Weaner pigs (n = 72) were fed 1 of 4 diets. These were based on either cooked rice and animal
protein, cooked rice and lupin, wheat and lupin, or wheat and animal protein. Twenty-six of

the pigs were slaughtered after 1 month. Those fed the highly digestible cooked rice and
animal protein diet had drier colonic contents and faeces, lighter large intestines, and the
contents of their large intestines had increased pH values and decreased total VFA

concentrations. The other 46 pigs were orally challenged with broth cultures of Serpulina

hyodysenteriae, and were monitored for faecal excretion of the spirochaetes, and for the

development of swine dysentery (SD). None of 18 pigs fed the cooked rice and animal protein

diet developed colonic changes or disease, whereas most pigs on the other diets developed

mucohaemorrhagic colitis and dysentery. The reduced fermentation that occurred in the large
intestines of pigs fed cooked rice and animal protein was associated with a subsequent failure
of colonization by S. hyodysenteriae, and resultant protection against SD.

INTRODUCTION

Swine dysentery (SD) occurs in weaner and grower

pigs throughout the world [1], and is one of the most

economically important endemic diseases of pigs. The
condition is a severe mucohaemorrhagic colitis

resulting from infection with the anaerobic spiro-
chaetal bacterium, Serpulina (Treponema) hyody-
senteriae [2-4]. The bacteria colonize and damage
both the colon and caecum [5].

Diets containing cereal grain and protein sup-

plements are used widely for pig production. Many of

these grains are rich in dietary fibre, which initially
was defined as those components in a plant cell wall

such as cellulose, hemicellulose, pectins and lignins,
that are resistant to all digestive enzymes [6]. These

components are classified as non-starch poly-
saccharides (NSP), and are the major substrates for

microbial fermentation in the porcine large intestine

[7]. The extent of the microbial breakdown is
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influenced greatly by the nature of the carbohydrate,
which is highly dependent upon the type of diet
consumed. The large intestine provides an excellent
habitat for the establishment of a large and diverse

variety of bacterial species, about 1010 cells per gut

content, with strict anaerobes being the most common

organisms present [8, 9]. These bacteria are fastidious
and require specific environmental conditions, in-

cluding correct pH, temperature, redox potential,
osmolality, anaerobiosis, endogenous secretions, en-

zyme activities and dry matter content of ingesta to

enable them to be actively involved in the breakdown

of the NSP or other substrates in the large intestine.
Such environmental conditions can be manipulated to

either increase or decrease bacterial activity; for

example, studies have shown that the population of

the microflora in the large intestine increases greatly
after pigs are fed a diet containing high levels of fibre

[9, 10]. The major end products of fermentation are

short-chain or volatile fatty acids (VFAs: acetic,
propionic and butyric acid) [11, 12], and consequently
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the concentration of these increases as increased

amounts of fermentable fibre reach the large intestine

[13]. The principle dietary function ofVFAs is to serve

as energy sources for the pig [14].

Certain diets have been shown to create inhibitory

conditions against bacterial pathogens in the large

intestine of rabbits and pigs [15-17]. For example, it

was reported that SD did not occur in pigs on an

infected farm after a highly fibrous (cellulose/

hemicellulose) diet, based on maize silage, was fed

[16]. The new diet resulted in changes in fermentation

in the proximal colon, and it was speculated that its

protective effect was due to its low base content, which

interacted with VFAs produced to create an un-

favourable environment for S. hyodysenteriae.

Serological and clinical studies in Australia have

shown that even though S. hyodysenteriae is present in

certain herds, SD does not necessarily develop [18, 19].

The reasons for this are unclear, but in view of the

above considerations this study was conducted to

investigate the role of diet in determining the

susceptibility of pigs to SD. This paper reports our

findings on the effect of diets based on two feed grains,

rice (Oryza sativa) and wheat (Triticum aestivum),

supplemented with animal protein or lupin (Lupinus

angustifolius).

MATERIALS AND METHODS

Animals

One-month-old Large White pigs (n = 72) were

purchased from a commercial specific-pathogen-free
herd known to be free of SD. The animals were

divided into groups on a random basis, and were

housed in these groups in an isolation house in

adjacent pens with raised mesh floors. Pens were

divided from each other by removeable open-mesh

wire walls that permitted close contact between the

animals.

