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Pilot-Based Estimation of Time-Varying Multipath
Channels for Coherent CDMA Receivers
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Abstract—Reliable coherent wireless communication requires
accurate estimation of the time-varying multipath channel. This
paper addresses two issues in the context of direct-sequence
code-division multiple access (CDMA) systems: i) linear min-
imum-mean-squared-error (MMSE) channel estimation based on
a pilot transmission and ii) impact of channel estimation errors
on coherent receiver performance. A simple characterization of
the MMSE estimator in terms of a bank of filters is derived. A
key channel characteristic controlling system performance is the
normalized coherence time, which is approximately the number
of symbols over which the channel remains strongly correlated.
It is shown that the estimator performance is characterized
by an effective signal-to-noise ratio (SNR)—the product of the
pilot SNR and the normalized coherence time. A simple uniform
averaging estimator is also proposed that is easy to implement
and delivers near-optimal performance if properly designed. The
receivers analyzed in this paper are based on a time–frequency
RAKE structure that exploits joint multipath-Doppler diversity.
It is shown that the overall receiver performance is controlled by
two competing effects: shorter coherence times lead to degraded
channel estimation but improved inherent receiver performance
due to Doppler diversity, with opposite effects for longer coherence
times. Our results demonstrate that exploiting Doppler diversity
can significantly mitigate the error probability floors that plague
conventional CDMA receivers under fast fading due to errors in
channel estimation.

Index Terms—Doppler diversity, fast fading, MMSE estimation,
RAKE receivers.

I. INTRODUCTION

M OBILE wireless channels are characterized by
time-varying multipath propagation effects, and ac-

curate channel estimation is critical to reliable coherent
communication [1], [2]. Indeed, emerging wireless standards
accommodate pilot signal transmissions dedicated to channel
estimation [3], [4]. In this paper, we address time-varying
channel estimation for spread-spectrum code-division multiple
access (CDMA) systems that have emerged as a promising
core wireless technology. Our focus is primarily on single-user
systems employing short codes.1 We develop a framework
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for designing pilot-based linear MMSE channel estimators
and for assessing the impact of estimation errors on receiver
performance. Our framework is based on a canonical linear
channel model that captures the essential degrees of freedom in
the channel in terms of a fixed basis. The fixed basis waveforms
are defined by uniformly spaced delays and Doppler shifts of
the signaling waveform [5]–[8]. Unlike other existing models
for time-varying channels (see, e.g., [9]–[11]), the canonical
model eliminates the need for estimating actual physical delays
and Doppler shifts encountered during propagation—channel
estimation boils down to estimating the multipath-Doppler
expansion coefficients with respect to the fixed basis that
characterize the effects of the channel.

We consider both time– and frequency-selective channels
and provide simple characterizations of the optimal estimator
in terms of a bank of filters, each associated with a particular
multipath-Doppler channel component. We show that the key
parameter controlling the estimator performance is aneffective
signal-to-noise ratio (SNR), which is the product of the pilot
SNR and the channelcoherence timenormalized by the symbol
duration. The coherence time is the duration over which
the channel coefficients remain strongly correlated [1], [2].
Essentially, limits the duration over which time averaging
can be done to reduce the effects of noise. Thus, longer
coherence times improve the effective SNR and, hence, the
estimator performance. We also consider a simple suboptimal
estimator—uniform averager—that is particularly easy to
implement. We show that a properly designed uniform averager
delivers near-optimal performance.

Channel estimation errors incurred due to the relatively small
in fast fading scenarios have a significant impact on the

performance of coherent CDMA RAKE receivers [12]–[16].
As reported in several studies (see, e.g., [12]–[15]), the con-
ventional RAKE receiver exhibits a bit-error-probability (BEP)
floor due to degraded channel estimation in such conditions.
While shorter coherence times (large Doppler spreads) degrade
channel estimation, it was shown in [5] that they can be ex-
ploited for additional diversity—Doppler diversity—via a time-
frequency RAKE receiver structure. Consequently, when joint
multipath-Doppler diversity is exploited, the overall receiver
performance is controlled by these competing effects. The re-
sults reported here show that at low pilot SNRs, channel esti-
mation errors dominate, resulting in degraded performance at
shorter coherence times (faster fading), which is consistent with
existing studies. However, in contrast to the conventional RAKE
receiver, at sufficiently high pilot SNRs, the effects of Doppler
diversity can dominate, resulting in improved receiver perfor-
mance under fast fading. Consequently, at sufficiently high pilot
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SNRs, time–frequency RAKE receivers can significantly miti-
gate the BEP floors that plague the performance of conventional
RAKE receivers.

