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ABSTRACT In this paper, we propose two deep learning (DL) based receiver schemes in uplink multiple-

input multiple-output (MIMO) systems. In the first scheme, we design a pilot-assisted MIMO receiver using

a data-driven full connected neural network. This data-driven receiver can recover transmitted signal directly

in an end-to-end manner without explicitly estimating channel. In the second scheme, we adopt a model-

driven network which combines communication knowledge with DL. The model-driven scheme divides the

MIMO receiver into channel estimation subnet and signal detection subnet, and each subnet is composed of a

traditional solution as initialization and a DL network to further improve the accurate. The simulation results

show that both of the two schemes achieve better bit error ratio (BER) performance than traditional methods.

In particular, the data-driven scheme can achieve optimal BER performance in low-dimensional MIMO

systems, while the model-driven scheme can be trained with fewer trainable parameters and outperforms the

data-driven scheme in high-dimension MIMO systems.

INDEX TERMS Channel estimation and signal detection, MIMO, deep learning, model-driven,

data-driven.

I. INTRODUCTION

High data-rate demands are becoming more and more

challenging with the rapid development of mobile devices.

To solve the problem of spectrum resources scarcity and

increasing throughput requirements, multiple-input multiple-

output (MIMO) has become one of the key technologies in

the future network communication systems [1]–[4]. MIMO

allows multiple antennas to send and receive messages

simultaneously at transmitting and receiving terminals. It can

effectively improve system capacity and spectrum efficiency

without changing the system bandwidth and signal transmis-

sion power [5], [6].

The associate editor coordinating the review of this manuscript and

approving it for publication was Ning Zhang .

A. BACKGROUND OF SIGNAL DETECTION AND

CHANNEL ESTIMATION

In order to take advantage of the MIMO, efficient sig-

nal detection and channel estimation algorithms are always

essential in design of MIMO receivers. With the increase

of the number of transmit and receive antennas, the number

of interference signals increases, which brings stronger co-

channel interference. Therefore, signal detection algorithms

are aimed to effectively suppress the channel interference

and recover the transmitted signal in the MIMO systems.

Maximum likelihood (ML) detection algorithm compares

the received signal with all transmitted signals [7], and

then estimates the comparison result according to the max-

imum likelihood principle to obtain the transmitted data.

Although the ML algorithm has the optimal performance of

signal detection, it is rarely used in practice because of its
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high complexity. Linear detection algorithm is usually

applied to reduce the computational complexity, such as

matched filter method, zero forcing (ZF) method and mini-

mummean squared error (MMSE)method. However, the per-

formance of these linear detectors is not good enough.

Besides, it is worth mentioning that these signal detection

methods are based on the assumption that channel matrix

is known at the receivers. However, channel estimation is

usually necessary before the signal detection. The channel

estimation methods mainly include least square (LS) method,

MMSE method and some compressive sensing-based meth-

ods (for massive MIMO systems) [8], [9]. To further improve

the performance, combining them with deep learning (DL) is

a feasible solution [10].

B. DEEP LEARNING

As amain technology in the field of artificial intelligence, DL

has been widely concerned [11]. In recent years, the devel-

opment of computers and the emergence of parallel com-

puting have greatly reduced the cost and time of training

the deep learning. It has enabled deep learning to develop

rapidly in the areas of computer vision [12], [13], natu-

ral language processing [14], [15] and speech recognition

[16], [17]. In addition, DL technology has gradually gained

more attention in the field of wireless communications [18],

such as channel estimation [19], [20], modulation identifi-

cation [21], [22] and channel state information (CSI) feed-

back [23], [24]. In [25], a deep neural network (DNN) based

scheme for beamforming in highly-mobile systems is pro-

posed to reduce training overhead and achieve optimal perfor-

mance. In [26], the DNN is integrated into hybrid precoding

in millimeter wave (mmWave) MIMO systems to reduce

the computational complexity. Moreover, deep learning for

resource allocation has been considered in [27], where DNN

is used to emulate the weighted MMSE algorithm. Litera-

ture [28] demonstrates that neural network can also learn the

channel decoding algorithms.

Especially, literature [29] proposes a DNN detector which

can be derived from the gradient descent method of unfolding

projection for signal detection. Literature [30] employs a full-

connection DL architecture to jointly replace signal detection

and channel estimation modulation in orthogonal frequency

division multiplexing (OFDM) systems. This method treats

the function block of wireless communication as a black box

and replaces it with a DL network. Besides, literature [31]

uses a model-driven method named ComNet which inte-

grates the communication knowledge into the deep learning

to replace the OFDM receiver.

C. CONTRIBUTION

Inspired by the powerful feature extraction and mapping abil-

ity of deep learning, we design two MIMO receiver schemes

based on the DL. In the first scheme, we use a data-driven

DL network, named FullCon to replace the whole MIMO

receiver. The proposed FullCon is a typical fully connected

network which will be trained by a large amount of training

data to obtain a mapping between the received signal and the

transmitted signal. After the training is completed, the trained

FullCon can recover the transmitted signal directly from the

received signal. In the second scheme, we design a model-

driven DL network named MdNet. Unlike the FullCon which

regards the whole receiver as a black box, the MdNet divides

the MIMO receiver into two subnetworks: channel estima-

tion and signal detection by combining the expert commu-

nication knowledge and the DL. The experimental results

show that both FullCon and MdNet have better bit error

ratios (BERs) performance than the traditional schemes. To

sum up, the main contributions of this paper are as follows:
• Inspired by the main methods of deep learning

application in the field of communication, we designed

two DL-based MIMO receivers: the data-driven DL

architecture named FullCon and the model-driven DL

architecture named MdNet.

• Different from the existing DL-based signal detector

that is only adapted to the system with the fixed chan-

nel [32]–[34] or the known CSI [35]–[37], we propose

two schemes considering both channel estimation and

signal detection, which can be applied to time-varying

MIMO channels.

• The proposed FullCon can directly recover the transmit-

ted signal in an end-to-end manner. In addition, the pro-

posed MdNet has fewer trainable parameters than the

ComNet proposed in [31].