Diets

Three experimental and 1 commercial diet, each made

to the same weaner specifications, were fed to the pigs.

Their compositions by dry weight were 77% cooked

rice and 18 % animal protein (RA diet), 64% cooked

rice, 15 % dehulled lupin and 13 % animal protein

(RL diet), 62% whole wheat, 15% dehulled lupin,
11 5% animal protein and 3% peas (WL diet), and

75 % wheat and 17% animal protein (WA diet). Other

components of all diets were soya bean meal (3 %),

soy oil, salt, soya, choline chloride, lysine, pig starter

PMX and DF-750. Long grain white rice (Doongara)

was purchased from the Australian Ricegrowers Co-

operative Ltd. Water was added at a ratio of 2 to 1

(v/v), and this was cooked for 20 min at 121 'C. in an

autoclave. The other ingredients were purchased

separately from Milne Feeds Pty Ltd, Western

Australia, and were mixed. Each diet was formulated

to contain 14-7 MJ/Kg digestible energy, 20% crude

protein and 1 27% lysine (expressed on a dry matter

basis). The WL diet was an Australian commercial

weaner diet in unpelleted form, not containing

antimicrobial compounds, and was purchased directly

from Milne Feeds Pty Ltd. All the diets were mixed

with water and fed ad libitum.

Experimental design

After 1 month of feeding, 8 pigs on the RA diet, 5 on

the RL diet, 7 on the WL diet and 6 on the WA diet

were slaughtered to investigate the effect of these diets

on the large intestine of uninfected pigs. The re-

maining 46 pigs were used in infectivity trials to

determine their susceptibility to experimentally-
induced SD.

Experimental induction of swine dysentery

The infection phase of the study involved 3 separate

animal trials, in which the pigs (n = 46) were fed 1 of

the 4 diets for 4 weeks before and up to 8 weeks after

being challenged with broth cultures of S.

hyodysenteriae. In trial 1, 4 pigs were fed the RA diet,
and 4 received the commercial WL diet. In trial 2, 8

pigs were fed each of the same 2 diets. In this

experiment 2 healthy pigs that were originally on the

RA diet subsequently were transferred to the com-

mercial WL diet, 4 weeks after the challenge with

cultures of S. hyodysenteriae. At the time of this

transfer all surviving pigs again were challenged on

one occasion with S. hyodysenteriae. In trial 3, 4 pigs
received the commercial WL diet, and the other 3 diets

each were fed to 6 pigs.

Growth rates

The pigs were weighed weekly. Growth rate was

calculated as average increase in weight per day over

the experimental period. This was shorter (1 month)
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for uninfected pigs than for those subsequently

challenged.

Bacterial strains

Serpulina hyodysenteriae strain Western Australia 15

(serogroup A) was used to infect pigs in the first and
third infectivity trials, and strain Western Australia 1

(serogroup B) was used in the second infectivity trial.
Both strains originally were isolated from outbreaks
ofSD in piggeries in Western Australia. Broth cultures

of spirochaetes stored in 2-0 ml vials at -70 °C were
thawed and grown at 37 °C in the prereduced
anaerobic broth medium of Kunkle and colleagues
[20]. Spirochaetes in mid-log phase were used to
inoculate pigs. Pigs were challenged orally with 1010
viable cells of S. hyodysenteriae in 100 ml of broth

culture, daily for 3 days. On the first day feed was
removed 18 h before inoculation, and was returned

4 h after inoculation: on the 2 remaining days the feed
was removed in the mornings 2 h prior to inoculation,
and returned 4 h after inoculation. Once clinical signs
became apparent in a group of pigs, the feed was

temporarily removed and the animals in the different

experimental groups were allowed to mix for 2 h each
day, so as to maximize the opportunity for trans-

mission of infection.

Monitoring for disease

Pigs were checked twice daily for signs of SD,
including depression, lack of appetite and diarrhoea.
Faeces were collected, every second day post-in-
oculation, and cultured for spirochaetes.

Necroscopy examination of pigs

The pigs were killed and subjected to post mortem

examination either after 4 weeks (non-infected pigs),
or for the infected pigs within 24 h of blood being
observed in their faeces, or between 1-2 months post-
infection if they had not developed signs of SD.

Contents of the large intestine were collected for
bacterial culture from the caecum, proximal colon,
distal colon and rectum.

