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Apparently, some form of local superconducting pairing persists up to temperatures well above the maxi-
mum observed Tc in underdoped cuprates; i.e., Tc is suppressed due to the small phase stiffness. With this in
mind, we consider the following question: Given a system with a high pairing scale �0 but with Tc reduced by
phase fluctuations, can one design a composite system in which Tc approaches its mean-field value, Tc

→TMF��0 /2? Here, we study a simple two-component model in which a “metallic layer” with �0=0 is
coupled by single-particle tunneling to a “pairing layer” with �0�0 but zero phase stiffness. We show that in
the limit where the bandwidth of the metal is much larger than �0, the Tc of the composite system can reach
the upper limit Tc��0 /2.
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I. INTRODUCTION

There are both theoretical1,2 and experimental2–5 indica-
tions that underdoped cuprate superconductors can exhibit
significant pairing correlations for a range of temperatures
that extends above the highest measured superconducting Tc.
Whereas in conventional metallic superconductors, Tc
��0 /2 is determined by the pairing �zero-T gap� scale, in
underdoped cuprates it is apparently determined by the col-
lective onset of phase coherence and hence by the superfluid
stiffness, ���s, where �s is the zero-T superfluid density.3

The question we address here is: Given a material which
has a “high” pairing scale �0 but which fails to become a
superconductor at high temperatures due to its low superfluid
density, can we design an artificial composite of this material
and a simple metal that realizes a high transition tempera-
ture, Tc��0 /2? Certainly superconductivity can be induced
in the simple metal via the proximity effect,6 leading to an
enhancement of the total superfluid density. Conversely,
however, the pairing scale tends to be suppressed by the very
same proximity effect.6,7 It is not clear, a priori, whether the
composite will exhibit the best or the worst of both worlds.

Two sets of experimental observations suggest a positive
outcome. First, a few years ago, Wang et al.5 showed that
phenomena related to fluctuation diamagnetism persist to
moderately high temperatures in underdoped cuprates. This,
added to the older evidence that there exists a spectroscopic
pseudogap which extends to high temperatures, encourages
us to interpret at least a portion of the observed “pseudogap
regime” as a regime of pairing without global phase coher-
ence. Second, recent experiments by Yuli et al.8 on epitaxial
films of La2−xSrxCuO4 on a SrTiO substrate demonstrated
that the Tc of underdoped films may be raised by depositing
a thin upper layer of strongly overdoped and hence metallic
La1.65Sr0.35CuO4. �See also Ref. 9.�

Motivated by these findings, we study simple model sys-
tems composed of two components: a “pairing” component
with a high pairing scale �0 but zero Tc due to zero super-
fluid stiffness and a “metallic” component with no pairing
but high stiffness. The microscopic origin of the pairing is
not elucidated in this work, and we treat it as given. How-

ever, on physical grounds, we consider only situations in
which �0�EF, the Fermi energy of the metal. The two sys-
tems are coupled by a tunneling matrix element t�. Our prin-
ciple result is the demonstration that under the right condi-
tions �i.e., the optimal magnitude of t��, Tc��0 /2 can be
achieved. It is our hope that these results can provide guid-
ance for a new generation of searches, of the sort pioneered
by Yuli et al.,8 for higher-temperature superconductivity in
engineered composite materials. More generally, this work
extends previous work10–17 on “optimal inhomogeneity for
superconductivity” to situations more amenable to direct ex-
perimental manipulation.

This paper is organized as follows: In Sec. II we describe
the model and our strategy of solving it. The results for the
cases in which the pairing layer consists of negative-U sites
and negative-U wires are presented in Secs. III and IV, re-
spectively. The results are discussed in Sec. V.

II. MODEL AND STRATEGY

The pairing component is modeled by a two-dimensional
lattice of negative-U sites, which are either decoupled com-
pletely or coupled in only one direction �forming an array of
parallel one-dimensional wires�. In both cases, the Tc of the
isolated pairing layer is zero due to zero phase stiffness.
Nevertheless, the system has a finite pairing scale �0. Upon
coupling this layer to a metallic layer modeled by noninter-
acting electrons, a finite Tc is obtained. The behavior of Tc as
a function of the strength of the coupling between the two
systems is then studied.