• Through simulation results, we sum up the application

scenarios of the proposedMIMO receiver based on data-

driven and model-driven DL respectively.
The rest of this paper is organized as follows. In Section II,

we describe the system model and several conventional algo-

rithms. Then we give the proposed data-driven FullCon and

model-drivenMdNet receivers for multi-user MIMO systems

in Section III and Section IV respectively. In Section V,

several simulation results are presented. Finally, we draw the

conclusions in Section VI.

II. SYSTEM MODEL AND CONVENTIONAL ALGORITHMS

In this section, we first introduce the multi-user MIMO sys-

tem model in Section II-A. Then, we present a briefly review

the traditional schemes for channel estimation and signal

detection in the MIMO systems.

A. SYSTEM MODEL

We consider the uplink transmission in a typical multi-user

MIMO system, as shown in Fig. 1. The base station (BS)

equipped with n antennas serves m users simultaneously

where each user is equipped with a single antenna. The

transmitted symbol vector is denoted as x = [x1, x2, . . . ,

xm] ∈ S
m
, in which xj (j = 1, 2, . . .m) is a transmit-

ted symbol from the jth transmitted antenna. S = {s1, s2,
. . . , sk} ⊂ C represents the symbol set of K -order modu-

lation. H ∈ C
n×m is the channel matrix whose (i, j)th entry

hi,j represents the path gain from the jth transmitted antenna

to the ith received antenna. We consider a flat-fading channel
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FIGURE 1. Uplink MIMO systems with one BS equipped n antennas and
m single antenna users.

model with discrete-time and block fading where the channel

information remains constant within a discrete time interval,

i.e. channel matrix H does not change in a time slot but

changes with different blocks. The received symbol vector

y = [y1, y2, . . . , yn] ∈ C
n can be expressed as

y = Hx+ n, (1)

where n is the noise vector with independent, zero mean

Gaussian variables of variance σ 2, and yj is a received symbol

from the jth receiving antenna.

B. SIGNAL DETECTION

The purpose of signal detection is to recover the transmitted

data based on the signal received by the receiving antennas.

The ML detection scheme is known for its optimal detection

performance. Its principle is to transmit the signals through

the known channel, and then detect them by checking the

smallest distance metric. The specific rule of ML detection

for detecting x̃ML is given by

x̃ML = argmax
x
P(y|x)

= argmin
x
‖y−Hx‖2. (2)

However, the ML detection is rarely used in practical appli-

cations due to its high computational complexity. On the

other hand, the MMSE algorithm is a typical linear detection

scheme with lower complexity, and its definition is to find the

expected minimum mean square error when the transmitted

signal and the received signal are linearly combined. The

filter matrix of MMSE detection can be obtained by simpli-

fication as

GMMSE = H
† = (H

H
H+ σ 2I )−1H

H
, (3)

where (·)† means theMoore-Penrose pseudo-inverse and (·)H
represents the conjugate transpose. Then, the transmitted sig-

nal recovered through this linear detector can be expressed

as

x̃MMSE = GMMSEy

= (H
H
H+ σ 2I )−1H

H
y. (4)

It can be seen that the linear detection method mainly per-

forms the pseudo-inverse with the channel matrix H, so the

computational complexity is the order of cubic magnitude of

the number of transmitting antennas. In addition, these con-

ventional signal detection schemes are implemented under

the assumption that the channel matrix is known.

C. CHANNEL ESTIMATION

Channel estimation is usually necessary when the channel

information is unknown at receivers. We assume that pilot

and data transmissions are done within a interval. Np pilot

vectors xp[n] ∈ S
m×1

for n = 1, . . . ,Np are first transmitted

from the users. Then, Nd data vectors xd [n] ∈ S
m×1

for

n = 1, . . . ,Nd are transmitted following the pilot vectors

within an interval. These vectors can also be expressed in

matrix forms as xp = [xp[1], . . . , xp[Np]] ∈ S
m×Np

, xd =
[xd [1], . . . , xd [Nd ]] ∈ S

m×Nd
. The received pilot signal yp =

[yp[1], . . . , yp[Np]] ∈ C
n×Np and the received data signal

yd = [yd [1], . . . , yd [Nd ]] ∈ C
n×Nd can be expressed as

yp = Hxp + np, (5)

yd = Hxd + nd , (6)

where np ∈ C
n×Np , nd ∈ C

n×Nd and H ∈ C
n×m. In order to

obtain meaningful channel parameters, it is usually necessary

to satisfy the condition that pilot length is not less than the

number of transmitting antennas, i.e., Np ≥ m [38]. LS esti-

mator is a typical method for the channel estimation, and the

channel H̃LS obtained by the LS estimator is given by

H̃LS = ypxp
H (xpxp

H )−1. (7)

Its advantage is the simple structure and the low computa-

tional complexity. However, due to ignoring the influence of

noise, the performance of this estimation algorithm is greatly

reduced when the noise power is large.

III. PROPOSED DATE-DRIVEN RECEIVER FOR

MIMO SYSTEMS

In this section, we present the architecture of the FullCon

receiver for MIMO systems. In section III-A, we transform

the system model of complex-value into an equivalent real-

value model in order to combine MIMO with machine learn-

ing. The structure and details of the proposed FullCon are

elaborated in Section III-B. After that, the training process of

FullCon is presented in Section III-C.

A. REPARAMETERIZATION

A challenge in applying machine learning to MIMO systems

is complex valued signals and channel parameters which

are rare in the field of traditional machine learning. Tak-

ing into account this problem, we transform the complex

system model into an equivalent real-valued channel model.

As in [29], the real-valued model can be written as

yp = Hxp + np, (8)

yd = Hxd + nd , (9)
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where

yp =
[
Re(yp)

Im(yp)

]
∈R2n, H=

[
Re(H) − Im(H)

Im(H) Re(H)

]
∈R2n×2m,

xp =
[
Re(xp)

Im(xp)

]
∈ S

2m, n =
[
Re(n)

Im(n)

]
∈ R

2n,

yd =
[
Re(yd )

Im(yd )

]
∈ R

2n, xd =
[
Re(xd )

Im(xd )

]
∈ S

2m. (10)

By separating the complex values into imaginary part and real

part, we can observe that the elements of transmitted signal

belong to a real constellation S = {s1, s2, . . . , s√k} with size√
K . For example, the quadrature phase shift keying (QPSK)

constellation is defined as

s1 = −1− j⇔ u1 = [0, 0],

s2 = −1+ j⇔ u2 = [0, 1],

s3 = 1− j⇔ u3 = [1, 0],

s4 = 1+ j⇔ u4 = [1, 1], (11)

where ui for i = 1, . . . , 4 is the binary code element. S in

the complex-valued channel model (5) and (6) with QPSK is

equivalent to binary phase shift keying (BPSK) modulation

S = {−1, 1} in the real-valued channel model (8) and (9).