Isolation of spirochaetes

The contents from the large intestinal sites collected at

post mortem, and the faeces that were collected every
second day post-infection, were cultured on

Trypticase Soy agar (BBL Microbiology Systems,

Cockeysville, MD, USA) supplemented with 5%

defibrinated ovine blood, spectinomycin 400,ug/ml,
colistin 25 ,ug/ml, and vancomycin 25 ,ug/ml [21]. The
plates were placed in anaerobic jars (BBL) under an

atmosphere of 94% N2 and 6% CO2 at 37 °C for 5

days, and any strongly haemolytic spirochaetes sub-
cultured, grown in Kunkle's broth medium [20], tested

for indole production by addition of Kovac's reagent

after extraction with zylene, and subjected to slide

agglutination to determine serotype [22].

Weight of the large intestine and its contents

The large intestines were tied off at the ileo-caecal
junction and at the rectum, and removed. The caecum

was tied off and excised from the colon, and the two

portions of the large intestine were weighed with their
contents intact. Approximately 10 ml of the intestinal
contents were collected from the caecum, the first loop
of the colon, the apex of the spiral of the colon, and
the rectum. The remainder of the intestinal contents
was then removed, and the caecum and colon were

reweighed empty.

Calculation of dry matter content

Approximately 2 0 g of each fresh faecal sample was

put into a tared dish and heated in a hot air oven

(Watson Victor Ltd, Australia) at 105 °C for 72 h.
Each sample was reweighed and the dry matter
content calculated.

Measurement of pH

The pH values of the large intestinal contents of pigs
were determined within 5 min of death using a

portable pH meter (Orion Research Inc., Boston,
USA). Distilled water was added to viscous samples
(some proximal colon and most rectal samples) to aid
measurement. Calibration of the pH electrode was

checked every 5 samples.

Estimation of Volatile Fatty Acid (VFA)
concentrations

A modification of the method of Pethick and

colleagues [23] was used to estimate the VFA

concentration in the intestinal contents, using gas
liquid chromatography (GLC). Gut contents were

diluted 1:1 w/v with 10 N phosphoric acid and
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centrifuged at 4 °C for 10 min at 3000 rpm in a bench-

top centrifuge (MSE, Sussex, UK). The supernatant

was collected into a capped tube and maintained at

0-5 °C before 0 5 ,ul was used for analysis within 24 h.

Chromatography was performed using a Varian 3700

chromatograph (Varian, Palo Alto, CA, USA) and an

FFAP 15 m x 0-53 mm x 1 2 u film capillary column

(Cat. no. 19684, Alltech Assoc. Inc., Sydney,

Australia). Glass wool (5 cm) was packed in a guard

column to prevent blockages in the column.

The VFA concentrations of proximal and distal

colon were averaged to estimate the total VFA

concentration in the colonic tract, based on the weight

of the contents.

Data analysis

Analysis of the data was by one-way ANOVA using

Statview 4.02 (PICA Software, USA) for the

Macintosh. Means were compared using the Fisher's

Protected Least Significant method.

RESULTS

Dry matter content of the large intestinal contents of

uninfected pigs

There was a clear pattern for an increasing dry matter

of contents as the digesta passed from the caecum to

the rectum (Table 1). The increase in dry matter was

most pronounced for pigs fed the RA diet. The faeces

of the pigs fed the RA diet were dry, hard and black,
whilst those of the pigs fed the other diets were moist,
soft and yellowish-brown.

Dry matter content of the large intestinal contents of

infected pigs

In contrast to the uninfected pigs, in infected pigs the

dry matter content of the large intestinal contents was

relatively constant as the digesta moved from the

caecum to the rectum, except for pigs fed the RA diet.

The latter animals showed a pattern of dry matter

change down the tract that was similar to their

uninfected counterparts (Table 1).

Growth rate of uninfected pigs

Weaner pigs on all 4 diets grew at an acceptable rate,
but those on the WL diet grew the fastest, and those

on the RL diet grew significantly (P < 0 05) slower

(Table 1).

Growth rate of infected pigs

There was no significant difference in growth rate

amongst the infected pigs on the 4 diets (Table 1).