The model Hamiltonian is

H = Hc + Hf + Hcf , �1�

where Hc is the Hamiltonian of the noninteracting �metallic�
layer:

Hc = − t �
�rr���

cr�
† cr�� + H . c . − ��

r
nc,r, �2�

where �rr�� denotes nearest neighbors. Hf is the Hamiltonian
of the pairing layer:
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Hf = − �� − 	��
r

nf ,r − U�
r
�nf ,r↑ −

1

2
	�nf ,r↓ −

1

2
	

− t��
r�

fr�
† fr+a x

�

,� + H . c . , �3�

with U�0 �attractive� and t�=0 for the pairing sites problem
analyzed in Sec. III, and t�= t for the superconducting wires
problem analyzed in Sec. IV. Finally, Hcf is the tunneling
Hamiltonian between the two layers,

Hcf = − t��
r�

cr�
† fr� + H . c. �4�

Here cr�
† and fr�

† create electrons in the metallic and pairing
layers, respectively, nr=nf ,r+nc,r, where nf ,r=��=↑,↓fr�

† fr�

and similarly for nc,r. The on-site energy 	 for the f sites is
assumed to be close to the chemical potential, so that the f
band is partially filled. Throughout the analysis, we assume
that the metallic bandwidth W=8t is much larger than t�, U.
For simplicity, we consider the case of a two-dimensional
square lattice, with a lattice constant a=1.

In order to solve Eq. �1�, we first use mean-field theory to
decouple the interaction term,

− Ufr↓
† fr↑

† fr↑fr↓ → − ��fr↑fr↓ − �fr↓
† fr↑

† + 
	nf ,r, �5�

and we solve the self-consistent BCS equations at finite tem-
perature:

� = U�fr↑fr↓� , �6�


	 = −
U

2
�nf ,r� , �7�

n = �nr� , �8�

where n is some fixed density. From these equations we find
the mean-field transition temperature TMF, at which � van-
ishes. However, the actual Tc of the model is lower than TMF
due to phase fluctuations, which are particularly important in
situations where the phase stiffness is small, i.e., when t� is
small. �Note that when t�=0, TMF�0, but Tc=0. This is true
regardless of t�.�

We make an estimate of the superconducting Tc that in-
cludes both the usual physics of pairing that is captured by
BCS mean-field theory and the dominant effects of phase
fluctuations as follows: To begin, we compute the mean-field
approximation to the phase stiffness �s�T�, defined as

�s�T� =
1

�

�2F

�qx
2 , �9�

where F /� is the free energy per unit area and qx is a phase
twist in the x direction, which enters the kinetic-energy term
in the Hamiltonian as

− t �
�rr���

cr�
† cr�� → − t �

�rr���

eiq/2·�r�−r�cr�
† cr��. �10�


Equation �9� is slightly modified in cases where t��0, since
then the stiffness is anisotropic, and the relevant quantity is
the geometric mean of the stiffness in the x and y directions.

This will be discussed in Sec. IV.� Then, we estimate the
temperature at which the two-dimensional Kosterlitz-
Thouless transition �phase ordering� occurs in terms of the
universal jump in the stiffness at criticality:

�s�Tc� =
2

�
Tc. �11�

This is still an overestimate as it neglects the renormalization
of �s�Tc� due to phase fluctuations below Tc. Upon solving
Eqs. �6�–�8� and �11�, we estimate Tc as a function of the
model parameters. Although Tc estimated in this way is al-
ways less than TMF, at which �s�T� vanishes, if the phase
stiffness is very large �as in a conventional weakly coupled
BCS superconductor�, then Tc�TMF.

The method described above used to determine Tc was
applied in Ref. 18 for the negative-U Hubbard model, and
the results were compared with the results of quantum Monte
Carlo �QMC� simulations.19,20 Qualitative trends of the
Monte Carlo results at generic fillings were well reproduced
by this method.21 Moreover, although the Monte Carlo Tc
was always smaller than the estimated Tc, the two typically
differ by no more than 30%–50%. Therefore, even though
the method is not quantitatively reliable in the intermediate-
and strong-coupling regimes, we do expect it to predict cor-
rectly the qualitative trends of Tc as a function of the model
parameters. We intend to check the results using Monte
Carlo methods in the future.