B. FULLCON ARCHITECTURE

The DNN is considered as the representative of artificial

intelligence technology. Neural network is inspired by the

concept that a neuron’s computation involves a weighted sum

of the input values [39], and the typical DNN model can be

seen as a multi-layer perceptron (MLP). The DNN consists

of multiple hidden layers which has powerful learning and

mapping capabilities than single-layer neural network. The

computation of jth neuron at each layer can expressed as

zj = f (

P∑

i=1
Wij × vi + bj), (12)

where bj is a bias. zj, vi, Wij and P are the output data, input

data, weights and the number of neurons respectively. f (·)
is a nonlinear function called activation function, which is

typically applied after full connection layer.

The role of the activation function in the neural network is

to generate nonlinear decision boundaries, so that the DNN

has nonlinear mapping learning ability. Generally, activa-

tion functions include ‘Sigmoid’ or Rectified Linear Units

(‘ReLu’) [40] as well as TanHyperbolic (‘tanh’). Mathemati-

cally, ‘Sigmoid’ function has a larger signal gain in the central

region and a smaller signal gain in the bilateral regions.

It benefits the mapping of signal characteristic space. The

definition of ‘Sigmoid’ can be expressed as

fSigmoid (x) =
1

1+ e−x
, (13)

which can map the output value of the neural network to

interval [0, 1]. However, some disadvantages exist in ‘Sig-

moid’, such as high computational complexity and vanishing

FIGURE 2. The diagram of the MIMO system with FullCon receiver.

FIGURE 3. FullCon MIMO receiver architecture with hidden layers
consisting of fully connected neural networks.

gradient in backpropagation (BP). To solve them, ‘ReLu’ is

becoming popular as its simplicity and ability to solve the

vanishing gradient. ‘ReLu’ function can be denoted as

fReLu(x) = max(0, x). (14)

The diagram of MIMO systems with the FullCon receiver

can be described as Fig. 2. In the receiver, the recovered

data signal x̃d can be estimated by using the received pilot

signal yp and the received data signal yd . Therefore, the input

of FullCon is the combination of yp and yd , and the output

of FullCon is the estimated data signal x̃d . We denote this

process of recovering signal as

x̃d = FullCon(yd , yp). (15)

The detail architecture of FullCon is shown in Fig. 3. The

weight matrix and the bias vector in the lth layer of the

FullCon are denoted by Wl and bl , where l = 0 represents

the output layer. Setting the hidden layer number to L1,

the formula (15) can be rewritten as

x̃d = FullCon(yd , yp)

= ψ0(W0ψL1 (WL1ψL1−1(. . . ψ1(W1(yd , yp)

+b1) . . .)+ bL1 )+ b0), (16)

where ψl(·) with l 6= 0 represents the activation function at

the nodes of the lth layer, and ψ0(·) represents the activation
function of output layer. Considering that the output of Full-

Con is transmitted binary 0-1 sequence streams, we set the

activation function at the nodes of output layer ψ0(·) as the
‘Sigmoid’ function. We then make the following judgment
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about the output value

x =

{
0, x < 0.5,

1, x ≥ 0.5.
(17)

When the output value of the network is greater than 0.5,

we judge it as symbol ‘1’. Otherwise, we judge it as sym-

bol ‘0’. We use ‘ReLu’ as the activation function at the

nodes of all hidden layers, i.e. ψi(·) is ‘ReLu’ function for

i = 1, . . . ,L1.

C. FULLCON TRAINING PROCESS

The FullCon receiver adopts a supervised learning approach,

which is trained by a set of labeled training samples to obtain

an optimal model. Our goal is to recover the transmitted

signal through the FullCon receiver, thus the label of Full-

Con is the transmitted symbols xd and the loss function in

this scheme is set to the mean of squared errors (MSE) as

follows

L =MSE(̃xd , xd ) =
1

|J |
∑

xd∈J
‖̃xd − xd‖2, (18)

where J is the training dataset generated by simulation and

|J | represents the size of training dataset. During the training
stage, we use an optimization process called stochastic gradi-

ent descent (SGD) to update the weights and the biases of the

neural network. The SGD algorithm updates the network by

partial derivative of the gradient computed by back propaga-

tion. It will be iteratively repeated to update all of the weights

and biases in the network to reduce the loss function.

Note that the pilot signal xp should keep fixed in both the

training and prediction stage. In the prediction stage, the com-

plexity and consumption time of the training can be ignored.

Once the FullCon is trained, x̃d can directly determined

through Fullcon without explicitly estimating the channel.

IV. PROPOSED MODEL-DRIVEN RECEIVER FOR

MIMO SYSTEMS

In this section, we report the proposed the model-driven

MdNet receiver for MIMO systems. It divides the MIMO

receiver into two subnet: channel estimation subnet and signal

detection subnet. The structure of the proposed MdNet is

described in Section IV-A and the detailed training process

is presented in Section IV-B.

A. MDNET ARCHITECTURE

If we consider the proposed FullCon receiver scheme above

as a black box, the proposed MdNet receiver architecture is a

relatively bright box which is illustrated as Fig. 4.

In the MdNet receiver, both the channel estimation and the

signal detection subnet are first initialized by low-complexity

traditional methods, and then the preliminary results are sent

to the deep learning module following these traditional meth-

ods to further improve the performance. Since this proposed

method is based on the traditional methods, it has rela-

tively superior robustness in the face of complex and various

scenarios.

FIGURE 4. Architecture of MdNet MIMO receiver where the input is xp, yp
and yd , and the output is the estimated transmitted signal x̃d .

FIGURE 5. Architecture of channel estimation subnet. The subnet consists
of a LS initializer and a DL channel refiner.