Weight of the large intestine and its contents in

uninfected pigs

The caecae of the uninfected animals that were fed the

RA diet were significantly lighter than those of the

pigs on the other 3 diets (Table 2), and caecal contents

were lighter for both rice-based diets. Pigs that

consumed diets based on wheat grains had heavier

colons than pigs fed rice-based diets, but the colonic
contents were significantly heavier when wheat and/or

lupin grains were fed compared with the RA diet.

Weight of the large intestine and its contents in

infected pigs

Infected pigs that consumed the RA diet had

significantly lighter caecae than the pigs fed the other

diets (Table 2). The caecal contents were significantly
heavier in pigs fed the WL diet. The colons of pigs fed

the RA and WL diets were significantly lighter than

those of pigs fed the other 2 diets. Pigs fed the 2 rice-

based diets had the least colonic contents.

pH values of large intestinal contents in uninfected

pigs

The pH values of the contents of the caecum and

proximal colon of uninfected pigs fed the RA diet

were significantly higher (mean pHs at both sites 6 3)
than those of pigs fed the other three diets (pH ranges

at the two sites 5A4-5 7 and 5 7-5 9 respectively) (Table
3). The pH values of the contents increased in the

distal colon in all groups, and were higher in the pigs
that were fed both rice-based diets than in pigs fed the

wheat-based diets.

pH values of large intestinal contents in infected pigs

In infected animals the pH value of the caecal contents

for pigs fed the diets that were supplemented with

animal protein were significantly higher (mean
pH 6 45) than for pigs fed the two diets supplemented
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Table 1. Dry matter content of the large intestinal contents, and the growth rate of normal and infected pigs

fed the different diets

Diet*

RA RL WL WA

Uninfected pigs
No. of pigs 8 5 7 6

Dry matter
content (%)
Caecum 9-2+1-7a 14-2+ lOb 11-7+07a 130+02b
Proximal colon 201 + 20a 15-8 +0-5b 16-8+ 1-6b 15-6 +0-3b
Distal colon 25-0 + 11a 16-2+0-66b 19-2+1-7b 16-8 + 0. b

Faeces 36-1 + 3-8a 18-6 + 02b 26-0 + 1 .3c 18-8 + 0-3b
Growth ratet 310 + 200a 237 + 20.2b 319+ 19.0a 273 + 13-4a.b

(g/day)
Infected pigs
No. of pigs 16 6 16 6
Dry matter
content (%)
Caecum 8-8 +0-7a 14-0+ 1j-3b 13-5 +0.6b 14-8 +0 8b
Proximal colon 191 + 12a 148+ 16ab 143+ 1.6b 13.0+3.0b
Distal colon 26-0 +0 7a 16-5 + 2.0b 14-7+ 1-6b 13-1 + 3.9b
Faeces 450 +0*7a 13-3 + 1-3b 14-6+ 1-6b 15-6+ 3-5b

Growth rate 533 + 36-8 551 + 52-9 564 + 32-2 529 + 37-4

(g/day)

* Diets: RA, cooked rice and animal protein; RL, cooked rice and lupin; WL, wheat and lupin (commercial diet); WA,
wheat and animal protein.

t Growth rate of uninfected pigs only over the period 4 weeks after weaning.
For each row, figures with different superscripts differ at 5% level of significance.

Table 2. Mean weight of the large intestine and its contents expressed as a percentage of body weight in

uninfected and infected pigs

Diet*

RA RL WL WA

Uninfected pigs
Caecum 0.14+0.Ola 023 +0.Olb 021 +0O02b 023 +0.lb
Caecal contents 0-43 + O08a 055 + 0.6a 103 + 008b 2-99 + 003b
Colon 1 00 + 004a 103 + 0.04a 184 + 003b 129 + 001
Colonic contents 155 +0O06a 2.92+Ollb 299+O35b 343+-3b

Infected Pigs
Caecum 018 +0.01a 025 +0.02b 023 +0.02b 032 + 0.02C
Caecal contents 037 +0.04a 041 + 0.1Oa 218 +0-34b 083 +0.27a
Colon 092 + 005 153 + 022 0-99 + 012 224 + 0331
Colonic contents 083 + 008a 099 + 026a b 146 + 01 b 152 + 030b

* Diets: RA, cooked rice and animal protein; RL, cooked rice and lupin; WL, wheat and lupin (commercial diet); WA,
wheat and animal protein.