The next section describes the canonical channel model un-
derlying our framework. Section III develops useful representa-
tions for the linear MMSE estimator and discusses design rules
for the uniform averager. Section IV analyzes the performance
of the estimators. Section V studies the impact of channel es-
timation errors on receiver performance. Numerical results are
presented to illustrate the estimator and receiver performance
under a variety of conditions. Section VI briefly discusses some
extensions, including multiuser systems and long codes. Con-
cluding remarks are presented in Section VII.

II. SIGNAL AND CHANNEL MODELS

The complex baseband signal at the output of a mobile
wireless channel is related to the transmitted complex baseband
waveform by the relation [2]

(1)

where is the time-varying impulse response of the
channel. The maximum delay is denoted by, which is the
multipath spreadof the channel. An equivalent representation
of , which clearly shows temporal and spectral dispersion,
is [2], [6]

(2)

(3)

where the channel is characterized by the multipath-Doppler
spreading function . The maximum Doppler frequency
is denoted by , which is theDoppler spreadof the channel.
A discrete version of (2) is often used in practice (see, for e.g.,
[9]) to model dominant propagation paths

(4)

where denotes the total number of paths, and theth
path is associated with delay , Doppler shift

, and fading gain .
For statistical channel characterization, the wide-sense

stationary uncorrelated scatterer (WSSUS) model [1], [6], [2]
is widely used in practice in which the temporal variations
in are represented as a stationary Gaussian process,
and the channel responses at different lags are uncorrelated.
For a zero-mean channel (Rayleigh fading2 ), the second-order
statistics are given by

(5)

where denotes the Dirac delta function, and is the
multipath-Dopplerscattering function[2], [6] that characterizes
the channel statistics and quantifies the channel power density at

2We focus on Rayleigh fading throughout this paper.

different multipath delays and Doppler frequencies. The overall
noisy signal at the receiver is given by

(6)

where is zero-mean complex additive white Gaussian noise
(AWGN).

A. Canonical Channel Representation

Physical channel modeling, as exemplified by the discrete
model (4), requires estimation of the delays (), Doppler shifts
( ), and fading coefficients ( ) associated with each path. The
canonical channel characterization [5], [6], [8], [7], on the other
hand, eliminates the need for (nonlinear) estimation of delays
and Doppler shifts by exploiting the fact that the receiver has
limited resolution in frequency and time due to the finite dura-
tion and (essentially) finite bandwidth, respectively, of the
symbol signaling waveform . More specifically, the canon-
ical representation asserts that the received signalcan be
represented arbitrarily accurately in terms offixed, uniformly
spaced multipath delays and Doppler shifts of the transmitted
symbol waveform [5]–[8]

(7)
where and denote the numbers of
resolvablemultipath delays and Doppler frequencies, respec-
tively. We assume that (negligible intersymbol inter-
ference), which is a realistic assumption in CDMA systems.

The above representation states that the received signal is a
linear combination of a set of basis waveforms

(8)

that arefixed a priori and do not depend on the actual physical
delays and Doppler shifts. For CDMA waveforms with chip du-
ration , chip rate sampling ( ) yields an approxi-
mately orthogonal basis [5]. Sub-chip-rate oversampling by a
factor ( ) may be used to improve the accuracy
of (7) but results in a nonorthogonal basis in general. All infor-
mation about the channel is linearly represented by the coeffi-
cients , which are samples of a smoothed version of the
spreading function [see (12)]. We note that the Doppler coeffi-
cients (index ) capture the temporal channel variationswithin
the symbol duration . Temporal channel variations over sym-
bols are captured by the variation of over symbols.

The representation (7) also reveals the inherent multipath-
Doppler diversity afforded by the channel [5]. The level of di-
versity is

, which can be increased by increasing, or both.
Spread-spectrum signaling ( ) is particularly advanta-
geous for exploiting channel diversity since for typ-
ical (underspread) channels.

B. Pilot-Based Channel Estimation

We assume that the channel spreadsand are known
a priori. Based on (7), channel estimation thus boils down to
estimating for each symbol. The representation (7) also
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dictates projection onto as the front-end processing
at the receiver

(9)

The channel coefficients for the symbol of interest are
estimated by processing the matched-filter outputs over
a frame of symbols to exploit the temporal channel correlation.
For a WSSUS channel, we can assume the symbol of interest to
be the th symbol without loss of generality. We assume that a
frame of pilot symbols is used to estimate the channel
coefficients corresponding to theth symbol. The re-
ceived signal corresponding to this frame can be represented as

(10)

where are the channel coefficients corresponding to
the th symbol ( ), and is zero-mean
complex AWGN with power spectral density (PSD).

