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PILLARS AND TOWERS OF QUADRATIC TRANSFORMATIONS

SHREERAM S. ABHYANKAR

(Communicated by Bernd Ulrich)

Abstract. Infinite pillars of quadratic transformations are used to describe
residue fields of subrings of finitely generated ring extensions of the ring of
integers. Towers whose underlying quadratic transformations are finite pillars
or nonpillars are employed for the construction of basic dicritical divisors.

1. Introduction

In Section 2, I shall define the concepts of pillars and towers of QDTs = Qua-
dratic Transformations, and the concept of dicritical divisors. In Section 4, I shall
employ towers whose underlying QDTs are finite pillars, as well as nonpillars, for
constructing some basic types of dicritical divisors. I shall say more about dicriticals
at a later opportunity. Briefly speaking, dicritical divisors deal with transcenden-
tal extensions of residue fields, and finite QDT sequences are ideally suited for
constructing such extensions. In a similar manner, infinite QDT sequences do the
same job for constructing infinite algebraic extensions of residue fields which may
be thought of as different incarnations of transcendental extensions. Thus, infinite
pillars are the natural tools for answering the following very interesting question
raised by Vitezslav Kala.

Question 1.1. Let A be a subring of a domain B which is a finitely generated ring
extension of the ring of integers Z. Let P be a maximal ideal in A. Then is the
field A/P necessarily finite?

Answer. A resounding NO. Indeed A/P could be any field of finite transcendence
degree over its prime subfield. Let ch(k) denote the characteristic of a ring k. Note
that if k is a field with ch(k) = 0, then the prime subfield of k is the rational
number field Q, and if k is a field with ch(k) = a prime number p, then the prime
subfield of k is the Galois field GF(p) consisting of p elements. If k is a field whose
transcendence degree over its prime subfield is n ∈ N = the set of all nonnegative
integers, then we put kdim(k) = n or kdim(k) = n + 1 according as ch(k) �= 0 or
ch(k) = 0; we call kdim(k) the kroneckerian dimension of k.

Without making a fuss about sets and classes, by Ωn we denote the set of all fields
of kroneckerian dimension n. For any domain A we let Ω(A) denote the set of all
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residue fields of closed points of spec(A), i.e., all fields A/P with P ∈ mspec(A) =
the set of all maximal ideals in A. For any domain B we let

Ω̂(B) =
⋃

Ω(A),

where the union is over all subrings A of B. Now the above answer can be para-
phrased as the inclusion ⋃∗

Ωn ⊂
⋃′

Ω̂(B),

where the starred union is over all nonnegative integers n, and the primed union is
over all domains B which are finitely generated ring extensions of Z. Note that all
fields in the LHS or the RHS are countable; recall that a set Γ is countable means
that there is a surjective map N+ → Γ where N+ is the set of all positive integers.

This answer is very surprising because, letting Ω be the set of all finite fields,
it can easily be seen that⋃′

Ω(B) = Ω whereas Ωn =
⋃†

Ωn,p,

where the daggered union is over all primes p augmented by 0 and where

Ωn,p =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
set of all fields between GF(p)(T1, . . . , Tn)

and its algebraic closure if n ≥ 0 �= p,

set of all fields between Q(T1, . . . , Tn−1)

and its algebraic closure if n > 0 = p.

Actually, in Section 3, we shall show that:

Proposition 1.2. Given any n ∈ N, for the (n+ 1)-variable polynomial ring B =

Z[T1, . . . , Tn+1] we have Ωn ⊂ Ω̂(B).

2. Quadratic transformations

The basic references for notation and terminology are my books [Ab3] and [Ab4].
In particular see Sections 1 and 6 of [Ab3] and Quest (Q35) of [Ab4]. For dicriticals
see my papers [Ab5] and [Ab6] and my joint papers [AbH] and [AbL] with Heinzer
and Luengo respectively.

A quasilocal ring (commutative with 1) is a ring V having exactly one maximal
ideal M(V ). V dominates a quasilocal ring W means that W is a subring of V
with M(W ) = W ∩M(V ). We let

HV : V → H(V ) = V/M(V )

denote the residue class epimorphism. The quasilocal ring V is residually rational
(resp: residually algebraic, residually transcendental, etc.) over a subring R means
that H(V ) = HV (R) (resp: H(V )/HV (R) is algebraic, H(V )/HV (R) is transcen-
dental, etc.). Likewise an element z in an overring of V is residually algebraic (resp:
residually transcendental, etc.) over R at V or relative to V means that z ∈ V and
HV (z)/HV (R) is algebraic (resp: HV (z)/HV (R) is transcendental, etc.).

A coefficient set of a quasilocal ring V is a subset κ of V with {0, 1} ⊂ κ such
that HV maps κ bijectively onto H(R). A coefficient ring of V is a subring S of
V such that HV (S) = H(V ); equivalently S is a subring of V such that S contains
a coefficient set of V . A coefficient field of V is a subfield S of V such that S is
a coefficient ring of V ; equivalently S is a subfield of V such that S is a coefficient
set of V . A local ring is a Noetherian quasilocal ring. As usual N = the set of all
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nonnegative integers, N+ = the set of all positive integers, and spec(B) = the set
of all prime ideals in a ring B.

Let A be a domain with quotient field QF(A) = L. The modelic spec V(A) of
A is the set of all its localizations AP as P varies over spec(A). If A is quasilocal,
then its local normalization AN is the set of all the members of V(A) which
dominate A, where A is the integral closure of A in L. If U is a set of quasilocal
domains, then we put UN =

⋃
B∈U BN. For any nonzero ideal J in A, the modelic

blowup W(A, J) of A at J is defined by putting W(A, J) =
⋃

0�=x∈J V(A[Jx−1]).

If A is quasilocal, then the dominating modelic blowup W(A, J)Δ of A at J is
the set of all members of W(A, J) which dominate A. If U is a set of quasilocal
domains and i ∈ N, then we let Ui = the set of all i-dimensional members of U . In
the case of quasilocal A, we are particularly interested in the sets W(A, J)Δ1 and
(W(A, J)Δ1 )

N. For quasilocal A we put D(A, J) = (W(A, J)Δ1 )
N and we call this

the dicritical set of J in A and we call its members the dicritical divisors of
J in A. If A is a local domain, then, in view of Krull-Akizuki, D(A, J) is a finite
set, i.e., |D(A, J)| < ∞, where | | denotes cardinality; in the case when J is a
pencil (as defined below) in a two dimensional regular local domain R = A, this is
discussed in the first paragraph of (5.6)(†∗) of [Ab5]; in the general case, it suffices
to note that a nonzero ideal in a Noetherian domain is contained in at most a finite
number of height one prime ideals. If A is a positive dimensional local domain,
then by a QDT = Quadratic Transform of A we mean a member of W(A,M(A))Δ;
by a 0-th QDT of A we mean A itself, by a first QDT of A we mean a QDT of
A,. . . , by a j-th QDT of A with j ∈ N+ we mean a first QDT of a (j − 1)-th QDT
of A. If A is a positive dimensional regular local domain, then we let o(A) denote
the unique DVR with quotient field L such that ordo(A)x = ordAx for all x ∈ L;
i.e., o(A) is the unique one dimensional first QDT of A. We call o(A) the natural
DVR of A.