For each row, figures with different superscripts differ at 5 % level of significance.

with lupin as the protein source (pH range 5-8-6-0)
(Table 3). Similar trends were observed in the

proximal colon, with pH values in the pigs fed the

diets containing animal protein being higher (pH

range 6-5-6-7) than those fed the lupin-containing
diets (pH range 6&0-6 3). The same trend was seen in

the distal colon, but again with the mean pH values

being higher than at the more proximal sites.
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Table 3. pH values of the large intestinal contents of uninfected and infected pigs

Diet*

RA RL WL WA

Uninfected pigs
pH
Caecum 6-33 +O-16a 5-76 +O0-21b 5-41 +O.05b 5-60 +0.09b

Proximal colon 6-33 + 0 13a 5*90 + O08b 5-80 + 0-18b 5-73 + .O.9b
Distal colon 657 +0 10 6-62 +09a 601 +0-14b 610+012b

Infected pigs
pH
Caecum 6-45 +0-16a 5-81 +O.15b 6.04+0.14b 6-46+0.03a
Proximal colon 654 + 007a 6-08 + O15b 6.34 + 0.16a,b 6-73 + 06a
Distal colon 6-96+0-02a 6-58+0-11 b 6-53 +O-17b 6-81 +0-1 a, b

* Diets: RA, cooked rice and animal protein; RL, cooked rice and lupin; WL, wheat and lupin (commercial diet); WA,

wheat and animal protein.
For each row, figures with different superscripts differ at 5% level of significance.

Table 4. Estimated total VFA concentration (mmol) in the large intestine of uninfected and infected pigs

Diet*

RA RL WL WA

Uninfected pigs
Caecum 9686+2398a 7543 +735a 28546+3919b 10024+ 1469a

Colon 12699 +2756a 27229 +4381 a,b 39535 +7865b 32969+ 3256b

Infected pigs
Caecum 26795 +4295a 11664+ 3810 62022+7737b 15508 +4752a

Colon 45737+ 5269a 41202+ 11590a 132469+20444b 72450+24872b

* Diets: RA, cooked rice and animal protein; RL, cooked rice and lupin; WL, wheat and lupin (commercial diet); WA,
wheat and animal protein.

For each row, figures with different superscripts differ at 5 % level of significance.

Production of VFAs in the large intestine of

uninfected pigs

Both rice-based diets resulted in relatively low VFA

production in the caecum and colon of uninfected pigs
(Table 4). This was particularly marked for the

colonic contents of pigs on the RA diet. The inclusion

of wheat or lupin grain increased total VFAs in the

colon.
Acetate was the major acid produced at all three

large intestinal sites, on all diets, followed by
propionate and then butyrate (Table 5). At all sites the

RA diet resulted in a relative increase in acetate, and

a decrease in propionate and butyrate compared with

the other diets.

Production of VFAs in the large intestine of infected

pigs

Total VFA was very high in the caecum and colon of

the infected pigs fed the WL diet (Table 4). Pigs fed

both rice-based diets had the lowest VFA concen-

trations.
In infected pigs acetate again was the principle VFA

produced at all 3 sites, followed by propionate and

butyrate respectively (Table 5). The molar proportion
of acetate was greatest in pigs fed the RA diet, and

propionate and butyrate production was decreased.

The molar proportion ofVFAs in the distal colon was

almost the same in pigs fed all 4 diets.

Incidence of swine dysentery

Pooled results of the occurrence of disease in infected

pigs on the 4 diets are shown in Table 6. In the first

trial, all 4 pigs fed the commercial WL diet developed
diarrhoea, passed specks of blood and mucus in the

faeces, and showed depression and a lack of appetite:
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Table 5. Estimated VFA molar proportions (%) in the large intestine of uninfected and infected pigs

Diet*

RA RL WL WA

Uninfected pigs
Caecum 66:22:7t 49:35:9 49:28:13 58:29:9
Proximal colon 66:22:7 41:42:10 58:28:9 47:32:14
Distal colon 66:20:8 58:28:9 58:28:9 57:29:9

Infected pigs
Caecum 66:23:5 57:25:11 61:24:11 52:30:12
Proximal colon 63:23:6 56:27:9 61:26:8 56:24:12
Distal colon 65:22:5 65:23:10 63:23:8 65:22:8

* Diets: RA, cooked rice and animal protein; RL, cooked rice and lupin; WL, wheat and lupin (commercial diet); WA,
wheat and animal protein.

t Ratio (acetic: propionic: butyric).