III. NEGATIVE-U SITES

Let us focus on the case t�=0 in Eq. �3�, in which the
negative-U sites are coupled only by tunneling through the
metallic layer. We fix t, U, 	, and n, always assuming that U,
t��W, where W=8t is the bandwidth of the metallic layer,
and we calculate Tc�t�� 
� is determined by using Eq. �8��. n
is chosen so that the band of negative-U sites is partially
filled �so that the self-consistent solution satisfies ��	+
	
and ��0 at T=0�.

A. Analytical results

In the limit t�, T�U; the dependence of Tc on t� can be
understood analytically from �fourth-order� perturbation
theory in t�. In this limit, we may assume that � is approxi-
mately temperature independent and equal to its zero-
temperature value �0�U /2. At T=0, the perturbative ex-
pression is complicated due to Fermi-surface singularities.
However for temperatures in the important range �0
T

 t�

2 /�0, the results simplify 
see the Appendix, Eq. �A6��:

�s� t�
2

U
� T � U	 �

t�
4

U2T2 �vF
2�FSN�0� , �12�

where N�0� is the density of states of the metallic layer at the
Fermi energy and �vF

2�FS is the square of its Fermi velocity
averaged over the Fermi surface. Numerical factors on the
order of unity have been dropped. Since parametrically

�vF
2�FSN�0�� t, this gives �s�T��

t�
4

U2T2 t. Using Eq. �11�, we
get the following estimate of Tc:
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Tc�t� � U� � t� t�

�Ut
	4/3

. �13�

Equation �13� gives Tc
 t�
2 /U, consistent with the assump-

tions leading to Eq. �12�. Equation �13� must break down
before t�
 t�,1, where

t�,1 � U�U

t
	1/4

, �14�

since Eq. �13� gives Tc�t�,1��U��0, and Tc cannot exceed
�0.

As t� is increased beyond t�,1, the superfluid density is
large enough and ceases to limit Tc significantly. However,
the pairing is also reduced. TMF, the temperature at which
��TMF�=0, can be calculated perturbatively in t� 
Eq. �A14�
of the Appendix�:

TMF =
U

4
�1 −

At�
2

Ut
+ O�t�

4 �� , �15�

where, to be explicit, we have taken the negative-U sites as
half filled for t�=0. A is a dimensionless number of order
unity. Therefore TMF is not suppressed significantly from its
t�=0 limit until t� becomes on the order of

t�,2 � �Ut . �16�

Interestingly, we see that in the limit U� t, the ratio
t�,2

t�,1

= � t
U �3/4 becomes large. Therefore, there is a parametrically

wide region where there is plenty of superfluid stiffness, but
the pairing is still not suppressed significantly. It is at least
plausible to expect that in the region t�,1� t�� t�,2, Tc on
the order of TMF�t�=0���0 /2 is obtained.

B. Numerical results

Figure 1 shows Tc and TMF obtained from solving Eqs.
�6�–�9� numerically for n=1.5, t=1, 	=−1, and U=1 as a

function of t�. At low t�, TMF�U /4, while Tc is strongly
suppressed due to the low superfluid stiffness. For low
enough t�, Tc� t�

4/3, in agreement with Eq. �13�. Tc reaches a
maximum at t��0.45 and then starts to drop due to the
suppression of TMF. At high enough t�, Tc essentially coin-
cides with TMF. The maximum Tc, which is obtained in the
crossover regime between pairing-dominated and stiffness-
dominated regimes, is Tc�0.085, which is about 35% of the
maximum TMF.

In Fig. 2 we show Tc�max�, which is the maximum of
Tc�t��, as a function of �0�U /2, which is the T=0, t�=0
gap. We fix t=1 and n=1.5 throughout the calculation. In the
low �0 / t limit, Tc�max� reaches the maximum conceivable
value which takes full advantage of the pairing scale,
Tc�max� /�0→A0�1 /2, as �0 / t→0. 
The dashed line in
Fig. 2 is Tc�max�=�0 /2.�

The optimal t� for superconductivity, t��max� is shown in
the inset of Fig. 2 as a function of �0. For small �0 / t, we
find that t��max���0. As �0 is lowered, the maximum be-
comes broader and broader relative to �0, in agreement with
what we expect from Eqs. �14� and �16�: Tc��0 /2 for t�,1
� t�� t�,2. This range becomes parametrically wide at low
�0.