Henceforth in this section let R be a two dimensional regular local domain with
quotient field L. Recall that D(R)Δ is the set of all prime divisors of R, i.e., DVRs
V with quotient field L such that V dominates R and is residually transcendental
over R. For any z ∈ L× = the set of all nonzero elements of L, D(R, z) denotes
the set of all dicritical divisors of z in R, i.e., the set of all prime divisors V of
R such that z is residually transcendental over R relative to V . We also define the
numerator ideal aR(z) of z in R, the denominator ideal bR(z) of z in R, and
the first associated ideal JR(z) of z in R by writing z = a/b such that a �= 0 �= b
in R have no nonunit common factor in R and letting aR(z) = aR, bR(z) = bR,
and JR(z) = (a, b)R. Note that now we have

D(R, z)� ⊂ D(R, z)� ⊂ D(R, z) = (W(R, JR(z))
Δ
1 )

N,

where D(R, z)� (resp: D(R, z)�) is the set of all sharp dicritical divisors (resp:
flat dicritical divisors) of z in R, i.e., those V ∈ D(R)Δ at which z is a residual
transcendental generator (resp: residually a polynomial) over R, i.e., z ∈ V and{

H(V ) = K ′(HV (z)) (resp: HV (z) ∈ K ′[t] \K ′ for some t ∈ H(V ) with

H(V ) = K ′(t) where K ′ is the relative algebraic closure of H(R) in H(V )).

We call D(R, z) (resp: D(R, z)�, D(R, z)�) the dicritical set (resp: sharp dicrit-
ical set, flat dicritical set) of z in R.
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Geometrically speaking, we may visualize R to be the local ring of a simple
point of an algebraic or arithmetical surface, and we think of z as a rational
function at that simple point which corresponds to the local pencil of curves
a = ub at that point. We say that z generates a special pencil at R to mean
that b can be chosen so that b = xm for some x ∈ M(R) \ M(R)2 and m ∈ N,
i.e., zxm ∈ R for some x ∈ M(R) \ M(R)2 and m ∈ N. We say that z generates
a semispecial pencil at R to mean that b can be chosen so that b = xmyn for
some x, y in M(R) and m,n in N with M(R) = (x, y)R, i.e., zxmyn ∈ R for some
x, y in M(R) and m,n in N with M(R) = (x, y)R. We say that z generates a
polynomial or nonpolynomial pencil in R according as D(R, z) = D(R, z)� or
D(R, z) �= D(R, z)�. We say that z generates a generating or nongenerating
pencil in R according as D(R, z) = D(R, z)� or D(R, z) �= D(R, z)�.

We put

Q(R) =

{
the set of all two dimensional regular local domains

whose quotient field is L and which dominate R.

By Section 2 of [Ab1] we see that S 	→ o(S) gives a bijection oR : Q(R) → D(R)Δ.
By Section 2 of [Ab1] we also see that, given any V in D(R)Δ, there exists a unique
sequence (Rj)0≤j≤ν with ν ∈ N and R0 = R such that Rj+1 is a two dimensional
first QDT of Rj for 0 ≤ j < ν and o(Rν) = V . The sequence (Rj)0≤j≤ν is called
the finite QDT sequence of R along V . Note the disjoint partition

Q(R) =
∐
j∈N

Qj(R), where Qj(R) =

{
the set of all two dimensional

j-th QDTs of R.

Note that oR(Rν) = V and o−1
R (V ) = Rν . Given any T ∈ Q(R) and any nonzero

ideal I in R we define the (R, T )-transform of I to be the unique ideal J in T
which we shall denote by (R, T )(I) and which is characterized by requiring that

IT = J
∏

M(R)⊂M(W )

(T ∩M(W ))ordW (IT ),

where the product is taken over the set W of all one dimensional members W of
V(T ) with M(R) ⊂ M(W ). Note that T = R ⇔ W = ∅, and T �= R ⇒ either
W = {TxT } with x ∈ M(T ) \M(T )2 or W = {TxT , TyT } with (x, y)T = M(T ); see
page 367 of [ZaS]. Note that for any z ∈ L× we have

(R, T )(JR(z)) = JT (z).

For P ⊂ Q(R), define the Q(R)-completion of P to be P̂ ⊂ Q(R) obtained by
putting

P̂ = {T ′ ∈ Q(R) : R ⊂ T ′ ⊂ T ∈ P} or equivalently P̂ =
⋃
T∈P

{R0, . . . , Rν},

where (Rj)0≤j≤ν is the finite QDT sequence of R along o(T ). Note that if P is finite,

then so is P̂ . Call P globally unforked to mean that S ∈ P ⇒ |Q1(S) ∩ P̂ | ≤ 1
and S ∈ P ⇒ |Q1(S) ∩ P | = 0. We dissect this definition into local pieces thus.
Given points (= elements) S and T of Q(R) we say that T is contiguous to S
if T ∈ Q1(S). We call S ∈ Q(R) a terminal point (resp: unifurcation point,

bifurcation point) of P if S ∈ P̂ and |Q1(S) ∩ P̂ | = 0 (resp: |Q1(S) ∩ P̂ | =
1, |Q1(S)∩ P̂ | > 1). Clearly S is a terminal point of P ⇒ S ∈ P . We say that P is
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unforked at S ∈ Q(R) to mean that S is a nonbifurcation point of P and there is
no point of P contiguous to S. Clearly P is globally unforked iff it is unforked at
each of its points.

For a moment let J be a nonzero ideal in R. We call J a pencil (in R) if
J = yJR(z) for some y ∈ R× and z ∈ L×, and we note that then D(R, J) =
D(R, z). If J is a pencil with J = yJR(z), then we let D(R, J)� = D(R, z)� and
D(R, J)� = D(R, z)�, and if J is not a pencil, then we let D(R, J)� = D(R, J)� = ∅.
Note that now we have

D(R, J)� ⊂ D(R, J)� ⊂ D(R, J) = (W(R, J)Δ1 )
N.