The canonical channel coefficients can be computed
as [5], [6]

(11)

sinc sinc (12)

where sinc . It can be shown that
for any particular symbol the different coefficients

are approximately uncorrelated if the scat-
tering function is sufficiently smooth [5], [6]. Thus,
throughout this paper, we assume that for any given,

, where
denotes the Kronecker delta function. However, the channel
is correlated across symbols, and the temporal correlation
function for a particular coefficient can be computed using (11)
and (12) as

sinc

sinc (13)

The frame size parameterin (10) depends on the channel
coherence time . While can be chosen arbitrarily large in
the case of optimal estimators,3 its choice is critical in the case
of suboptimal estimators, such as a uniform averager that simply
averages the matched-filter outputs over the frame. Es-
sentially, should be on the order of the normalized coherence
time for suboptimal estimators.

3The optimal estimator implicitly averages over an effective frame size com-
mensurate with�t .

For notational convenience, concatenate into a
-dimensional vector . Similarly, define

the vector of waveforms in terms of the basis waveforms
in (8). The received signal in (10) can then be

compactly expressed as

(14)

The matched-filtered outputs for each symbol in (9) can be ex-
pressed as

(15)

where is a matrix of cor-
relations between different multipath-Doppler basis waveforms

(16)

and is zero-mean vector Gaussian noise with
. Note that for chip-rate

sampling ( ) and a unit energy signaling waveform
.

III. L INEAR MMSE CHANNEL ESTIMATOR

We are interested in estimating from the matched-filter
outputs . Let
be the vector of matched-filter
outputs for the entire frame, which takes the form

(17)

where is the concatenated vector corresponding to ,
corresponds to , and diag is a

block
diagonal matrix. Note that is a zero-mean Gaussian vector
with covariance matrix .

A linear estimator of from can be represented as
, where is a

matrix. The linear MMSE channel estimation
problem is thus formulated as

(18)

and the solution is the well-known Wiener filter given by

(19)

We next investigate the structure of in special cases to
gain more insight. We start with the case of orthogonal basis
waveforms.

A. Orthogonal Basis

This case corresponds to chip-rate sampling of the
matched-filter outputs, that is, in (7). As men-
tioned earlier, in this case. Furthermore, since the



2040 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 50, NO. 8, AUGUST 2002

different s are uncorrelated, it follows that each
can be estimated separately. For each , we concate-
nate the coefficients for different symbols into a

vector . Similarly, define and with
. The estimator for each can be

expressed as , with the optimal estimator
given by

(20)

where , and . The
-dimensional cross-correlation vector is given by

(21)

and the elements of the correlation matrix
are given by

(22)

where is given by (13). Due to the Toeplitz structure
of induced by the WSSUS channel, in the limit of
large , the estimator for each multipath-Doppler channel
coefficient can also be interpreted as a linear time-invariant
filter that acts on the sequence :

. Consequently,
for large , the estimator also admits a frequency-domain
representation ,
where is the
discrete-time Fourier transform (DTFT) of , and
similarly, is the DTFT of . The frequency do-
main representation is depicted in Fig. 1, where the optimal esti-
mator is represented as
in terms of the PSD associated with the correlation
sequence : .
This is also the eigen-domain representation of the estimator
since complex exponentials are the eigenfunctions of (Toeplitz)

in the limit of large [17].

B. Nonorthogonal Basis

At chip-rate sampling, there may be some loss in the signal
representation (7) due to the bandwidth approximation. As
noted earlier, oversampling ( ) the matched-filter
outputs improves its accuracy. In this case, the corresponding
basis waveforms (8) are no longer orthogonal; that is, .
However, are still approximately uncorrelated if over-
sampling commensurate with signal bandwidth is employed
[5]. In this case, the noise vector in (15) has correlated
components, and thus, joint processing is needed across multi-
path-Doppler coordinates as well as across symbols. However,
as demonstrated next, with simple pre and postprocessing, this
case can be transformed into the simple orthogonal-basis case,
where joint processing is needed only across symbols.