IV. SUPERCONDUCTING WIRES

A. Analytical results

We now consider the case in which the pairing layer is an
array of one-dimensional wires in the x direction. Assuming
that t�� t�U, the zero-temperature gap is given by the BCS

equation: �0� t� exp
−1 / Ñ�0�U�, where Ñ�0���2�t��−1 is
the density of states of a single wire. The phase stiffness
along the x direction is finite even for t�→0,22 while the
stiffness in the y direction vanishes at this limit. Since the
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FIG. 1. �Color online� Tc ��� and TMF ��� obtained from solv-
ing Eqs. �6�–�9� numerically for n=1.5, t=1, U=1 as a function of
t�. The dashed curves are fits to the data according to Eqs. �13� and
�15�. A=0.235 was used in the fit.
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FIG. 2. �Color online� Tc�max� �maximized over t�� for differ-
ent values of U and fixed t=1, n=1.5. Tc�max� is shown as a func-
tion of �0�U /2, which is the T=0, t�=0 gap for the same U. The
dashed line is the mean-field transition temperature for t�=0,
TMF,0��0 /2. Inset: t��max�, in which Tc�max� is obtained, as a
function of �0.
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phase stiffness is anisotropic, �s
x��s

y, the macroscopic phase
stiffness, which appears in Eq. �11�, is an appropriate average
of its values in the two directions. As done analogously in
the case of the anisotropic two-dimensional XY model, the
geometric average of �s

x and �s
y should be used:23

�s = ��s
x�s

y . �17�

We have found that the Tc of the composite system is
highest when the Fermi surfaces of the two layers intersect in
the t�→0, U→0 limit.24 We therefore assume that this is the
case in what follows.

Following a similar line of reasoning as in Sec. III, the
scaling of �s in the limit

t�
2

�0
�T��0 is 
Eq. �A8� in the

Appendix�

�s� t�
2

�0
� T � �0	 �� t

�0

t�
2

T
, �18�

which by Eq. �11� gives

Tc�t� � �0� � � t

�0
	1/4

t�. �19�

Since Tc cannot exceed ��0, Eq. �19� can hold only for

t� � t�,1 = ��0

t
	1/4

�0. �20�

The small t� behavior of TMF is 
Eq. �A17��

TMF � TMF,0�1 −
Ãt�

2

tTMF,0
+ O�t�

4 �� , �21�

where TMF,0=TMF�t�=0���0 /2 and Ã is a dimensionless
constant of order unity. Therefore, the suppression of TMF
due to the coupling of the superconducting wires to the me-
tallic layer becomes significant when

t� � t�,2 = ��0t . �22�

Thus, as in the case of isolated negative-U sites, there is a
region between t�,1 and t�,2 where there is plenty of phase
stiffness and the pairing is not suppressed significantly.
Moreover, since t�,2 / t�,1��t /�0�3/4, this region becomes
parametrically wide when �0� t. In that limit, we expect that
Tc can be asymptotically close to TMF,0.

B. Numerical results

Figure 3 shows Tc�max� �maximized over t�� as a func-
tion of �0 for the case of one-dimensional �1D� wires. The
following parameters were used: t= t�=1, 	=−1, and n=1.5.
U was varied between 1.1 and 1.65. Also shown in the same
figure is TMF,0, the mean-field transition temperature of the
wires for t�=0. We found that in the range of U we consid-
ered, TMF,0 is very well approximated by the BCS formula
TMF,0=2�0 /3.5=a exp�−b /U�, with a=4.415 and b=6.215;
i.e., �0 changes by an order of magnitude from �0�3
�10−2 to 1.8�10−1. As in the case of the negative-U sites,
in the limit �0 /W→0, Tc�max� approaches TMF,0.

The inset of Fig. 3 shows the optimal value of t� as a
function of �0. For small �0, we see that t��max��2�0.

V. DISCUSSION

The pairing scale �0 defines a physical limit on the maxi-
mum achievable superconducting Tc in a given system. How-
ever, typically as the phase stiffness is increased, the pairing
scale tends to be suppressed, and eventually this suppresses
the actual Tc. Therefore, the maximum Tc is typically re-
duced relative to �0, often by a large factor. For example, in
the two-dimensional negative-U Hubbard model with fixed
U, the maximum possible �0 is about U /2, which is
achieved for t=0 and close to half filling. However, the
maximum Tc �estimated by the method of combining the
mean-field solution with classical phase fluctuations, as de-
scribed in Sec. II� is only 0.085U �obtained for t�0.4U�.