We say that J is a polynomial or nonpolynomial ideal in R according as
J = yJR(z) for some y ∈ R× and z ∈ L× such that z generates a polynomial
or nonpolynomial pencil in R. We say that J is a generating or nongenerating
ideal in R according as J = yJR(z) for some y ∈ R× and z ∈ L× such that z
generates a generating or nongenerating pencil in R. In the last two sentences we
may say pencil instead of ideal. Regardless whether J is a pencil or not, we say
that J is primary to mean that the ideal J is M(R)-primary. We say that J is
special (resp: semispecial) at R if J = yJR(z) for some y ∈ R× and z ∈ L× such
that z generates a special (resp: semispecial) pencil at R. We put⎧⎪⎪⎪⎨⎪⎪⎪⎩

B(R, J)� = {o−1
R (V ) : V ∈ D(R, J)�},

B(R, J)� = {o−1
R (V ) : V ∈ D(R, J)�},

B(R, J) = {o−1
R (V ) : V ∈ D(R, J)},

Q(R, J) = {T ∈ Q(R) : (R, T )(J) is not principal}

and we note that Q(R, J) is a finite set (see the proof of (4.1)(v) below and also
see Proposition 2 on page 367 of [ZaS]) with

B(R, J)� ⊂ B(R, J)� ⊂ B(R, J) ⊂ Q(R, J) ⊂ Q(R).

We say that J goes through the members ofQ(R, J) but not through the members
of Q(R) \Q(R, J). Here is a pictorial visualization of these sets.

Visualize J as a source of a 4th of July fireworks display in America or a Diwali
Bhuinala fireworks display in India. Visualize members of Q(R, J) as stars (or
sparks) emanating from the display calling them (quadratic) stars of J . Visualize
members of B(R, J) as big stars of J and members of Q(R, J) \B(R, J) as small
stars of J . Visualize members of B(R, J)� as sharp stars of J and members of
B(R, J)� as flat stars of J .

Visualize B(R, J)� (resp: B(R, J)�,B(R, J),Q(R, J), Q(R, J) \B(R, J)) as the
sharp star (resp: flat star, big star, star, small star) set of J . We say that
J terminates (resp: unifurcates, bifurcates) at S ∈ Q(R) to mean that S is
a terminal point (resp: unifurcation point, bifurcation point) of B(R, J). We call
S ∈ Q(R) a terminal (resp: unifurcation, bifurcation) point of J to mean
that S is a terminal point (resp: unifurcation point, bifurcation point) of B(R, J).
For reasons of euphony we may say unifurcated point (resp: is unifurcated)
instead of unifurcation point (resp: unifurcates), and so on. We say that J is
globally unforked (resp: unforked at S ∈ Q(R)) to mean that B(R, J) is
globally unforked (resp: unforked at S ∈ Q(R)).

We call D(R, J)� and D(R, J)� the sharp dicritical set and flat dicritical set
of J in R and we call their members sharp dicritical divisors and flat dicritical
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divisors of J in R respectively. For any S ∈ Q(R) we may visualize o(S) as the
“halo” around S. Thus we visualize the dicritical divisors (resp: sharp dicritical
divisors, flat dicritical divisors) of J in R as the halos around the big stars (resp:
sharp stars, flat stars) of J in R. J is said to be special (resp: semispecial,
principal, primary) at S ∈ Q(R) if the ideal or pencil JS in S is special (resp:
semispecial, principal, primary) at S. Note that J goes through S ∈ Q(R) iff
it is nonprincipal at S, i.e., iff the ideal JS in S is nonprincipal. By abuse of
language we say that J is dicritical or nondicritical according as R ∈ B(R, J)
or R �∈ B(R, J).

Now for a moment let (x, y) be generators of M(R), let K = H(R) = R/M(R),
and let κ be a coefficient set of R. Referring to Theorem (T158) on page 561 of
[Ab4], to get hold of a concrete set of generators for the maximal ideal of a QDT
of R, given any R′ ∈ Q1(R) we define generators (x′, y′) of M(R′) and a coefficient
set κ′ of R′ thus. If x/y ∈ M(R′) with R′ ∈ Q1(R), then (x′, y′) = (x/y, y) and
κ′ = κ. If x/y �∈ M(R′), then y/x ∈ R′ and (x′, y′) = (x, μ(y/x)), where

μ(Z) = Zω +
∑

1≤i≤ω

μiZ
ω−i with ω ∈ N+ and μi ∈ κ

is such that
Zω +

∑
1≤i≤ω

HR(μi)Z
ω−i

is irreducible in the polynomial ring K[Z], and κ′ = the image of κω under the
map κω → R′ obtained by sending (k0, . . . , kω−1) ∈ κω to

∑
0≤i≤ω−1 ki(y/x)

i. We

call (R′, x′, y′, κ′) a QDT of (R, x, y, κ). By the finite QDT sequence of (R, x, y, κ)
along V ∈ D(R)Δ we mean the sequence (Rj , xj , yj , κj)0≤j≤ν , where (Rj)0≤j≤ν

is the finite QDT sequence of R along V with (R0, x0, y0, κ0) = (R, x, y, κ) and
(Rj , xj , yj , κj) is a QDT of (Rj−1, xj−1, yj−1, κj−1) for 1 ≤ j ≤ ν. By a finite
QDT sequence of R we mean the finite QDT sequence of R along some V ∈ D(R)Δ;
clearly this is equivalent to saying that a finite QDT sequence of R is a sequence
of the form (Rj)0≤j≤ν with ν ∈ N and R0 = R such that Rj is a two dimensional
QDT of Rj−1 for 1 ≤ j ≤ ν. Likewise, by a finite QDT sequence of (R, x, y, κ)
we mean the finite QDT sequence of (R, x, y, κ) along some V ∈ D(R)Δ; clearly
this is equivalent to saying that a finite QDT sequence of (R, x, y, κ) is a sequence
of the form (Rj , xj , yj , κj)0≤j≤ν with ν ∈ N and (R0, x0, y0, κ0) = (R, x, y, κ) such
that (Rj , xj , yj , κj) is a QDT of (Rj−1, xj−1, yj−1, κj−1) for 1 ≤ j ≤ ν. By an
infinite QDT sequence of R we mean a sequence (Rj)0≤j<∞ with R0 = R such
that Rj ∈ Q1(Rj−1) for all positive j. By an infinite QDT sequence of (R, x, y, κ)
we mean a sequence (Rj , xj , yj , κj)0≤j<∞ with (R0, x0, y0, κ0) = (R, x, y, κ) such
that (Rj , xj , yj , κj) is a QDT of (Rj−1, xj−1, yj−1, κj−1) for all positive j. Recall
that, given any algebraic field extension k′ of a field k and any element ξ of k′, the
minimal polynomial of ξ over k is the unique monic polynomial

q(Z) = Zω +
∑

1≤i≤ω

qiZ
ω−i with ω ∈ N+ and qi ∈ k

such that q(Z) is irreducible in k[Z] and q(ξ) = 0.
By a tower at R we mean a sequence (Rj , Jj)0≤j≤ν with ν ∈ N, where (Rj)0≤j≤ν