Table 6. Pooled results from three trials showing
incidence of disease in pigs fed different diets and
challenged with S. hyodysenteriae

Diet*

RA RL WL WA

No. of pigs challenged 16 6 16 6
No. of pigs that shed S. 3 6 13 5
hyodysenteriae in their faeces
Mean duration (days) of faecal 46 54 85 5-6
shedding in these pigs
No. of pigs that developed 0 5 10 3
swine dysentery

Incidence of disease (%) 0 833 625 60

* Diets: RA, cooked rice and animal protein; RL,
cooked rice and lupin; WL, wheat and lupin; WA, wheat
and animal protein.

they were slaughtered between 9 and 15 days post-
inoculation. Each pig showed gross and microscopic
evidence of a severe mucohaemorrhagic colitis. The 4
pigs that were fed the experimental RA diet remained
healthy throughout the experiment, and no abnor-
malities were detected in their large intestines on post-
mortem examination.

In the second trial, 5 of the 8 pigs fed the WL diet
developed SD over the period 8-28 days post-
inoculation, while all 8 pigs fed the RA diet remained
healthy. Of the 2 pigs on the RA diet that were
transferred to the WL diet, 1 died suddenly 2 days
later with signs of clostridial enterotoxaemia, whilst 6

days later the other pig developed SD. These pigs are

not included in Tables 1-5. None of the 3 surviving
pigs on the WL diet nor the 6 that were still on the RA
diet subsequently developed SD.

In trial three, 5 of the 6 pigs that were fed the RL
diet became diseased within 6 days after inoculation.
Three of the 6 pigs that were fed the WA diet became
diseased 11 days after inoculation, and 1 of the 4 pigs
fed the WL diet developed SD on day 42. The 6
animals fed the RA diet remained healthy throughout
the experiment.

Isolation and identification of S. hyodysenteriae

Spirochaetes identified as S. hyodysenteriae, and
belonging to the same serogroup as used to inoculate
the pigs, were recovered from the faeces and/or
intestinal contents of most animals fed the WL, WA
and RL diets, but they were isolated from only 3 of
the 16 experimentally-challenged pigs that were fed
the RA diet (Table 6): 1 of these 3 pigs shedded
spirochaetes over a period of 4 days in the second
trial, and the other 2 pigs shed them over a 4-5 day
period at different times in the third trial. Spirochaetes
also were isolated from a colonic scrapping taken at

necropsy from one of the latter pigs, 13 days after
spirochaetes were last isolated from its faeces. Faecal
shedding by pigs on the other three diets ranged from
4-15 days, with the group means varying from 54-&85
days (Table 6).

Pathological changes in the large intestine of infected
pigs

No gross nor microscopic abnormalities were seen in
the large intestines of healthy pigs. The large intestine
of all pigs identified on clinical grounds as having SD
showed variable congestion and haemorrhage, with
accumulations ofmucus and fibrin-containing pseudo-
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membranes in regions throughout the colon. Lesions

in the caecum were usually confined to mild con-

gestion.

DISCUSSION

The primary source of carbon for fermentation in the

large intestine is dietary fibre which consists mainly of

non-starch polysaccharides, both soluble and

insoluble (NSP) [24]. An additional source of readily

fermentable carbon is (i) resistant starch; that is

starch which escapes digestion in the small intestine

[24] and (ii) oligosaccharides of the raffinose series.

The diet consisting ofcooked rice as the energy source

and animal protein as the protein supplement was

extensively digested and absorbed in the small

intestine of the normal pigs. Cooked white rice

contains c. 85 % total starch (most of which is readily

digested in the small intestine) and 2% NSP, of which

60% is soluble [25, 26]. Consequently little substrate

would have entered the large intestine and this led to

reduced microbial fermentation, as indicated by the

higher pH values and low total VFA concentration of
the large intestinal contents. Greater fermentation
occurred with the diets that contained either wheat

or lupin. Dehulled lupin grain is a high protein legume
which has virtually no starch [27] but contains high
levels of fermentable substrates, including 29% NSP,
of which 16% are soluble and 8 % are oligo-
saccharides [28]. The NSPs and oligosaccharides are

fermented in the large intestine to VFAs [7, 14, 29,
30], with a resultant decrease in pH values [11]. Whole
wheat contains about 65 % total starch and 12%