The detailed diagram of the channel estimation subnet is

shown as Fig. 5. The first step is to get an initial channel

matrix H̃LS by LS initialized channel estimator. The calcu-

lation process of H̃LS can be referred to the formula (7).

Thus, the input of the LS initializer consists of the received

pilot signal yp and the pilot xp which are known to the

receiver. The initial H̃LS will be collected as the input of

DL-based channel estimation (DL_CE) to obtain more accu-

rate channel information. Here, the DL_CE is a fully con-

nected deep learning network. The weight matrix and bias

vector in the lth layer of the DL_CE are denoted by Ql and

al , where l = 0 represent the output layer. Setting the hidden

layers number to L2, the final estimated channel matrix H̃ can

be written as

H̃ = DL_CE(H̃LS )

= Q0φL2 (QL2φL2−1(. . . φ1(Q1H̃LS + a1) . . .)+aL2 )+a0,
(19)

where φl(·) represents the activation function at the nodes

of the lth layer. In the proposed DL_CE, we use ‘ReLu’ as

activation function for all hidden layers, i.e., φi(·) is ’ReLu’
function for i = 1, . . . ,L2.
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FIGURE 6. Architecture of signal detection subnet consisting of a ZF
initializer and a T-layers signal refiner. Each layer of DL_SD has the same
structure, except for the learning parameters γi and θi .

In the signal detection subnet, the input is the received data

signal yd and the estimated channel matrix H̃ obtained by

the channel estimation subnet. Fig. 6 shows the diagram of

the signal detection subnet. Just like the channel estimation

subnet, we first use a traditional ZF signal detector to obtain

an insufficiently accurate signal detection result x̃ZF which

will be used as the initialization data for the DL-based signal

detection (DL_SD) iterative process. Different from the Com-

Net proposed in [31], which uses Bi-directional long short-

termmemory (BiLSTM) as signal detector refinenet, we used

a detector refinenet named trainable projected gradient detec-

tor (TPG) proposed by [41] as the DL_SD to further reduce

the number of training parameters and expand the advan-

tages of model-driven scheme. The DL_SD is constructed by

unfolding a variant of the projected gradient (PG) algorithm

and introduces several trainable parameters to improve per-

formance of the detection.

The PG algorithm has been applied in many fields

[42], [43], including signal detection. This algorithm can be

roughly described as finding the descent direction dk of the

objective function at the current iteration point xk , then start-

ing from xk and searching linearly along the direction dk , and

finally getting the next iteration point by xk+1 = xk + akdk
where parameter ak is the step-size parameter. The PG-based

MIMO detection is described by

ri = x̃d,i−1 + γW(yd − H̃̃xd,i−1), (20)

x̃d,i = tanh(ξri), (21)

where i = 1, . . . ,T represents the step of the iteration

process and tanh(·) is hyperbolic tangent function which can

be expressed as

tanh(x) =
sinh(x)

cosh(x)
=
ex − e−x

ex + e−x
. (22)

As can be seen from the formula (21), the soft projection

function tanh can ensure the estimated x̃d to [-1, 1] interval. ξ

is a parameter used for control the softness of soft projection.

The matrix W in the formula (20) has many different forms,

such as pseudo-inverse of H̃, linear MMSE matrix or just the

transposed of H̃.

The TPG detector is composed of T cascade layers and

each layer corresponds to one step iteration of traditional

algorithm. The formula of the TPG is given by

ri = x̃d,i−1 + γiW(yd − H̃̃xd,i−1), (23)

x̃d,i = tanh

(
ri

|θi|

)
, (24)

where i = 1, . . . ,T . The matrix W in the formula (23) is

defined by

W = H̃T (H̃H̃T + ζ I)−1, (25)

where (·)T represents the transpose and ζ is a trainable param-

eter. Note that the MdNet aims to reduce training parameters

andmake full use of the knowledge of communication model.

We adopt a same parameter ζ among the different layers in

(25) to further reduce the complexity of the neural network.

It can be clearly seen that the difference of TPG and PG is

that the TPG adds training parameters {γi}Tt=1 and {θi}Tt=1
to the step of gradient descent and soft projection respec-

tively. That is to say, if γi and θi keep fixed in all layers,

TPG will be equivalent to PG. In general, there are 2T + 1

trainable scalar parameters in TPG, which are {γi}Tt=1, {θi}
T
t=1

and ζ . The number of trainable parameters is only related

to the number of layers T . Compared with the traditional

fully connected network, the number of training parameters

is greatly reduced. In the proposed MdNet, we replace the

initial detection signal x̃d,0 = 0 in TPG with x̃ZF obtained

by the ZF signal detector, i.e., x̃d,0 = x̃ZF , to speed up the

convergence of iterations. Thus the received data signal yd ,

estimated channel matrix H̃ and signal x̃ZF are combined as

the input of DL_SD and the output is the final transmitted

signal x̃d .

B. MDNET TRAINING PROCESS

The proposed DL_CE is to obtain more accurate channel

information from the initial channel matrix HLS . Therefore,

the label of the DL_CE is the real channel H. The loss

function is set to MSE as follows

L(2Q) =MSE(H̃,H) =
1

|D|
∑

H∈D
‖H̃−H‖2, (26)

where D is the training dataset generated by simulation and

|D| represents the size of training dataset. 2Q is a vector

containing all the weights Q and biases a that need to be

trained. we update 2Q as 2Q ← 2Q − η∇2Q (L(2Q)) by

using SGD, where η is the learning rate and ∇ represents

gradient. This process will iteratively repeat to update 2Q of

the network to reduce the loss function.

In order to solve the problem of gradient vanishing, a train-

ing mode named incremental training is used in the DL_SD

training process. The incremental training can be understood

as follows: the first step is to train the first layer of net-

work, and then increase the number of layers of training in

each round. The last training result is used as the initial value
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of the next training. The loss function in the i training round

can be expressed as

L(2i) =MSE(xd , x̃d,i) =
1

|X |
∑

xd∈X
‖xd − x̃d,i‖2, (27)

where X is the training dataset generated by simulation

and |X | represents the size of training dataset. 2i is a vec-

tor containing trainable parameters up to the ith layer, i.e.,

2t = {γ1, . . . , γi, θ1, . . . , θi, ζ }. Within each round,

the training process uses the SGD method to update the

training parameters aiming to reduce the loss function, just

like the training of the general neural networks. More details

of the incremental training can be found in the literature [41].