is a finite QDT sequence of R and Jj is a primary pencil in Rj for 0 ≤ j ≤ ν
such that for 1 ≤ j ≤ ν we have that Rj−1 is a unifurcation point of Jj−1 and
(Rj−1, Rj)(Jj−1) = Jj . The sequence (Jj)0≤j≤ν is called the staircase of the
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tower. By a staircase of a finite QDT sequence (Rj)0≤j≤ν of R we mean a sequence
(Jj)0≤j≤ν such that (Rj , Jj)0≤j≤ν is a tower at R. We call the tower and the
staircase special (resp: semispecial) if Jj is special (resp: semispecial) at Rj for
0 ≤ j ≤ ν; clearly, J0 is special at R0 ⇒ J0 is semispecial at R0 ⇒ the tower and
the staircase are semispecial. We call the tower and the staircase terminal if Rν

is a terminal point of Jν . We call the tower and the staircase small if Rj is a small
star of Jj for 0 ≤ j < ν. We call the tower and the staircase big or dicritical if Rj

is a big star of Jj for some j ∈ {0, 1, . . . , ν− 1}. By the big stars or dicriticals of
the tower and the staircase we mean those Rj , with 0 ≤ j ≤ ν, which are big stars
of Jj . We call ν + 1 the height of the tower.

By an infinite pillar at (R, x), with x ∈ M(R) \M(R)2, we mean an infinite
QDT sequence (Rj)0≤j<∞ of R such that M(Rj−1)Rj = xRj for 0 ≤ j < ∞.
By a pillar at (R, x), with x ∈ M(R) \ M(R)2, we mean a finite QDT sequence
(Rj)0≤j≤ν of R such that M(Rj−1)Rj = xRj for 0 ≤ j ≤ ν. We call these pillars
rational if Rj is residually rational over R for 0 ≤ j < ∞ in the first case and for
0 ≤ j ≤ ν in the second case. In the proof Proposition 3.1 we use infinite pillars
which are mostly nonrational. In Section 4 we use finite pillars which are mostly
rational.

3. Big residue fields

(Cf. Example 3 on page 102 of [ZaS].) We shall deduce (1.2) from part (IV) of:

Proposition 3.1. Let R be a two dimensional regular local domain with quotient
field L, generators (x, y) of M(R), and residue class epimorphism

HR : R → H(R) = R/M(R) = K.

Let K∗ be an algebraic field extension of K. Let D and B be subrings of L with
D ⊂ B ∩R. Then we have the following:

(I) Assume that QF(HR(D)) = K with {1/x, y} ⊂ B and let ξ ∈ K∗. Then there
exists R′ ∈ Q1(R) together with y′ ∈ B ∩ R′ and a homomorphism α′ : R′ → K∗

with ker(α′) = M(R′) such that upon letting D′ = D[y/x] we have M(R)R′ = xR′

with M(R′) = (x, y′)R′, D′ ⊂ B∩R′ with QF(HR′(D′)) = H(R′), and α′(y/x) = ξ
with α′(z) = HR(z) for all z ∈ R.

(II) Assume that QF(HR(D)) = K with {1/x, y} ⊂ B and let ξj ∈ K∗ for all
j ∈ N+. Then there exists an infinite QDT sequence (Rj)0≤j<∞ of R together with
an element yj ∈ B∩Rj and a homomorphism αj : Rj → K∗ with ker(αj) = M(Rj)
for all j ∈ N such that, upon letting D0 = D and Dj = D[y0/x, y1/x, . . . , yj−1/x]
for all j ∈ N+, we have the following:

(1) y0 = y, and α0(z) = HR(z) for all z ∈ R;
for all j ∈ N we have:

(2j) M(Rj) = (x, yj)Rj, Dj ⊂ B ∩Rj, QF(HRj
(Dj)) = H(Rj);

for all j ∈ N+ we have:
(3j) M(Rj−1)Rj = xRj, αj(yj−1/x) = ξj, and αj(z) = αj−1(z) for all z ∈ Rj−1.
(III) In (II) assume that HR(D)[ξ1, ξ2, . . . ] = K∗. Let R∗ =

⋃
0≤j<∞ Rj and

D∗ = D[y0/x, y1/x, . . . ]. Then R∗ is a quasilocal domain with quotient field L and
D∗ is a subring of B ∩ R∗ with α∗(D∗) = K∗, where α∗ : R∗ → K∗ is the unique
epimorphism with ker(α∗) = M(R∗) such that α∗(z) = αj(z) for all j ∈ N and
z ∈ Rj.
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(IV) Assume that K is countable and that QF(HR(D)) = K with {1/x, y} ⊂ B.
Then there exists a subring D∗ of B together with an epimorphism φ : D∗ → K∗

such that D ⊂ D∗ and φ(z) = HR(z) for all z ∈ D.

Proof. To prove (I) let q(Z) be the minimal polynomial of ξ over K. Since
QF(HR(D)) = K, there exists 0 �= a ∈ K such that aq(Z) ∈ HR(D)[Z]. Now
we can find μ(Z) ∈ D[Z] such that applying HR to the coefficients of μ(Z) we
get aq(Z). Let R′ = R[y/x]P , where P is the maximal ideal in R[y/x] gener-
ated by (x, y′) with y′ = μ(y/x). Then R′ ∈ Q1(R) with M(R)R′ = xR′ and
M(R′) = (x, y′)R′. Moreover, upon lettingD′ = D[y/x] we clearly haveD′ ⊂ B∩R′

and QF(HR′(D′)) = H(R′). Also clearly there exists a unique homomorphism
α′ : R′ → K∗ with ker(α′) = M(R′) such that α′(y/x) = ξ and α′(z) = HR(z) for
all z ∈ R. This proves (I).

(II) follows from (I) by induction thus. For any ν ∈ N, let (IIν) be obtained from
(II) upon replacing the phrases “an infinite QDT sequence (Rj)0≤j<∞” and “for
all j ∈ N” and “for all j ∈ N+” by the phrases “a finite QDT sequence (Rj)0≤j≤ν”
and “for all j ∈ {0, 1, . . . , ν}” and “for all j ∈ {1, 2, . . . , ν}” respectively. Then (II0)
is trivial. Moreover, for any ν ∈ N+, by (I) we see that (IIν−1) ⇒ (IIν) with the
data for 0 ≤ j ≤ ν − 1 being the same as the data in (IIν−1), and so on.