In order to derive the estimator structure in this case, we make
the mild assumption that the correlation structure in time is iden-

Fig. 1. Frequency-domain Wiener filter representation for the optimum
estimator of a particular multipath-Doppler channel coefficient.

tical for different channel coefficients4

(23)

where we assume, without loss of generality, that is the cor-
relation function of the coefficient, and the di-
agonal matrix denotes the powers in the different coefficients
relative to that of the th coefficient. Consider the eigende-
composition , where is a unitary ma-
trix, and is a diagonal matrix. It is shown in the Appendix that
the overall estimator in (19) can be expressed as

(24)

where diag , and
acts on the transformed matched filter outputs

.
is the MMSE estimator of the transformed channel coef-
ficients from . Recall that diag ,
and thus, the transformation for each symbol takes the form

. The matrix whitens the noise
, and the unitary matrix further decorrelates the

transformed channel coefficients without affecting noise
structure. Since are only correlated across symbols, the
structure of is similar to that in the orthogonal case; the

th component of can be estimated independently
by processing via the
estimator

(25)

where denote the diagonal
terms of , , and . Note that the form of
the estimator in (25) is identical to the estimator in (20) under
the assumption of identical temporal correlation structure for
different channel components.

Due to the Toeplitz structure of , the estimator (24) also
admits a frequency domain representation for large, which
is illustrated in Fig. 2. Note that the pre and postprocessing
in Fig. 2 is in terms of and since diag
and diag . is the PSD associated with

: . The different vector
components in Fig. 2 are uncorrelated after the preprocessing
by . is completely determined by the basis wave-
forms , and depends on and the channel statistics.

C. Suboptimal Uniform Averager

We have shown that the optimal MMSE estimator can be de-
composed into a bank of independent estimators [see (20) and

4This delay/frequency separabilityof the spreading function is assumed in
other works as well, see, e.g., [18].
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Fig. 2. Frequency-domain representation of the optimum estimator in the
case of a nonorthogonal basis. The Fourier transform acts in time onfz(i)g.
P U andUP act on the different vector components.

(25)]: one for each multipath-Doppler channel coefficient (or
transformed coefficient in the nonorthogonal case). The optimal
estimator requires knowledge of channel statistics and involves
a matrix inversion. We also propose a simple suboptimum uni-
form averaging estimator that is easy to implement:

(26)

where . Note that performs a uniform
averaging of the matched-filter outputs. For compar-
ison with the optimal estimator, is chosen to minimize
the MSE and is given by .
Note that the actual value of is not important for bit
detection in the case of linear receivers.

IV. ESTIMATOR PERFORMANCE

In this section, we analyze the performance of the proposed
estimators under various conditions. Our results demonstrate
that the simple uniform averaging delivers near-optimal perfor-
mance for proper choice of frame length. We also provide
guidelines for choosing in practice.

We analyze the orthogonal-basis case without loss of gen-
erality. Furthermore, due to the decoupling between different
channel components, we analyze the estimator for a particular
component and drop the subscript . The MMSE associ-
ated with the optimal estimator for a given component is

(27)

(28)

(29)

where the last equality holds in the limit of large. To get an
insight into the effect of and on the MMSE, we consider
the simple case of an “idealized” uniform Doppler spectrum,
that is, for . It can be readily
shown that in this case, reduces to

SNR
(30)

where

SNR SNR (31)

and we have used the approximate relation
between coherence time and Doppler spread [2]. The estimator
performance in this idealized case is characterized by the
effective SNR (SNR ) that is the product of the pilot SNR
SNR and the normalized coherence time

. As is evident from (30), is a monotonically
decreasing function of SNR . Thus, as increases,
SNR increases, resulting in reduced , which is
consistent with the fact that larger enables averaging
over more symbols to reduce the effects of noise. The idealized
expression (30) is very useful in practical design since it re-
quires minimal information about the channel [ and ].
In particular, as shown next, it can be appropriately calibrated
to mimic the true MMSE in (29) fairly accurately.

We now present some numerical results to illustrate the utility
of the idealized MMSE expression (30) and to compare the per-
formance of and in a single-path channel. For all
numerical simulations in this paper, the time-varying channel
is simulated using the Jakes Model [1], [19] corresponding to
a data rate of 2500 Hz and a carrier frequency of 1.8 GHz.5

We consider a spread-spectrum system with a spreading gain of
64. Four samples per chip (256 samples per symbol) are used
to simulate the signals. A randomly generated binary spreading
code is used in the simulations for the pilot channel. The MSE
can be computed analytically for via (28) and for via
(32). For the numerical results, the theoretical MSE is computed
via these two expressions by using statistics estimated directly
from the Jakes model.

Fig. 3 illustrates the use of the idealized MMSE expression
(30) for assessing the performance of optimal estimator.
Fig. 3(a) shows three curves for as a function of
SNR . The solid curve corresponds to (30). The dashed
curve corresponds to a calibrated version of (30) to match the
true MMSE in (28) of the optimum estimator at 30 km/h, which
is computed using Jakes statistics. The calibration is done by
scaling SNR in (30) with an appropriate constant. [The
true MMSE of as well as the calibrated idealized curve
at 30 km/h are plotted in Fig. 3(b) for reference.] The asterisk
curve in Fig. 3(a) corresponds to further scaling SNRin
the calibrated (dashed) curve by the factor 30/80 to yield an
idealized curve for predicting the performance at 80 km/h.
Fig. 3(b) compares the theoretical performance of at
80 km/h, based on Jakes model statistics, with the predicted
performance in Fig. 3(a) (the asterisk curve). Note that the
true performance of at 80 km/h is approximated fairly
accurately by the predicted curve.