V. SIMULATION RESULTS

In this section, we first introduce the setups of training in

Section V-A and then describe the generation of dataset for

training in Section V-B. The experimental results of the per-

formance comparison between the two proposed schemes and

the traditional methods are presented in Section V-C.

A. TRAINING METHOD

In all of the experiments, the simulation environment is based

on Python with Tensorflow framework [44]. We use the

graphic processing unit (GPU) method in the model training

phase to speed up the training on a computer with i5-8300H

CPU Core, one NVIDIA GeForce GTX 1050Ti GPU and

8GB RAM. Both in the training of FullCon and MdNet,

we adopt mini-batch method and adaptive moment estima-

tion (Adam) optimizer [45].

In the FullCon receiver, the number of hidden layers is

set to 3. The number of training epoch is 2000. Each epoch

consists of 20 batches and one batch contains 1000 train-

ing samples. In order to train the model better, we use

the ladder learning rates. The initial learning rate is set

λ = 0.001 and the learning rate λ drops five times for every

500 epochs in the following training process. Meanwhile, for

every 100 epoches, we generate 105 testing data to evaluate

the model performance.

In the MdNet receiver, the training of channel estimation

subnet have 200 epochs. Each epoch consists of 10 batches

and one batch contains 1000 training sample. We also use a

ladder learning rate form in channel estimation subnet train-

ing. The initial learning rate is set λ = 0.001 and the learning

rate λ drops five times for every 40 epochs in the following

training process. In the training of signal detection subnet,

we train 1000 epochs for each layer. So the total number

of epochs is 1000T . Each epoch consists of 1250 training

sample.

B. GENERATION OF TRAINING DATASET

During the offline training, the training data is generated by

simulating Rayleigh fading channels which is a reasonable

channel model in urban environments. The channel H is

time-varying and generated randomly following a typical

independent and identically distributed (i.i.d.) Gaussian ran-

dom variables. Since each training dataset is obtained using

FIGURE 7. BERs performance comparison of different hidden layer
neurons in the FullCon: (a) BER value versus SNR in 2 × 2 MIMO; (b) BER
value versus SNR in 4 × 4 MIMO.

different channel information, the trained model can be

applied to time-varying channels. The transmitted data xd
is randomly generated from the 0-1 distribution. The num-

ber of pilot symbols is set to the total number of users K ,

i.e., Np = m and xd adopts Hadamard matrix. Finally,

the QPSK modulation is employed in the simulation.

C. MAIN RESULTS

In this section, we first investigate the effect of the number

of neurons on the BER performance of FullCon and MdNet

methods to find a balance between the complexity and accu-

racy of the proposed DL-based receivers. Then, we inves-

tigate the BER performance of the methods with different

layers. Finally, the performance comparison between the

proposed method and the traditional method is investigated.

The abbreviations used in the following experiments are as

follows:

• LS_MMSE: Traditional LS channel estimation and

MMSE signal detection;
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FIGURE 8. BERs performance comparison of different hidden layer
neurons of the DL_CE subnet in MdNet: (a) BER value versus SNR in 2 × 2
MIMO, (b) BER value versus SNR in 4 × 4 MIMO.

• LS_PG: Traditional LS channel estimation and PG iter-

ative signal detection;

• FullCon: Using the proposed FullCon instead of tradi-

tional MIMO receiver;

• MdNet: Using the proposedMdNet instead of traditional

MIMO receiver.

1) IMPACT OF NEURONS NUMBERS IN

FULLCON AND MDNET

Fig. 7 illustrates BERs performance versus signal-to-noise

ratio (SNR) with different neuron numbers of each hidden

layer in FullCon. In order to investigate the impact of the

number of neurons in the hidden layer of FullCon on per-

formance, and try to further reduce the complexity of the

network while satisfying the appropriate BER performance,

we test the performance of several groups of neurons. In this

figure, we use the form of ‘x1-x2-x3’ to represent the number

of neurons in the three hidden layers respectively. In the

scenario of 2 × 2 MIMO, the BER performance increases

FIGURE 9. BERs performance versus the number of layers in the MdNet
under SNR = 10dB, 15dB and 20dB: (a) 2 × 2 MIMO; (b) 4 × 4 MIMO.

as the number of neurons increases. This is because with

the increase of the number of neurons, the feature extrac-

tion and mapping capabilities of deep learning network will

also be improved. However, Fig. 7(a) shows that the per-

formance gap between 800-400-200 and 100-50-25 is very

narrow, which indicates that when the number of neurons

increases to a certain number, the performance improvement

will become very slow. In the scenario of 4×4MIMO system,

the BER performance of the system also improves as the

number of neurons increases shown as Fig. 7(b). However,

at 3200-1600-800, the complexity of the model is already

very high and the convergence time required for training is

very long, so we do not continue to increase the number of

neurons.

Fig. 8 presents BERs performance comparison of different

hidden layer neurons of the DL_CE subnet in MdNet. It can

be seen from Fig. 8 that the BERs performance increases

as the number of neurons increases for both the scenario of

2× 2 and 4× 4 MIMO. This indicates that the performance

of the channel estimation subnet has a great impact on the

performance of subsequent signal detection. Although the
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FIGURE 10. BERs performance comparison of the LS_MMSE, LS_PG,
FullCon and MdNet over the Rayleigh fading MIMO channel: (a) BER value
versus SNR in 2 × 2 MIMO; (b) BER value versus SNR in 4 × 4
MIMO.

trend of the curve in the figure is similar to that in Fig. 7,

the number of trainable neurons of the model-driven method

has been greatly reduced compared with the data-driven

method.

2) IMPACT OF LAYER NUMBERS IN MDNET

Fig. 9 depicts BERs performance versus the number of layers

in MdNet under SNR = 10dB, 15dB and 20dB. It can be

seen from the Fig. 9 that with the increase of the number

of layers, the BER performance is improved and converges

after a certain number of layers. In particular, the perfor-

mance improvement brought by the increase of the number

of layers in 4 × 4 MIMO is more obvious than that of 2 × 2

MIMO. Besides, in the sameMIMO system, the higher SNR,

the greater the BER performance improvement caused by

the increases in the number of layers. But a problem that

comes with it is that the convergence speed is slow and more

layers are needed. Based on the experiments, we find that all

cases converge within 8 layers. So in the next performance

comparison, we set the number of layers in MdNet to 8.