(III) follows from (II). To prove (IV), by countability we can find elements
ξ1, ξ2, . . . in K∗ such that HR(D)[ξ1, ξ2, . . . ] = K∗. Now apply (III) and let
φ : D∗ → K∗ be the unique homomorphism such that φ(z) = α∗(z) for all
z ∈ D∗. �
Proof of (1.2). Given any W ∈ Ωn let

D =

{
Z[T1, . . . , Tn−1] if ch(W ) = 0,

Z[T1, . . . , Tn] if ch(W ) = p �= 0

and

(S, x, y) =

{
(Q(T1, . . . , Tn−1)[T

−1
n+1, Tn], T

−1
n+1, Tn) if ch(W ) = 0,

(ZpZ(T1, . . . , Tn)[T
−1
n+1], T

−1
n+1, p) if ch(W ) = p �= 0

(where ZpZ(T1, . . . , Tn) = ApA with A = ZpZ[T1, . . . , Tn]) and

R = S(x,y)S and L = QF(B) = Q(T1, . . . , Tn+1)

with the observation that if ch(W ) = 0, then n > 0, and with the understanding
that ZpZ and S(x,y)S are the localizations of Z and S at the prime ideals generated
by p and (x, y) respectively. Now R is a two dimensional regular local domain with
quotient field L, (x, y) are generators of M(R), {1/x, y} ⊂ B, and D is a subring
of B ∩R. Let

HR : R → H(R) = R/M(R) = K

be the residue class epimorphism. Then clearly QF(HR(D)) = K. Also clearly
there exists an algebraic field extension K∗ of K together with an isomorphism
K∗ → W . By (3.1)(IV) we can find a subringD∗ ofB together with an epimorphism
φ : D∗ → K∗ such that D ⊂ D∗ and φ(z) = HR(z) for all z ∈ D. Therefore

W ∈ Ω̂(B). �
Remark on DVRs (3.2). Concerning (3.1)(III), using results from [Ab2], we see
that R∗ is the valuation ring V of a valuation v of L and H(V ) is isomorphic
to K∗ and, moreover, if [K∗ : K] = ∞, then v is real; i.e., the value group Gv
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may be assumed to be an additive subgroup of R. By the construction of R∗ we
have M(R∗) = xR∗ and hence if [K∗ : K] = ∞, then V must be a DVR, and so
in particular v is rational; i.e., for any η, ζ in L× with v(η) < 0 < v(ζ) we have
v(ηrζs) = 0 for some r, s in N+. In the very special case when B = Z[T1] and
[K∗ : K] = ∞, let us sketch an alternative proof of (1.2) by letting E = B ∩ V and
showing that HV (E) = H(V ) by using the following Lemma 3.4. The said lemma
also inspires a sketch of Krull domains. We thank Bill Heinzer for the two sketches
and (the late) Jack Ohm for the lemma. �
Sketch of very special case (3.3). Now H(V ) ≈ K∗ is an algebraic field extension
of GF(p) ≈ K, and hence H(V ) is integral over GF(p). By the following lemma
we get EP = V . Thus GF(p) ⊂ HV (E) ⊂ QF(HV (E)) = H(V ), and hence the
domain HV (E) is integral over the field GF(p), and therefore, say by (T38.1) on
page 243 of [Ab4], HV (E) is a field. Consequently HV (E) = H(V ). �
Lemma 3.4. Let B be a domain with quotient field L. Let V be the valuation ring
of a rational valuation of L such that B �⊂ V . Assume that the quotient field of
E = B ∩ V is L. Then upon letting P = E ∩M(V ) we have EP = V .

Proof. Obviously EP ⊂ V . To prove V ⊂ EP it suffices to show that given any
μ ∈ V , there exists ν ∈ E \ P with μν ∈ E. Since B �⊂ V , we can find ζ ∈ B with
ζ �∈ V , i.e., v(ζ) < 0. Since QF(E) = L, we have (*) μη ∈ E for some 0 �= η ∈ E.
If v(η) = 0, then η �∈ P and we can take ν = η. So assume that v(η) �= 0. Then,
because η ∈ E ⊂ V , we get v(η) > 0. Therefore by the rationality of v we get
v(ηrζs) = 0 for some r, s in N+. Let ν = ηrζs. Then ν ∈ B because {η, ζ} ⊂ B.
Now ν ∈ B with v(ν) = 0 tells us that ν ∈ E \ P . We shall show that μν ∈ E, and
this will complete the proof. Clearly μν = (μη)(ηr−1ζs) with (μη) ∈ E ⊂ B by
(*), and (ηr−1ζ) ∈ B because {η, ζ} ⊂ B. Hence μν ∈ B and also μν ∈ V because
μ ∈ V and v(ν) = 0; therefore μν ∈ B ∩ V = E. �
Sketch of Krull domains (3.5). Here is a slightly sharper treatment of Krull do-
mains than the treatment given on pages 82-88 of Zariski and Samuel [ZaS]. Let L
be a field and let G be the set of all DVRs with quotient field L. Given any DVR
V ∈ G and a family F ⊂ G let

E =
⋂
U∈F

U and B =
⋂

U∈F\{V }
U.

We call V an essential valuation of F , or say that V is essential for F , if E �= B.
F satisfies the finiteness condition in Lmeans that QF(E) = L and each nonzero
element of L is a unit in all except finitely many members of F . If every member of
F is essential for F and if F satisfies the finiteness condition in L, then we say that
E is a Krull domain and F is a family of essential valuations of E; note that then
F is uniquely determined by E because (•) Krull domain ⇒ F = V(E)1. To prove
(•), for every V ∈ F , by Lemma 3.4 we have V = EE∩M(V ) ∈ V(E)1. Conversely,
given any V ∈ V(E)1, we want to show that V ∈ F . Since V ∈ V(E)1, there exists
0 �= x ∈ E ∩ M(V ). By the finiteness condition on F , x is a unit in all except
finitely many members V1, . . . , Vn of F . Suppose if possible that V �∈ F . Then we
can find y ∈ E such that y ∈ M(Vi) for 1 ≤ i ≤ n but y �∈ M(V ). Now for some
m ∈ N+ we get ym/x ∈ E \ V , which is a contradiction. Therefore V ∈ F .

It follows that a domain E is a Krull domain iff upon letting F = V(E)1 we
have that: (i) every member of F is a DVR, (ii) F satisfies the finiteness condition

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



3076 SHREERAM S. ABHYANKAR

in QF(E), and (iii) E =
⋂

U∈F U . Clearly every Krull domain is normal. Thus we
have re-proved Theorem 26 on page 83 of Zariski and Samuel [ZaS] and shown that
condition (E4) on page 82 of Zariski and Samuel [ZaS] is redundant. �

4. Basic dicritical divisors

Let R be a two dimensional regular local domain with quotient field L. Let
(x, y) be generators of M(R) and let K = H(R) = R/M(R). After fixing some
notation in Remark (4.0), in Propositions (4.1) we shall prove some basic results
about special and semispecial pencils, and in Propositions 4.2 and 4.3 we shall
embellish them by constructing some dicritical towers.

Remark 4.0. In this remark we fix some notation to be used in the rest of this
section. Given any 0 �= F ∈ R we can write

F =
∑

i+j=d

F̃ijx
iyj with d = ordRF and F̃ij ∈ R

and we define the initial form info(F ) = info(R,x,y)F of F (relative to R, x, y) to
be the nonzero homogeneous polynomial Φ = Φ(X,Y ) of degree d in indeterminates
X,Y with coefficients in K obtained by putting

Φ =
∑

i+j=d

ΦijX
iY j with Φij = HR(F̃ij).