Fig. 4 compares the theoretical and simulated performance
of and ( ) at a speed of 80 km/h. Theoretical
MSE is computed analytically using Jakes statistics via (28) and
(32), and simulated MSE is computed by directly averaging the

5The low data rate and relatively high speeds in some cases are chosen to em-
phasize Doppler effects. Time-selective signaling schemes that use sufficiently
long, overlapping symbols [20], [21] may be used to induce such Doppler ef-
fects under realistic data rates and fading conditions.
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(a) (b)

Fig. 3. (a) Optimal estimator MMSE curves based on the idealized flat spectrum approximation in (30). (b) Comparison between the true theoretical performance
of g and its predicted performance at 80 km/h (TB = 0:05) based on the calibrated idealized curve in (a).

estimator MSE over 50 000 symbols. Note that simulated and
theoretical curves are virtually indistinguishable, demonstrating
close agreement. However, the performance of is slightly
degraded compared with due to mismatch of with
(smaller yields near-optimal performance).

We now investigate the dependence of the MSE of on
to guide its design. The MMSE of (using optimum )
can be expressed as

(32)

For the idealized flat spectrum, (32) becomes

SNR

(33)

Note that in (33) does not depend on detailed
channel statistics; it only depends on SNR, , and and
can thus be readily computed. Fig. 5 plots as a
function of the frame length ( ) for three different values
of : 0.02 (30 km/h), 0.1 (150 km/h), and 0.2 (300 km/h).
We note that the optimum frame size depends on both and

Fig. 4. Comparison of theoretical and simulated performance ofg

and g (frame length 11;I = 5) at 80 km/h (TB = 0:05). The
continuous lines are the theoretical curves, and the marked points correspond to
simulation data points. The theoretical and simulated data points are virtually
indistinguishable.

SNR . Furthermore, the sensitivity of around
the optimum frame size as well as is value increases with.6

Fig. 6 compares the performance of with that of
as a function of SNR for two values of : 0.1 and 0.2.
The lengths of the uniform averager are chosen using the plots
in Fig. 5. We use the best lengths for the uniform averager at
both 10 dB and 20 dB SNR for comparison. Using Fig. 5(b), the
best length for is approximately 5 at 10 dB SNR
and 3 at 20 dB SNR. Similarly, from Fig. 5(c), the best length
for is approximately 3 at 10 dB SNR and 1 at 20 dB
SNR. We note that the MSE of is very close to that of ,
particularly at the SNR for which the length is optimum.7 This

6Similar observations are reported in [16].
7Note also in Fig. 6 that, as expected,g with longer length performs

better at lower SNRs, whereas it performs better at high SNRs with short length.
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(a) (b)

(c)

Fig. 5. Idealized MSE of the uniform averager [see (33)] as a function of the frame length (2I +1). (a)TB = 0:02 (30 km/h). (b)TB = 0:1 (150 km/h). (c)
TB = 0:2 (300 km/h).

shows that for an appropriate choice of, the uniform averager
can deliver near-optimal performance. Furthermore, the choice
of can be based on the idealized MSE expression given in
(33), which only depends on and SNR . The optimum
values of for identified here are used in the next section
to compare the overall receiver performance based on the two
estimators.

V. IMPACT OF CHANNEL ESTIMATION ERRORS

ON RECEIVER PERFORMANCE

The receiver considered in our analysis exploits joint multi-
path-Doppler diversity via a time-frequency RAKE structure
[5]. In contrast to results reported in the literature for the
conventional RAKE, our results show that channel variations
that are fast fading do not always impair receiver performance
when a time–frequency (TF-)RAKE receiver is used. In fact,
the receiver performance is determined by twocompeting
effects under fast fading:degradationin channel estimation and

improvementin inherent receiver performance due to Doppler
diversity. At sufficiently high pilot SNRs, Doppler diversity
effects can dominate, resulting in improved performance.