3) PERFORMANCE COMPARISON

In order to evaluate the performance of the proposed data-

driven and model-driven DL schemes, we provide the BERs

performance comparison of LS_MMSE, LS_PG, FullCon

andMdNet over Rayleigh fadingMIMO channel versus SNR

in Fig. 10. Both the 2 × 2 and the 4 × 4 MIMO system are

investigated. As is shown in Fig. 10, the BER performance of

all scheme decreases as the SNR increases. Both the FullCon

and the MdNet receivers achieve better BER performance

than the traditional solutions in all setting. This reflects the

superiority of deep learning to solve communication prob-

lems. It is worth mentioning that the FullCon scheme out-

performs the MdNet scheme in 2× 2 MIMO system and the

advantage will be more obvious when the SNR increases. But

when the dimension of the system increases, such as 4 × 4

MIMO system in the figure, the number of neurons in the

FullCon must be multiplied, and the BER performance is

still difficult to catch up with the MdNet scheme. This phe-

nomenon reflects that the proposed FullCon which replace

the whole MIMO receiving system with full connection net-

work has an absolute advantage when the system dimension

is low. However, when the antenna dimension increases,

the MdNet method has the characteristics of lower training

difficulty and higher BER performance compared with the

FullCon method since the MdNet combines the advantages

of traditional communication and machine learning.

VI. CONCLUSION

In this paper, we proposed two DL-based receiver schemes

called FullCon and MdNet respectively in uplink multi-user

MIMO scenario. The FullCon can be seen a data-driven black

box, which uses a fully connected deep learning network to

replace the whole MIMO receiver including channel estima-

tor, signal detector and demodulator. The MdNet receiver

is a model-driven deep learning method which combines

traditional communication knowledge with DL. The simu-

lation results show that both the FullCon and the MdNet

outperform the traditional solutions. In addition, the Full-

Con can recover transmitted signal directly in an end-to-end

manner without explicitly estimating channel and achieve

the optimal BER performance when the MIMO dimension is

low. As the MIMO dimension increases, the complexity and

time required of training in FullCon are greatly large since

the number of neurons must be multiplied to increase BER

performance. However, the number of trainable parameters

of MdNet is very small and independent of MIMO dimen-

sion, so the training of the MdNet is very fast. Moreover,

the MdNet scheme can get best BER performance in high

MIMO-dimension. In the future, we will extend the data-

driven and model-driven DL architectures to hybrid MIMO

systems.

REFERENCES

[1] A. Ghosh, R. Ratasuk, B. Mondal, N. Mangalvedhe, and T. Thomas,

‘‘LTE-advanced: Next-generation wireless broadband technology

[invited paper],’’ IEEE Wireless Commun., vol. 17, no. 3, pp. 10–22,

Jun. 2010.

44944 VOLUME 8, 2020



X. Wang et al.: Pilot-Assisted Channel Estimation and Signal Detection in Uplink Multi-User MIMO Systems With DL

[2] C. Xu, S. Sugiura, S. X. Ng, P. Zhang, L. Wang, and L. Hanzo, ‘‘Two

decades of MIMO design tradeoffs and reduced-complexity MIMO detec-

tion in near-capacity systems,’’ IEEE Access, vol. 5, pp. 18564–18632,

2017.

[3] L. Hanzo, M. El-Hajjar, and O. Alamri, ‘‘Near-capacity wireless

transceivers and cooperative communications in the MIMO era: Evolution

of standards, waveform design, and future perspectives,’’ Proc. IEEE,

vol. 99, no. 8, pp. 1343–1385, Aug. 2011.

[4] Z. Gao, L. Dai, S. Han, C.-L. I, Z. Wang, and L. Hanzo, ‘‘Compressive

sensing techniques for next-generation wireless communications,’’ IEEE

Wireless Commun., vol. 25, no. 3, pp. 144–153, Jun. 2018.

[5] C.-K. Wen, S. Jin, and K.-K. Wong, ‘‘On the sum-rate of multiuser MIMO

uplink channels with jointly-correlated rician fading,’’ IEEE Trans. Com-

mun., vol. 59, no. 10, pp. 2883–2895, Oct. 2011.

[6] A. J. Paulraj, D. A. Gore, R. U. Nabar, and H. Bolcskei, ‘‘An overview of

MIMOCommunications—A key to gigabit wireless,’’ Proc. IEEE, vol. 92,

no. 2, pp. 198–218, Feb. 2004.

[7] S. Yang and L. Hanzo, ‘‘Fifty years of MIMO detection: The road

to large-scale MIMOs,’’ IEEE Commun. Surveys Tuts., vol. 17, no. 4,

pp. 1941–1988, 4th Quart., 2015.

[8] M. Ke, Z. Gao, Y. Wu, X. Gao, and R. Schober, ‘‘Compressive sensing

based adaptive active user detection and channel estimation: Massive

access meets massive MIMO,’’ Jun. 2019, arXiv:1906.09867. [Online].

Available: http://arxiv.org/abs/1906.09867

[9] A. Liao, Z. Gao, H. Wang, S. Chen, M.-S. Alouini, and H. Yin,

‘‘Closed-loop sparse channel estimation for wideband millimeter-wave

full-dimensional MIMO systems,’’ IEEE Trans. Commun., vol. 67, no. 12,

pp. 8329–8345, Dec. 2019.

[10] H. Huang, S. Guo, G. Gui, Z. Yang, J. Zhang, H. Sari, and F. Adachi,

‘‘Deep learning for physical-layer 5G wireless techniques: Opportunities,

challenges and solutions,’’ IEEE Wireless Commun., to be published, doi:

10.1109/MWC.2019.1900027.

[11] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan,

V. Vanhoucke, and A. Rabinovich, ‘‘Going deeper with convolutions,’’

in Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR), Jun. 2015,

pp. 1–9.

[12] K. He, X. Zhang, S. Ren, and J. Sun, ‘‘Deep residual learning for image

recognition,’’ in Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR),

Jun. 2016, pp. 770–778.