For completeness we put info(0) = 0.
Recall that R \ M(R) = U(R) = the set of all units in R. For any ζ ∈ R or

ζ ⊂ R we put ord(R/xR)ζ = ord(R/xR)ζ
� and ord(R/yR)ζ = ord(R/yR)ζ

�, where, just
in this sentence, we are denoting the images of ζ under the canonical epimorphisms
R → R/xR and R → R/yR by ζ� and ζ� respectively. Recall that for any subset ζ
of a regular local domain S we have ordSζ = min{ordSξ : ξ ∈ ζ}, where the min is
∞ if ζ ⊂ {0}.

For any a �= 0 �= b in R, upon letting info(R,x,y)a = a and info(R,x,y)b = b, we

note that a and b belong to the graded ring

grad(R) = K[X,Y ] =
∑
i∈N

M(R)i/M(R)i+1.

We call a a prime power to mean that a = δαn for some n ∈ N+, some irreducible
α ∈ K[X,Y ]\K, and some δ ∈ K×. Write GCD(a, b) for the unique generator of the
smallest principal overideal of (a, b)K[X,Y ] which is of the form XpY q+(terms of
Y -degree < q). Note that then GCD(a, b) = 1 iff a and b have no nonconstant com-
mon factor in K[X,Y ]. For any f = f(X,Y ) in the polynomial ring S[X,Y ] over
a ring S, the symbols degXf , degY f , degX,Y f , ordXf , ordY f , ordX,Y f , infoX,Y f
have obvious meanings, where ordX,Y f and infoX,Y f are defined by regarding f
as a member of S[[X,Y ]], while ordXf and ordY f are defined by regarding f as a
member of (S[Y ])[[X]] and (S[X])[[Y ]] respectively. Note that if f = 0, then the
degrees are −∞ and the orders are ∞ and the info is 0; if f �= 0, then the degrees
as well as the orders belong to N and the info is a nonzero homogeneous member
of S[X,Y ]. In particular this applies to elements of K[X,Y ]. Note that

(•) if ordRa = ordRb = e ∈ N+ and bR = xeR, then b is a prime power and for
J = (a, b)R we have ordXa < e ⇔ a/b �∈ K ⇔ R is a big star of J .
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Proposition 4.1. For any pencil J = (a, b)R in R with a �= 0 �= b in M(R), let
ordRa = d and ordRb = e with info(R,x,y)a = a and info(R,x,y)b = b. Then:

(i) R is a terminal point of J ⇔ d = e and GCD(a, b) = 1.
(ii) R is a big star of J ⇔ d = e and a/b �∈ K.
(ii*) R is a terminal point of J ⇒ R is a big star of J .
(iii) If J is special at R and R is a big star of J , then J is unforked at R.
(iv) If J is semispecial at R, then J is semispecial at every R∗ ∈ Q(R).

(v) R is a unifurcation point of J ⇔ J is nonprincipal at R and GCD(ã, b̃) is a

prime power, where (ã, b̃) = (a, b) or (ã, b̃) = (a, 0) or (ã, b̃) = (0, b) according as
d = e or d < e or d > e.

Proof. Clearly d = e and GCD(a, b) = 1 ⇔ (R,R′)(J) = R′ for all R′ ∈ Q1(R),
where in the ⇐ part we assume that J is nonprincipal at R; this proves (i).

Also clearly d = e and a/b �∈ K ⇔ a/b is residually transcendental over R relative
to o(R); this proves (ii). (ii*) follows from (i) and (ii).

In view of (ii), to prove (iii), without loss of generality we may assume that d = e
with b = xe and

a =
∑

0≤i≤e

aix
e−iyi,

where the elements ai ∈ R are such that ai �∈ M(R) for some i > 0. Now clearly
we have (R,R′)(J) = R′ for every R′ ∈ Q1(R) for which M(R)R′ = xR′. Moreover
for the unique R′′ ∈ Q1(R) for which M(R′′) = (x′′ = x/y, y)R′′, upon letting
J ′′ = (R,R′′)(J) we have J ′′ = (a′′ = a/ye, b′′ = b/ye)R′′, where

a′′ =
∑

0≤i≤e

aix
′′e−i

and b′′ = x′′e. Clearly ordR′′a′′ < e = ordR′′b′′ and hence R′′ is not a big star of J .
This proves (iii).

To prove (iv), without loss of generality, we may assume that bR = xpyqR with
p, q in N. Now by induction on j we see that for all j ∈ N and Rj ∈ Qj(R) we have
bRj = x

pj

j y
qj
j Rj for some generators (xj , yj) of M(Rj) and some pj , qj in N; hence

J is semispecial at Rj . This proves (iv).
To prove (v) it suffices to note that if J is nonprincipal at R, then the members

R′ of Q1(R) for which (R,R′)(J) �= R′ are in a bijective correspondence with the
“tangent directions” of J , i.e., with the homogeneous principal prime ideals P in
grad(R) such that {info(R,x,y)g : g ∈ J with ordRg = ordRJ} ⊂ P . �

Proposition 4.2. Now (4.1)(iii) says that if J is special at a big star R, then J
nonbifurcates at R and has no big star contiguous to R. We shall show that this is
best possible by constructing a special pencil at R such that R is a big star of J and
there is another big star of J in Q2(R). So consider the special pencils described by⎧⎪⎪⎪⎨⎪⎪⎪⎩

J = (a, b)R and M(R) = (x, y)R,

Ĵ = (â, b̂)R̂ and M(R̂) = (x̂, ŷ)R̂ with R̂ ∈ Q1(R) and (x̂, ŷ) = (x/y, y),

J̃ = (ã, b̃)R̃ and M(R̃) = (x̃, ỹ)R̃ with (J̃ , R̃, x̃, ỹ) = (Ĵ , R̂, x̂, ŷ + x̂),

J = (a, b)R and M(R) = (x, y)R with R ∈ Q1(R̃) and (x, y) = (x̃, ỹ/x̃),
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where ⎧⎪⎪⎪⎨⎪⎪⎪⎩
(b, a) = (x5, [x4y + x3y2] + x3y3 + 3x2y4 + 3xy6 + y8),

(b̂, â) = (x̂5, (x̂4 + x̂3ŷ) + x̂3 + 3x̂2ŷ + 3x̂ŷ2 + ŷ3),

(b̃, ã) = (x̃5, x̃3ỹ + ỹ3),

(b, a) = (x2, x y + y3).