In the present work, we have been motivated by the fol-
lowing question: Suppose that there exists a material with a
large pairing scale �0 but a low �or vanishing� Tc due to
phase fluctuations, is there a way to make a composite of this
material and a good metal which will realize a superconduct-
ing state with a transition temperature Tc→TMF,0��0 /2? In
the two model systems we studied, we found that by weakly
coupling the two materials with t���0 and in the limit that
the bandwidth of the metal is large, W /�0→�, this optimal
Tc can be achieved.

This result was demonstrated using a physically moti-
vated approximate solution of the model. Fortunately, the
negative-U Hubbard model is amenable to solution on mod-
erately large systems by quantum Monte Carlo methods, as it
can be made free of fermion sign problems.25 We therefore
intend to test the validity of our results in this way in the near
future.

Finally, we discuss the reasons to believe that our conclu-
sions do not depend sensitively on the specifics of the mod-
els. The coupling of a paired material to a good metal pro-
duces two qualitatively different effects: an increased
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FIG. 3. �Color online� Same as Fig. 2 for the case of supercon-
ducting wires 
t�= t in Eq. �3��. Tc�max� / t �maximized over t�� is
shown as a function of �0 / t. The dashed line shows the mean-field
transition temperature at t�=0, TMF,0 / t�2�0 / �3.5t�. Inset:
t��max� / t as a function of �0 / t.
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superfluid stiffness 
�s and a reduction in the mean-field
transition temperature by an amount 
TMF. It is clear that in
the limit of strong coupling between the two systems, t�

�W �where W is the metallic bandwidth�, the latter effect
always dominates. Hence coupling to the metal leads to a
quenching of superconductivity.

Let us therefore consider t���0�W, where a perturba-
tive expression for 
TMF will generally give


TMF = − AW−a�0
a−1t�

2 � − W−a�0
a+1, �23�

where A�0 is a dimensionless constant, a is an exponent
which could differ from case to case, and in the final expres-
sion we have taken t���0. Similarly, close to the putative
superconducting transition temperature T��0 /2, we expect


�s = BWb�0
−1−b���T��2, �24�

where B is another constant and ���T����0 is the tempera-
ture dependent mean-field gap in the pairing layer. As long as
a�0 and b�0, these relations imply that in the limit that
W→�, the induced phase stiffness at any T�TMF,0 grows
without bound with no significant loss of pairing. Hence
phase fluctuations are suppressed, leading to Tc→TMF,0.

Generally, one expects that 
�s increases as W is in-
creased �i.e., b�0�, while �
TMF� decreases �a�0�, since in
the metal, the Fermi velocity is a linearly increasing function
and the Fermi energy density of states is a linearly decreas-
ing function of W. Indeed, in the case of negative-U sites,
a=b=1,26 a result which, we believe, is true in a wide range
of circumstances.

As corroborating evidence, we note that the expected non-
monotonic dependence of Tc on coupling between a metal
and a phase fluctuating superconductor has been observed in
a somewhat analogous experimental system6 consisting of Pb
grains covered with a film of Ag. As a function of increasing
Ag coverage, the first effect is to suppress phase fluctuations
and to increase the superconducting transition temperature
up to nearly the bulk Tc of Pb.27 However, adding more Ag
to the system eventually causes a degradation of the pairing
scale and a total quenching of superconductivity.

As a concluding remark, we comment on the effect of the
pairing symmetry on our results. So far we have considered
cases where the superconducting order parameter has s-wave
symmetry. In the case of d-wave symmetry, the induced or-
der parameter in the metal has nodes. This will reduce the
superfluid density at low temperature relative to the s-wave
case, due to the excitation of nodal quasiparticles. However,
at T��0 /2, the behavior of �s is not expected to be qualita-
tively different from the s-wave case. Therefore we expect
our main results, Tc�max���0 /2, to hold in the d-wave case
as well. We intend to test this claim explicitly in the future.
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APPENDIX: THE LOW t� LIMIT