[13] J. Kim, J. K. Lee, and K. M. Lee, ‘‘Accurate image super-resolution using

very deep convolutional networks,’’ in Proc. IEEE Conf. Comput. Vis.

Pattern Recognit. (CVPR), Jun. 2016, pp. 1646–1654.

[14] R. Sarikaya, G. E. Hinton, and A. Deoras, ‘‘Application of deep belief

networks for natural language understanding,’’ IEEE/ACM Trans. Audio,

Speech, Lang. Process., vol. 22, no. 4, pp. 778–784, Apr. 2014.

[15] A. R. Sharma and P. Kaushik, ‘‘Literature survey of statistical, deep and

reinforcement learning in natural language processing,’’ in Proc. Int. Conf.

Comput., Commun. Automat. (ICCCA), May 2017, pp. 350–354.

[16] G. Hinton, L. Deng, D. Yu, G. Dahl, A.-R. Mohamed, N. Jaitly, A. Senior,

V. Vanhoucke, P. Nguyen, T. Sainath, and B. Kingsbury, ‘‘Deep neural

networks for acoustic modeling in speech recognition: The shared views

of four research groups,’’ IEEE Signal Process. Mag., vol. 29, no. 6,

pp. 82–97, Nov. 2012.

[17] A. Graves, A.-R.Mohamed, andG. Hinton, ‘‘Speech recognition with deep

recurrent neural networks,’’ inProc. IEEE Int. Conf. Acoust., Speech Signal

Process., May 2013, pp. 6645–6649.

[18] T. O’Shea and J. Hoydis, ‘‘An introduction to deep learning for the physical

layer,’’ IEEE Trans. Cognit. Commun. Netw., vol. 3, no. 4, pp. 563–575,

Dec. 2017.

[19] C.-J. Chun, J.-M. Kang, and I.-M. Kim, ‘‘Deep learning-based channel

estimation for massive MIMO systems,’’ IEEE Wireless Commun. Lett.,

vol. 8, no. 4, pp. 1228–1231, Aug. 2019.

[20] H. Huang, J. Yang, H. Huang, Y. Song, and G. Gui, ‘‘Deep learning for

super-resolution channel estimation and DOA estimation based massive

MIMO system,’’ IEEE Trans. Veh. Technol., vol. 67, no. 9, pp. 8549–8560,

Sep. 2018.

[21] J. Li, L. Qi, and Y. Lin, ‘‘Research on modulation identification of digital

signals based on deep learning,’’ in Proc. IEEE Int. Conf. Electron. Inf.

Commun. Technol. (ICEICT), Aug. 2016, pp. 402–405.

[22] S. Hong, Y. Zhang, Y. Wang, H. Gu, G. Gui, and H. Sari, ‘‘Deep learning-

based signal modulation identification in OFDM systems,’’ IEEE Access,

vol. 7, pp. 114631–114638, 2019.

[23] C. Qing, B. Cai, Q. Yang, J. Wang, and C. Huang, ‘‘Deep learning

for CSI feedback based on superimposed coding,’’ IEEE Access, vol. 7,

pp. 93723–93733, 2019.

[24] T. Wang, C.-K. Wen, S. Jin, and G. Y. Li, ‘‘Deep learning-based CSI feed-

back approach for time-varying massive MIMO channels,’’ IEEE Wireless

Commun. Lett., vol. 8, no. 2, pp. 416–419, Apr. 2019.

[25] A. Alkhateeb, S. Alex, P. Varkey, Y. Li, Q. Qu, and D. Tujkovic, ‘‘Deep

learning coordinated beamforming for highly-mobile millimeter wave sys-

tems,’’ IEEE Access, vol. 6, pp. 37328–37348, 2018.

[26] H. Huang, Y. Song, J. Yang, G. Gui, and F. Adachi, ‘‘Deep-learning-based

millimeter-wave massive MIMO for hybrid precoding,’’ IEEE Trans. Veh.

Technol., vol. 68, no. 3, pp. 3027–3032, Mar. 2019.

[27] H. Sun, X. Chen, Q. Shi, M. Hong, X. Fu, and N. D. Sidiropoulos, ‘‘Learn-

ing to optimize: Training deep neural networks for interference man-

agement,’’ IEEE Trans. Signal Process., vol. 66, no. 20, pp. 5438–5453,

Oct. 2018.

[28] T. Gruber, S. Cammerer, J. Hoydis, and S. T. Brink, ‘‘On deep learning-

based channel decoding,’’ in Proc. 51st Annu. Conf. Inf. Sci. Syst. (CISS),

Mar. 2017, pp. 1–6.

[29] N. Samuel, T. Diskin, and A. Wiesel, ‘‘Learning to detect,’’ IEEE Trans.

Signal Process., vol. 67, no. 10, pp. 2554–2564, May 2019.

[30] H. Ye, G. Y. Li, and B.-H. Juang, ‘‘Power of deep learning for channel esti-

mation and signal detection in OFDM systems,’’ IEEE Wireless Commun.

Lett., vol. 7, no. 1, pp. 114–117, Feb. 2018.

[31] X. Gao, S. Jin, C.-K. Wen, and G. Y. Li, ‘‘ComNet: Combination of deep

learning and expert knowledge in OFDM receivers,’’ IEEE Commun. Lett.,

vol. 22, no. 12, pp. 2627–2630, Dec. 2018.

[32] M.-S. Baek, S. Kwak, J.-Y. Jung, H. M. Kim, and D.-J. Choi, ‘‘Imple-

mentation methodologies of deep learning-based signal detection for con-

ventional MIMO transmitters,’’ IEEE Trans. Broadcast., vol. 65, no. 3,

pp. 636–642, Sep. 2019.

[33] E. Nachmani, Y. Beery, and D. Burshtein, ‘‘Learning to decode linear

codes using deep learning,’’ 2016, arXiv:1607.04793. [Online]. Available:

http://arxiv.org/abs/1607.04793

[34] Z. Chen, D. Li, and Y. Xu, ‘‘Deep MIMO detection scheme for high-speed

railways with wireless big data,’’ in Proc. IEEE 89th Veh. Technol. Conf.

(VTC-Spring), Apr. 2019, pp. 1–5.