Here we are given the fourth row J = (a, b)R, which is dicritical by (4.1)(ii). We

construct the third row J̃ = (ã, b̃)R̃ so that its transform (R̃, R)(J̃) equals J . Taking

new generators for M(R̃) we get the second row Ĵ = (â, b̂)R̂. This gives rise to the

first row J = (a, b)R whose transform equals J̃ . Now J is dicritical by (4.1)(ii)
because the bracketed terms constitute the info of a.

Proposition 4.3. We shall now generalize (4.2) in two pieces. In (ii) and (iii) we

shall deal with the piece J → J̃ , whereas in (iv) we shall deal with the piece J̃ → J .
In (v), which follows from (ii) to (iv), by putting the two pieces together, we shall
construct a special tower of any height having big stars exactly at any noncontiguous
preassigned spots. The first assertion (i) is auxiliary and follows from (4.1). Let
R′ and R′′ be the unique members of Q1(R) such that M(R′) = (x′, y′)R′ and
M(R′′) = (x′′, y′′)R′′ with (x′, y′) = (x, y/x) and (x′′, y′′) = (x/y, y). Let S be any
coefficient ring of R; for instance S = R. Note that then S is a coefficient ring also
of R′ and R′′.

Informally speaking, the four pencils J, Ĵ , J̃ , J constructed in (4.2) are all of the
form J = (a, b)R, where

(b, a) = (xe, f(x, y) = yc + xyw) with w ∈ R and f = f(X,Y ) ∈ S[X,Y ].

To define the four types of f we let ordRa = d and introduce subsets

S(e, d, c), S(e > d = c), S(e < d ≤ c), S(e = d < c)

of S[X,Y ]. Here the first subset contains the next three. The second and third

subsets correspond to the nondicritical pencils Ĵ , J̃ , J . The last subset corresponds
to the dicritical pencil J . Formally speaking:

For any e, d, c in N+,⎧⎪⎪⎪⎨⎪⎪⎪⎩
let S(e, d, c) be the set of all f = f(X,Y ) in S[X,Y ]

such that degXf(X,Y ) < e with degY f(X,Y ) = c

and ordX,Y f(X,Y ) = d with ordY f(X,Y ) > 0

and f(0, Y ) = Y c.

For any e > d = c in N+, let

S(e > d = c) = {f ∈ S(e, d, c) : ordX,Y [f(X,Y )− f(0, Y )] > c}.
For any e < d ≤ c in N+, let

S(e < d ≤ c) = {f ∈ S(e, d, c) : ordX,Y [f(X,Y )− f(0, Y )] > e}.
For any e = d < c in N+, let

S(e = d < c) = {f ∈ S(e, d, c) : ordX infoX,Y f(X,Y ) < e}.
For any f(X,Y ) ∈ S[X,Y ] and e ∈ N, upon writing

f(X,Y ) =
∑

0≤i<∞
fi(Y )Xi with fi(Y ) ∈ S[Y ],
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we define the (X, e)-truncation τef(X,Y ) of f(X,Y ) by putting

τef(X,Y ) =
∑

0≤i<e

fi(Y )Xi.

(i) If J = (a, b)R, where b = xe and a = f(x, y) with

f ∈ S(e > d = c) or f ∈ S(e < d ≤ c) or f ∈ S(e = d < c),

then J is a special primary pencil at R, and R is respectively a

small star or small star or big star

of J , and we always have that J is unifurcated at R and

ordRb = e and ordRa = d and ord(R/xR)a = c and ord(R/yR)a = ∞.

(ii) Consider the special primary pencil J ′ = (a′, b′)R′ at R′ given by b′ = x′e

and a′ = f ′(x′, y′) with f ′ ∈ S(e, d, c). Let f(X,Y ) = Xcf ′(X,Y/X). Then
f ∈ S(e+ c > c = c) and for the special primary pencil J = (a, b)R at R given by
b = xe+c and a = f(x, y) we have (R,R′)(J) = J ′ and R is a unifurcated small star
of J .

Proof. Clearly f ′ ∈ S[X,Y ] belongs to S(e, d, c) iff

f ′(X,Y ) = Y c +
∑

1≤i<e and 1≤j≤c

αijX
iY j with αij ∈ S

and
min ({c} ∪ {i+ j : αij �= 0}) = d.

Since f(X,Y ) = Xcf ′(X,Y/X) we get

f(X,Y ) = Y c +
∑

1≤i<e and 1≤j≤c

αijX
i+c−jY j

and hence f(X,Y ) ∈ S[X,Y ] is such that⎧⎪⎨⎪⎩
degXf(X,Y ) < e+ c with degY f(X,Y ) = c

and ordX,Y f(X,Y ) = c with ordY f(X,Y ) > 0

and f(0, Y ) = Y c with ordX,Y [f(X,Y )− f(0, Y )] > c.

It follows that f ∈ S(e+ c > c = c) and for the special primary pencil J = (a, b)R
at R given by b = xe+c and a = f(x, y) we have (R,R′)(J) = J ′. By (i) we also see
that R is a unifurcated small star of J . �

(iii) Consider the special primary pencil J ′′ = (a′′, b′′)R′′ at R′′ given by b′′ = x′′e

and a′′ = f ′′(x′′, y′′) with f ′′ ∈ S(e, d, c). Let f(X,Y ) = Y ef ′′(X/Y, Y ). Then
f(X,Y ) ∈ S[X,Y ] and letting d∗ = ordX,Y f(X,Y ) we have that e < d∗ ≤ e + c
and f ∈ S(e < d∗ ≤ e + c), and for the special primary pencil J = (a, b)R at R
given by b = xe and a = f(x, y) we have (R,R′′)(J) = J ′′ and R is a unifurcated
small star of J .

Proof. Clearly f ′′ ∈ S[X,Y ] belongs to S(e, d, c) iff

f ′′(X,Y ) = Y c +
∑

1≤i<e and 1≤j≤c

αijX
iY j with αij ∈ S

and
min ({c} ∪ {i+ j : αij �= 0}) = d.
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Since f(X,Y ) = Y ef ′′(X/Y, Y ), we get

f(X,Y ) = Y e+c +
∑

1≤i<e and 1≤j≤c

αijX
iY j+e−i

and hence f(X,Y ) ∈ S[X,Y ] is such that⎧⎪⎨⎪⎩
degXf(X,Y ) < e with degY f(X,Y ) = e+ c

and ordX,Y f(X,Y ) = d∗ with ordY f(X,Y ) > 0

and f(0, Y ) = Y e+c with ordX,Y [f(X,Y )− f(0, Y )] > e

with
e < d∗ ≤ e+ c.