We consider binary phase-shift keying (BPSK) as the sig-
naling scheme. The channel coefficients are estimated
via a pilot signal corresponding to a particular spreading
code. Simultaneously, data bits are transmitted over the same
channel via a different spreading code.8 The PSDs of the
AWGN in the pilot and data channels are denoted by
and , respectively, with the corresponding SNRs given by
SNR and SNR . For
simplicity, we ignore the interference between the pilot and
data signals—interference suppression techniques tailored
to our framework can be readily incorporated [22], [23]. We
also assume orthonormal basis waveforms for both the pilot
and data signals. Finally, under our assumption of negligible

8It can be shown thatfh g associated with two different codes with the
same time-bandwidth product are nearly identical if they encounter the same
propagation channel [5], [6].
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(a) (b)

Fig. 6. Comparison of theg (I =1) andg with appropriately chosen frame length based on Fig. 5. (a)TB = 0:1. (b)TB = 0:2.

intersymbol interference (ISI), the “one-shot detector,” which
decodes each symbol independently, suffices. We consider the
detection of the 0th bit without loss of generality.

The output of the matched filters for the data signal is

(34)

where is zero-mean AWGN with covariance matrix . The
maximum-ratio-combiner (MRC) detector based on estimated
channel coefficients is

sign real

sign real (35)

Let real denote the decision statistic. Assuming
that is transmitted, the BEP is .

Exact calculation of in the presence of channel estimation
errors is fairly complicated if not intractable. We provide an
estimate of based on some simplifying assumptions that are
supported with simulation results. Conditioned on a particular
value of , we model the corresponding estimated as a
Gaussian random variable

(36)

where is zero-mean Gaussian with variance corre-
sponding to the MSE of the channel estimator.9 The BEP con-
ditioned on is given by10 [2]

(37)

9Note that this model is strictly not correct since the channel estimate is biased
in general. However, assuming the error to be Gaussian is not unreasonable since
the estimator is linear, and the noise is Gaussian.

10Q(x) = (1=
p
2�) e du.

where the is the conditional SNR per bit given by

var tr
(38)

where diag is the diagonal error
covariance matrix. We make two approximations to facilitate
analysis. First, we replace the quadratic form

by its upper bound , where
. Second, we assume that the product

tr is negligible compared with the other terms in the
denominator of (38). With these approximations, we have

(39)
where is the conditional SNR per bit for the th
channel component. This approximate system is equiv-
alent to BPSK communication over a Rayleigh fading
channel with level diversity and AWGN
of variance [2]. The average SNR per bit
for different channel components is

. Using the expression

[24], the conditional
BEP in (37) can be averaged over the statistics ofto yield
[24]

(40)

A. Numerical Results

We now present some numerical examples to illustrate the
impact of , the pilot and data SNRs, and level of diversity
on the overall receiver performance with estimated channel co-
efficients. As noted earlier, the performance of the TF-RAKE
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(a) (b)

(c) (d)

Fig. 7. Comparison of conventional and TF-RAKE receivers using the optimum channel estimator. (a) Simulated performance at SNR= 10 dB. (b)
Theoretical performance at SNR = 10 dB. (c) Simulated performance at SNR = 20 dB. (d) Theoretical performance at SNR = 20 dB.

is governed by two opposing effects; as increases, the in-
herent receiver performance improves due to Doppler diversity,
whereas channel estimation degrades. We consider the practical
situation where so that the level of Doppler diversity
is at most 3 ( ). The performance gain due to Doppler di-
versity depends on the ratio of the power in the or
Doppler components to the total power in the three components
[5]. For a flat Doppler spectrum, this ratio can be computed as
[5]

sinc

sinc sinc

(41)

We note that the total channel power remains constant as
varies; only the distribution of power over the components
changes. As increases (shorter ) increases, and the
diversity gain increases.

We study receiver performance in the single-path case (
). We compare two receivers: a conventional RAKE that does

not exploit Doppler diversity and a TF-RAKE receiver that ex-
ploits joint multipath-Doppler diversity [5].11 The two receivers
are compared for the same type of channel estimator (optimal
or uniform averager).

The performance of the conventional and TF RAKE receivers
with optimum channel estimators is compared in Fig. 7. The
comparison is made at three different values of (0.02, 0.1,
0.2) and two pilot SNRs: 10 and 20 dB. The optimum estima-
tors are based on statistics estimated directly from the Jakes
model. Fig. 7(a) compares the simulated performance (Monte
Carlo averaging over 100 000 symbols) at SNR dB.
The performance of the conventional RAKE progressively de-
grades with increasing due to errors in channel estima-
tion. Similarly, the performance of the TF-RAKE degrades as

increases from 0.02 to 0.1. However, its performance im-

11Note that there is no multipath diversity (single path) in our comparisons
for the sake of simplicity.
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(a) (b)

(c) (d)

Fig. 8. Comparison of conventional and TF-RAKE receivers using the uniform averaging estimator. (a) Simulated performance at SNR= 10 dB. (b)
Theoretical performance at SNR = 10 dB. (c) Simulated performance at SNR = 20 dB. (d) Theoretical performance at SNR = 20 dB.

proves relatively as increases from 0.1 to 0.2, indicating
that the diversity effects dominate estimation error effects. On
the whole, there is a net degradation in performance in going
from to . The corresponding compar-
ison between the theoretical performance of the two receivers in
Fig. 7(b) follows similar trends. However, the theoretical curves
slightly overestimate the simulated performance in the case of
the TF-RAKE receiver.