1. Superfluid density

We will now derive Eqs. �12� and �18� for the superfluid

density in the limit
t�
2

�0
�T��0, where �0 is the zero-

temperature gap in the pairing layer. In this limit, we assume
that ��T�=�0 is independent of temperature. We proceed by
integrating out the �gapped� negative-U layer degrees of
freedom, obtaining an effective action for the metallic layer.
Focusing on the low-energy modes of the metallic layer, the
� dependence of the effective action can be neglected, ob-
taining a low-energy effective Hamiltonian of the form

Heff = �
k�

�k+q/2ck�
† ck� + �̃�

k
ck↑

† c−k↓
† + H . c . , �A1�

where �k=−2t�cos kx+cos ky�−�, q /2 is a vector potential
introduced in order to calculate the phase stiffness, and

�̃ �
t�
2

�0
�A2�

is the proximity induced pairing field in the metallic layer.

Note that in the T��0 limit, �̃ is approximately temperature

independent, even for temperatures larger than �̃. The phase
stiffness at temperature T is calculated from Eq. �A1� in the
standard way by computing the free energy F�q�
=−T ln Z�q�, where Z�q�=Tr
exp�−�Heff��, and differentiat-
ing twice the free energy per unit area with respect to qx.
This gives28

�s =
1

2�
�
k

�uk
2 f�Ek� + vk

2
1 − f�Ek���
�2�k

�kx
2

−
1

2�
�
k
� ��k

�kx
	2

�f�Ek�
1 − f�Ek�� , �A3�

where Ek=��̃2+�k
2, uk=�1

2 �1+
�k

Ek
�, vk=�1

2 �1−
�k

Ek
�, and f�	�

is the Fermi function. Integrating the first expression in the
right-hand side of Eq. �A3� by parts and replacing � d2k

�2��2

→�d�N���, where N��� is the density of states of the metal-
lic layer, we get

�s =
1

2
�

−W/2−�

W/2−�

d�N���
�̃2

E2� 1

2E
tanh��E

2
	 − �f�E�
1 − f�E���

��vx
2���� . �A4�

Here E���=��2+ �̃2 and the averaged square velocity at en-
ergy � of the metallic layer is �vx

2����= 1
N����

d2k
�2��2 
��k

−���
��k

�kx
�2. Assuming ��W /2−��
T implies that the integral

in Eq. �A4� is dominated by energies close to the chemical
potential. Hence, we may estimate it by replacing N��� and
�vx

2���� with their values at the chemical potential. 
We as-
sume that � is not too close to zero in order to avoid the
logarithmic divergence of N��� at the middle of the band.�
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Changing variables to �=���2+ �̃2, we obtain

�s 

�̃2

T2 N�0��vx
2��0��

��̃

�W

d�
F���

���2 − ���̃�2
, �A5�

where F���= 1
2� tanh� �

2 �− e�

�1+e��2 . At low �, F���=O��2�, so

the integral converges in the limit ��̃→0. At high �, F���
� 1

� , so we may also take the �W→� limit. Therefore, we

obtain to leading order in ��̃ and 1
�W

�s�negative-U sites� 
 �
�̃2

T2 N�0��vx
2��0�

�
t�
4

�0
2T2N�0��vx

2��0� , �A6�

where �=�0
�d�F��� /�2=7��3� /8�2, and we have used Eq.

�A2�. This is Eq. �12�. We have verified Eq. �A6� by calcu-
lating �s using finite temperature perturbation theory to order
t�
4 , by integrating out the fermions to obtain an effective

action for the superconducting phase, and by evaluating Eq.
�9� numerically in the low t� limit.

In the case of superconducting wires, the pairing layer has
a finite stiffness of order �s

x� t� in the x direction �parallel to
the wires� even in the t�→0 limit. In the transverse direc-
tion, however, Eq. �A6� applies for �s

y, with the exception
that now the proximity induced gap depends on k. The in-
duced gap is significant in a sliver in k space of width 
kx

�
�0

vF
around the Fermi surface of the wires �where vF are the

Fermi velocities of the wires�, reaching a maximum of order
t�
2

�0
, and is negligible elsewhere �since only the region of

Fermi surface of the wires has considerable particle-hole
mixing�. Taking N�0��vy

2�� t and vF� � t�� t, we therefore es-
timate �s

y in this case as

�s
y �

t�
4 t

�0
2T2��0

t�
	 =

t�
4

�0T2 . �A7�

The geometric average of �s
x and �s

y �which determines Tc�
scales as

�s�SC wires� = ��s
x�s

y �� t

�0

t�
2

T
, �A8�

which is Eq. �18�.