It follows that f ∈ S(e < d∗ ≤ e+ c) and for the special primary pencil J = (a, b)R
at R given by b = xe and a = f(x, y) we have (R,R′′)(J) = J ′′. By (i) we also see
that R is a unifurcated small star of J . �

(iv) Consider the generators (u, v) of M(R′′) given by (u, v) = (x′′, y′′ + x′′).
Consider the special primary pencil J ′′ = (a′′, b′′)R′′ at R′′ given by b′′ = ue and
a′′ = f ′′(u, v) with f ′′ ∈ S(e > d = c). Then there exists f ∈ S(e = e < e + c)
such that for the special primary pencil J = (a, b)R at R given by b = xe and
a = f(x, y) we have (R,R′′)(J) = J ′′ and R is a unifurcated big star of J . Actually

we may take f to be given by the explicit formula f(X,Y ) = Y ef̂(X/Y, Y ), where

f̂(X,Y ) = τef
′′(X,Y +X).

Proof. Clearly f ′′ ∈ S[X,Y ] belongs to S(e > d = c) iff

f ′′(X,Y ) = Y c +
∑

1≤i<e and 1≤j≤c

αijX
iY j with αij ∈ S

and
i+ j > c for all 1 ≤ i < e and 1 ≤ j ≤ c for which αij �= 0.

Now upon letting
f(X,Y ) = f ′′(X,Y +X)−Xc

we get f(X,Y ) ∈ S[X,Y ] with

f(X,Y ) =
∑

0≤i<∞
f i(Y )Xi, where f i(Y ) ∈ S[Y ]

and
f0(Y ) = Y c and degY f i(Y ) ≤ c with f i(0) = 0 for 0 ≤ i < ∞.

Let
g∗(X,Y ) =

∑
0≤i<e

f i(Y )Xi and g∗∗(X,Y ) =
∑
i≥e

f i(Y )Xi.

Now g∗∗(X,Y ) = Y Xeg(X,Y ) for some g(X,Y ) ∈ S[X,Y ] and hence

J ′′ = (b∗, a∗)R′′ with (b∗, a∗) = (x′′e, x′′c + g∗(x′′, y′′)).

Clearly g∗(X,Y ) ∈ S(e, d, c) and hence, upon letting f∗(X,Y ) = Y eg∗(X/Y, Y ),
by (iii) we see that f∗ ∈ S(e < d∗ ≤ e+ c) for some d∗ ∈ N+. Let

f(X,Y ) = XcY e−c + f∗(X,Y ).

Then f ∈ S(e = e < e+c) and for the special primary pencil J = (a, b)R at R given
by (b, a) = (xe, f(x, y)) we have (R,R′′)(J) = (x′′e, x′′c + g∗(x′′, y′′))R′′ = J ′′. By
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(i) we also see that R is a unifurcated big star of J . It only remains to note that

clearly we have f(X,Y ) = Y ef̂(X/Y, Y ), where f̂(X,Y ) = τef
′′(X,Y +X). �

(v) Let there be given any finite QDT sequence (Rj)0≤j≤ν of R and a sequence
of integers 0 ≤ i1 < · · · < iμ ≤ ν such that i2 − i1 ≥ 2, . . . , iμ − iμ−1 ≥ 2.
For 0 ≤ j ≤ ν let (xj , yj) as well as (uj , vj) be generators of M(Rj) such that
(uj , vj) = (xj , yj + λjxj) with λj ∈ {0, 1}. Let {0, 1, . . . , ν − 1} = W ′ ∏W ′′ be
a disjoint partition; i.e., W ′ and W ′′ are subsets of {0, 1, . . . , ν − 1} such that
W ′ ∪W ′′ = {0, 1, . . . .ν− 1} and W ′ ∩W ′′ = ∅. Assume that for all j ∈ W ′ we have
(xj+1, yj+1) = (uj , vj/uj), and for all j ∈ W ′′ we have (xj+1, yj+1) = (uj/vj , vj).
Let there be given any eν , dν , cν in N+ and fν ∈ S(eν , dν , eν) and a special primary
pencil Jν = (aν , bν)Rν at Rν such that (bν , aν) = (ueν

ν , fν(uν , vν)); note that by
(4.1) we have

eν = dν = cν ⇔ Rν is a terminal point of Jν ⇒ Rν is a big star of Jν

and

Rν is a nonterminal big star of Jν ⇒ eν = dν < cν .

For 0 ≤ j < ν let ej , cj in N+ be inductively defined by requiring that

(ej , cj) =

{
(ej+1 + cj+1, cj+1) if j ∈ W ′,

(ej+1, ej+1 + cj+1) if j ∈ W ′′.

Assume that
(1) iμ = ν iff Rν is a big star of Jν ;
(2) if iμ = ν, then λν = 0;
(3) if λν �= 0, then eν > dν = cν ;
(4) if λj+1 �= 0 for a nonnegative integer j < ν, then ej+1 > cj+1.

Let W ∗ = {i1, i2, . . . , iμ} \ {ν} and assume that

{0 ≤ j < ν : λj+1 �= 0} = W ∗ ⊂ W ′′.

Then for 0 ≤ j < ν there exist dj in N+ and fj ∈ S(ej , dj , cj) and a special primary
pencil Jj = (aj , bj)Rj at Rj with (bj , aj) = (u

ej
j , fj(uj , vj)) such that

(Rj , Rj+1)(Jj) = Jj+1

and ⎧⎪⎨⎪⎩
ej > dj = cj if j ∈ W ′,

ej < dj ≤ cj if j ∈ W ′′ \W ∗,

ej = dj < cj if j ∈ W ∗

and

fj ∈

⎧⎪⎨⎪⎩
S(ej > dj = cj) if j ∈ W ′,

S(ej < dj ≤ cj) if j ∈ W ′′ \W ∗,

S(ej = dj < cj) if j ∈ W ∗.

Moreover, for 0 ≤ j < ν we have that Rj is a unifurcation point of Jj . Finally, for
0 ≤ j ≤ ν we have that Rj is a big star of Jj or a small star of Jj according as
j ∈ {i1, . . . , iμ} or j �∈ {i1, . . . , iμ}. Actually we may take fj to be given explicitly
for 0 ≤ j < ν for the inductive formulas

f̂j+1(X,Y ) =

{
fj+1(X,Y ) if λj+1 = 0,

(X, ej+1)-truncation of fj+1(X,Y +X) if λj+1 �= 0
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and

fj(X,Y ) =

{
X

cj+1

j+1 f̂j+1(X,Y/X) if j ∈ W ′,

Y
ej+1

j+1 f̂j+1(X/Y, Y ) if j ∈ W ′′.

We observe that (Rj , Jj)0≤j≤ν is a special tower at R with big stars
exactly at (Ril)1≤l≤μ, where 0 ≤ i1 < · · · < iμ ≤ ν with any preassigned μ ∈ N

and any preassigned integers ≥ 2 as values of i2 − i1, . . . , iμ − iμ−1. The tower is
terminal iff eν = dν = cν .

Note 4.4. The example in (4.2) can be made terminal by inserting two more bottom
rows, and then it will correspond to the ν = 4 and μ = 3 case of (4.3)(v).
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