NSP, of which 20% is soluble [27]. An unknown

proportion of the starch in raw wheat would be

'resistant starch' that is not digested in the small

intestine [31]. The soluble NSPs and oligosaccharides
derived from the lupin and wheat, and the resistant

starch from the wheat proved to be excellent sub-

strates for microbial fermentation, as indicated by
increased VFA concentrations and lower pH values in

the large intestinal contents of pigs receiving these

ingredients.
Acetate was the predominant VFA produced in the

caecum and colon of the pigs fed all 4 diets, but

particularly so in those fed the RA diet, where total

fermentation was reduced. The relatively low level of

propionate with the RA diet was expected, since

propionic acid-producing organisms tend to favour

readily fermentable substrates such as oligo-
saccharides and resistant starch [31]. The weight and

volume of the large intestine tends to increase when

diets high in dietary fibre are consumed [13, 32-4],

and this would explain why the pigs fed the RA diet

had less bulky and drier colonic contents and faeces,

and a lighter large intestine than animals fed the other

diets. Overall, the RA diet was highly digestible, and

this led to there being restricted large intestinal

microbial fermentation, with lesser and drier contents,

and a ligher and smaller large intestinal tract.

The total VFA content in the large intestine of the

older (infected) pigs increased, presumably as a result

of their greater feed intake and their larger size. At the

same time the pH values at these sites also increased,

and this was not explained. This increase was not

simply a result of the development of diarrhoea, as it

also was seen in healthy pigs in the RA group. As the

pig matures the digestion of starch in the small

intestine increases [35], and so less resistant starch

would enter the large intestine to be fermented. This

then might result in a relative elevation of pH values.

None of the pigs that were fed the RA diet and were

inoculated with S. hyodysenteriae developed SD. This
protection occurred with 2 different virulent strains of
S. hyodysenteriae. Only 3 of 16 animals showed
evidence of transient colonization with spirochaetes,
implying that the protective influences of the diet

likely resided in its ability to inhibit colonization by
these organisms. When 2 pigs fed the RA diet were

transferred to the commercial WL diet, 1 died of acute
clostridial enterotoxaemia, whilst the other developed
SD. This provided further evidence for the protective
effect of the highly digestible RA diet on development
of SD.

Previous work by Prohaszka and Lukacs [16],
suggesting that feeding a diet high in cellulose/
hemicellulose (i.e. maize silage) can alter the ex-

pression of SD, must be treated with caution since the

work did not involve controlled inoculation studies.

Despite this, a diet high in cellulose/hemicellulose
may result in a fermentation pattern, as assessed by
VFA ratio of the digesta, similar to that obtained with

the protective RA diet used in this study. Thus a

major dietary residue entering the large intestine on

the RA diet would have been cellulose/hemicellulose,
since the remaining components of the ration

(gelatinised starch and animal protein) would have

been extensively digested in the small intestine. Both

diets would result in a relatively slow rate of

fermentation that is typical for cellulose, and would

produce a similar pattern of VFAs and so therefore

qualitatively a similar microbial flora.
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It is known from work in gnotobiotic pigs, and in

mice, that different components of the microflora of
the large intestine can either enhance [36-8] or reduce
[39] colonization by S. hyodysenteriae, and sub-

sequently can influence the expression of SD. A

similar explanation has been put forward as to why
certain chemotherapeutic agents with no effect on S.

hyodysenteriae can be used to control SD: these
agents are thought to inhibit other components of the
microflora that normally interact to enhance
colonization by S. hyodysenteriae [40]. The RA diet
has been shown to reduce overall levels of fer-
mentation in the large intestine, hence its protective
effect likely operates through some unspecified alter-
ation in the microflora of the large intestine. Whilst
this could be a direct effect, it also could be indirect.
For example, both diet and microflora can influence
production of mucins in the large intestine [41], and

mobility of S. hyodysenteriae in the mucus is im-
portant for its ability to colonize [42]. Another
possibility is that significantly drier contents of the
colon in pigs on the RA diet acted to inhibit survival
of the spirochaetes at these sites. Further work will
attempt to define the alterations occurring in the
microflora, and in patterns of fermentation in pigs fed
the RA diet, and will seek to identify other com-

mercially viable highly digestible diets that offer
protection against SD.
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