2. TMF in the low t� limit

TMF is obtained by using the equation

U�SC�TMF� = 1, �A9�

where �SC�T� is the superconducting susceptibility of the
pairing layer with �=0. Using finite temperature perturba-
tion theory, �SC�TMF� can be expanded in powers of t�. Since
we are dealing with a noninteracting theory, all the diagrams
are straight lines with t� vertices along them. The leading-
order correction to �SC�T� is


�SC =
2t�

2 a2

��
�
i�nk

1

i�n + 	k

1

�− i�n + 	k�2

1

− i�n + �k
,

�A10�

where the dispersions in the pairing and metallic layers are
given by 	k=−2t� cos kx− ��−	−
	� and �k=−2t�cos kx
+cos ky�−�, respectively. Here, a2 is the unit-cell area and
�n= �2n+1��

� are Matsubara frequencies. Performing the Mat-
subara summation, we obtain


�SC =
2t�

2 a2

�
�
k
� 
	k − �k tanh��	k/2��

4	k
2�	k

2 − �k
2�

+
2f�	k�
1 − �f�− 	k��− 	k + �k��

4	k�− 	k + �k�2

−
f��k�

��k + 	k��− �k + 	k�2� . �A11�

In the case of disconnected negative-U sites, we take the
limit 	k→0 in Eq. �A11� �assuming that the negative-U sites
are close to half filling�. The limit gives


�SC�negative-U sites� = −
2t�

2 a2

�
�
k

��k − 2 tanh���k

2
	

4�k
3

� − �̃
t�
2 N�0�a2

T2 , �A12�

where �̃=�0
�dxx−3
x−2 tanh�x /2��=7��3� /2�2. We have re-

placed N��� with N�0�, which is a reasonable approximation
since the integral is dominated by the low-energy regime.
Adding 
�SC to the zeroth-order susceptibility �SC

0 � 1
4T of

disconnected sites, we get from Eq. �A9�

U

4TMF
�1 −

4�̃N�0�a2t�
2

TMF
+ O�t�

4 �� = 1. �A13�

Solving for TMF to leading order in t�
2 , we get

TMF�negative-U sites� �
U

4
�1 −

At�
2

tU
+ O�t�

4 �� ,

�A14�

where A=16�̃tN�0�a2�2�̃, where N�a�a2�W−1= �8t�−1 was
used. This is Eq. �15�.

In the case of superconducting wires, we can still estimate
the parametric form of the most divergent part of 
�SC at low
temperatures. The strongest singularity of the integral in Eq.
�A11� comes from the vicinity of the crossing of the two
Fermi surfaces �i.e., �k=0, 	k=0�. This singularity is cut off
by the temperature. As a rough estimation of the integral, we
evaluate the integrand in the limit ��	k�, ���k�
1, so that
tanh�

�	k

2 �→sgn�	k�, f�	k�→��−	k�, where � is a Heaviside
step function, etc., and extend the integration only to within
T of the line 	k=0. Further, we change variables from k to
�	k ,�k�, with the Jacobian J�	 ,��= 1

��k	��k�� , which we re-
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place by its value at �	=0,�=0�. Adding the contributions in
the four quadrants around the point �	=0,�=0� �both 	 and
� can be positive or negative�, we get


�SC � − 2t�
2 J�0,0��

T

W

d	�
0

W

d�
1

2	�	 + ��2

= 2t�
2 J�0,0��1 + ln

W + T

2T

W
−

1

T
�

� −
Ãt�

2

W2T
, �A15�

where we have estimated J�0,0�� 1
W2 and kept only the most

divergent term at T→0. Ã�0 is a numerical coefficient.

Adding Eq. �A15� to the t�=0 superconducting susceptibil-
ity, which is of the BCS form �SC

0 = 1
2W ln� W

2T �, we get the
following equation for TMF:

U�SC�TMF� = U� 1

2W
ln� W

2TMF
	 −

Ãt�
2

W2TMF
� = 1.

�A16�

Hence we get

TMF�SC wires� � TMF,0�1 −
2Ãt�

2

WTMF,0
+ O�t�

4 �� ,

�A17�

where TMF,0= W
2 e−2W/U is the t�=0 mean-field transition tem-

perature.
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