The plots in Fig. 7(c) and (d) show similar simulated/theo-
retical comparisons at SNR dB. In this case, the loss
in performance of the RAKE with increasing is much less
pronounced due to improved channel estimation. Similarly, the
improvement in performance of the TF-RAKE is much more
significant. It improves monotonically as is increased from

to , resulting in a net gain of about 7–8
dB at a BEP of 10 . The agreement between the simulated
and theoretical curves is also closer in this case due to improved
channel estimation. Note, however, that the performance of the
receivers eventually saturates (BEP floors) as the data SNR is

increased significantly beyond the pilot SNR (the beginning of
that trend is evident from the plots).

Fig. 8 repeats the comparisons in Fig. 7 for receivers using the
uniform averaging estimator. Using Fig. 5, the following frame
lengths are used for the uniform averager at 0.02, 0.1,
and 0.2, respectively: 15 , 5 , and 3
at SNR dB; 9 , 3 , and 1
at SNR dB. At SNR dB, the simulated
performance of the RAKE and TF-RAKE receivers is virtu-
ally identical, even though the theoretical comparison shows
slightly better performance for the TF-RAKE. Overall, the per-
formance degrades with increasing . On the other hand, at
SNR dB, the performance of the TF-RAKE receiver
first degrades as goes from 0.02 to 0.1 but then improves
at , yielding a slight net gain in performance relative
to . Nevertheless, the TF-RAKE performs signifi-
cantly better than the conventional RAKE at since
the latter suffers significantly due to channel estimation errors.
The gains due to diversity dominate the loss due to estimation
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errors in the TF-RAKE, resulting in significantly better perfor-
mance compared with the conventional RAKE.

We conclude from Figs. 7 and 8 that with a reasonably strong
pilot signal, the TF-RAKE using a simple uniform averaging
estimator can significantly mitigate the BEP floors exhibited by
the conventional RAKE under fast fading. On the other hand,
a TF-RAKE armed with a better (MMSE) estimator not only
provides resistance to BEP floors but can yield significant gains
in performance due to Doppler diversity. We emphasize that the
above comparison was based on a single path. The gains due
to Doppler diversity will be relatively smaller in the presence
of multipath due to diminishing gains with increasing diversity
levels.

B. Asymptotic Performance for Large Number of Components

We now analyze the asymptotic behavior of for a large
number of channel components, which is analogous to the re-
sults reported in [25].12 We assume that the total channel power

remains constant and is equally distributed
among the different multipath-Doppler components. Thus, the
decision statistic real real
is a sum of independent, identically distributed statistics

. Recalling that , with
given by (20), the mean and variance of can be

computed to be

(42)

var

(43)

where is the power in each channel component, and
is the MMSE in the estimate of the channel component. The
second equalities above follow from (28). For a flat spectrum
approximation, is given by (30), and the above expressions
can be further simplified to

var

(44)
where . Let . Then,

and

var

(45)
By applying the central limit theorem, it can be shown that as

, converges to a zero-mean Gaussian
random variable with variance . Conse-
quently, as the number of channel
components ( ) grows arbitrarily large. This shows that for
any given pilot and data SNRs, the overall receiver performance
eventually starts degrading as the number of diversity compo-
nents increases. This is due to progressively significant errors
in channel estimation since power in each component becomes
vanishingly small.

12The number of multipath-Doppler components increases withTB for a
fixed spread factorT B .

VI. RELATED ISSUES ANDEXTENSIONS

Here, we briefly discuss some related issues:

• another suboptimal estimator;
• extension to long codes;
• extension to multiuser systems;
• joint channel estimation and data detection.

In addition to the uniform averager, another suboptimal esti-
mator that may be used in practice is thecorrelation averager

, which performs a correlation-weighted av-
eraging of the matched filter outputs. However, based on our
simulation results (which are not reported here), a properly de-
signed uniform averager performs as well as the correlation av-
erager.