[35] H. He, C.-K. Wen, S. Jin, and G. Y. Li, ‘‘A model-driven deep learning

network for MIMO detection,’’ in Proc. IEEE Global Conf. Signal Inf.

Process. (GlobalSIP), Nov. 2018, pp. 584–588.

[36] M.-W. Un, M. Shao, W.-K. Ma, and P. C. Ching, ‘‘Deep MIMO detection

using ADMM unfolding,’’ in Proc. IEEE Data Sci. Workshop (DSW),

Jun. 2019, pp. 333–337.

[37] N. Samuel, T. Diskin, and A. Wiesel, ‘‘Deep MIMO detection,’’ in

Proc. IEEE 18th Int. Workshop Signal Process. Adv. Wireless Commun.

(SPAWC), Jul. 2017, pp. 1–5.

[38] B. Hassibi and B. M. Hochwald, ‘‘How much training is needed in

multiple-antenna wireless links?’’ IEEE Trans. Inf. Theory, vol. 49, no. 4,

pp. 951–963, Apr. 2003.

[39] V. Sze, Y.-H. Chen, T.-J. Yang, and J. S. Emer, ‘‘Efficient processing of

deep neural networks: A tutorial and survey,’’ Proc. IEEE, vol. 105, no. 12,

pp. 2295–2329, Dec. 2017.

[40] K. He, X. Zhang, S. Ren, and J. Sun, ‘‘Delving deep into rectifiers:

Surpassing human-level performance on ImageNet classification,’’ inProc.

IEEE Int. Conf. Comput. Vis. (ICCV), Dec. 2015, pp. 1026–1034.

[41] S. Takabe, M. Imanishi, T. Wadayama, and K. Hayashi, ‘‘Deep

learning-aided projected gradient detector for massive overloaded MIMO

channels,’’ in Proc. IEEE Int. Conf. Commun. (ICC), May 2019,

pp. 1–6.

[42] C.-T. Chu, J.-N. Hwang, H.-I. Pai, and K.-M. Lan, ‘‘Robust video object

tracking based on multiple kernels with projected gradients,’’ in Proc.

IEEE Int. Conf. Acoust., Speech Signal Process. (ICASSP), May 2011,

pp. 1421–1424.

[43] F. Kizel, M. Shoshany, N. S. Netanyahu, G. Even-Tzur, and

J. A. Benediktsson, ‘‘A stepwise analytical projected gradient descent

search for hyperspectral unmixing and its code vectorization,’’

IEEE Trans. Geosci. Remote Sens., vol. 55, no. 9, pp. 4925–4943,

Sep. 2017.

[44] M. Abadi et al., ‘‘TensorFlow: Large-scale machine learning on hetero-

geneous distributed systems,’’ Mar. 2016, arXiv:1603.04467. [Online].

Available: http://arxiv.org/abs/1603.04467

[45] D. P. Kingma and J. Ba, ‘‘Adam: A method for stochastic optimiza-

tion,’’ Dec. 2014, arXiv:1412.6980. [Online]. Available: http://arxiv.org/

abs/1412.6980

VOLUME 8, 2020 44945

http://dx.doi.org/10.1109/MWC.2019.1900027


X. Wang et al.: Pilot-Assisted Channel Estimation and Signal Detection in Uplink Multi-User MIMO Systems With DL

XIAOMING WANG (Member, IEEE) received the

Ph.D. degree in information and communication

engineering from the National Mobile

Communications Research Laboratory, Southeast

University, Nanjing, China, in 2016. He is cur-

rently a Lecturer with the Nanjing University of

Posts and Telecommunications (NJUPT), Nan-

jing. His research interests include radio resource

management, green communications, andmachine

learning in communications.

HANG HUA received the B.E. degree in rail

transportation signal and control fromDalian Jiao-

tong University (DJTU), Dalian, China, in 2018.

He is currently pursuing the master’s degree with

the Nanjing University of Posts and Telecommu-

nications (NJUPT), Nanjing, China. His research

interests include machine learning, MIMO, chan-

nel estimation, and signal detection.

YOUYUN XU (Senior Member, IEEE) received

the Ph.D. degree in information and communica-

tion engineering from Shanghai Jiao Tong Univer-

sity (SJTU), in 1999. He is currently a Professor

with the Nanjing University of Posts and Telecom-

munications. He is also a part-time Professor at

the Institute of Wireless Communication Tech-

nologies, SJTU, China. He has over 20 years of

professional experience in teaching and research-

ing in communication theory and engineering

with research and development achievement, such as the WCDMA Trial

System under C3G Framework, China, in 1999, the B3G-TDD Trial System

under FuTURE Framework, China, in 2006, and the Chinese Digital TV

Broadcasting System. His current research interests include new genera-

tion wireless mobile communication systems (LTE, IM-T Advanced, and

related), advanced channel coding and modulation techniques, multiuser

information theory and radio resource management, wireless sensor net-

works, and cognitive radio networks. He is a Senior Member of the Chinese

Institute of Electronics and a member of IEICE.

44946 VOLUME 8, 2020


	INTRODUCTION
	BACKGROUND OF SIGNAL DETECTION AND CHANNEL ESTIMATION
	DEEP LEARNING
	CONTRIBUTION

	SYSTEM MODEL AND CONVENTIONAL ALGORITHMS
	SYSTEM MODEL
	SIGNAL DETECTION
	CHANNEL ESTIMATION

	PROPOSED DATE-DRIVEN RECEIVER FOR MIMO SYSTEMS
	REPARAMETERIZATION
	FULLCON ARCHITECTURE
	FULLCON TRAINING PROCESS

	PROPOSED MODEL-DRIVEN RECEIVER FOR MIMO SYSTEMS
	MDNET ARCHITECTURE
	MDNET TRAINING PROCESS

	SIMULATION RESULTS
	TRAINING METHOD
	GENERATION OF TRAINING DATASET
	MAIN RESULTS
	IMPACT OF NEURONS NUMBERS IN FULLCON AND MDNET
	IMPACT OF LAYER NUMBERS IN MDNET
	PERFORMANCE COMPARISON


	CONCLUSION
	REFERENCES
	Biographies
	XIAOMING WANG
	HANG HUA
	YOUYUN XU