The framework presented in this paper can be readily
extended to systems employing long codes—the key difference
being that the optimal estimator becomes time-varying and,
thus, imposes a higher computational complexity. In (10), the
coefficients remain the same, but the basis functions
change—the basis functions for theth symbol are determined
by the time–frequency shifted versions of the corresponding
segment of the underlying long code. Consequently, the basis
correlation matrix in (15) and the estimator matrix in
(19) are different, in general, for each symbol. From Fig. 2,
we note that the additional computational burden is the eigen-
decomposition of the
matrix for each symbol, which is not too stringent
since is typically small. It is important to
note that this symbol-by-symbol recomputation is only needed
for oversampled systems employing long codes—there is no
additional computation burden in the case of chip-rate sampled
systems since in that case.

The channel estimators developed in this work can also be
readily employed in multiuser systems. Essentially, an initial
interference suppression stage is needed before the single-user
estimator is applied. The interference suppression stage can be
implemented either in a centralized [26] or a decentralized [22]
fashion. In particular, the decentralized scheme in [22] uses pro-
jections onto basis functions of the form (8) that lieoutsidethe
channel spread to suppress the interference corrupting the infor-
mation bearing signal within the channel spread. See [22] for
more details.

Finally, while we addressed channel estimation and data de-
tection separately, we now make a few comments to justify this
approach by casting the problem in a joint fashion. Let

(46)

be the matched filter outputs for the pilot and data signals. Let
. We are interested in decoding the bit

vector from .
Consider maximum likelihood (ML) estimation of

(47)

where denotes the conditional density ofgiven
, , and . Since constitutes nuisance parameters, we replace
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it with its ML estimate, which can be shown to be

(48)

The bit detection problem becomes
using the compressed likelihood. Up to

some additive constants the compressed log-likelihood is

real

(49)

where represents a component that does not depend on. The
above expression is analogous to the log-likehood of an interfer-
ence channel, where the second term represents the interference
between symbols. However, if the powers corresponding to dif-
ferent symbols are comparable (which is the case here), then
the interference term may be neglected (and lumped into back-
ground noise), as is done in the use of the matched-filter receiver
in conventional CDMA systems. Ignoring the interference term
in (49), we arrive at the following (decoupled) bit decisions that
maximize the compressed log-likelihood

sign real

(50)

The above detector is an MRC of the form (35), which uses
as the channel estimate. This estimate

essentially corresponds to the uniform averager since we are as-
suming that the channel remains constant over the frame. How-
ever, the constant-channel assumption was made only to give a
simple argument to justify our decoupled approach to channel
estimation and bit detection. The optimal estimator does better
than the uniform averaging in (50) since it accounts for channel
variations within the frame.

VII. CONCLUSION

We have addressed pilot-based linear MMSE estimation of
time-varying multipath channels and its impact on coherent re-
ceiver performance. A critical channel characteristic controlling
system performance is the coherence time, which is inversely
proportional to the Doppler spread . We have shown that the
MMSE estimator admits a simple characterization in terms of
a bank of filters. The estimator performance is governed by an
effective SNR, which is the product of the pilot SNR and the
normalized coherence time. An “idealized” MMSE curve based

on the effective SNR is proposed for practical design. While the
optimal estimator requires knowledge of channel statistics, our
results demonstrate that a uniform averaging estimator of appro-
priate length can deliver near-optimal performance—the length
can be chosen based on the “idealized” design curves.

We show that there are two competing effects controlling
overall receiver performance: degradation in channel estimation
versus improvement in inherent receiver performance (due to
Doppler diversity) under faster fading. Our results demonstrate
that Doppler diversity can be fruitfully exploited via a time–fre-
quency RAKE receiver for mitigating BEP floors exhibited by
the conventional RAKE under fast fading. We note that Doppler
diversity gains are not directly attainable under practical fading
conditions since is typically not large enough. However,
time-selective signaling schemes that use longer (possibly over-
lapping) symbols (see, e.g., [21]) may be used to achieve desired
values of ( 0.2) in practice.

APPENDIX

We derive (24) for the MMSE estimator in the case of a
nonorthogonal basis. The optimal estimator (19) can be written
as

(51)

Under (23), we have and ,
where , , and denotes the Kronecker
product [27]. Thus, (51) can be equivalently expressed as

(52)

where the second equality follows from the fact that
diag . Using the eigendecomposition

, we have

(53)

where diag in the second equality, and we use
the fact that is unitary since is unitary. Using the eigende-
composition, we also have

(54)

By substituting (54) in (53), we arrive at the following expres-
sion for :

(55)

which can be interpreted as follows. Consider the trans-
formed vector , which results in

, where
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, and . The linear MMSE
estimator of from is given by

(56)

and thus, (55) can be expressed as
, which is precisely the form in (24).
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