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Abstract—In this paper, the problem of pilot beam pattern
design for channel estimation in massive multiple-input mul-
tiple-output systems with a large number of transmit antennas at
the base station is considered, and a new algorithm for pilot beam
pattern design for optimal channel estimation is proposed under
the assumption that the channel is a stationary Gauss-Markov
random process. The proposed algorithm designs the pilot beam
pattern sequentially by exploiting the properties of Kalman fil-
tering and the associated prediction error covariance matrices and
also the channel statistics such as spatial and temporal channel
correlation. The resulting design generates a sequentially-optimal
sequence of pilot beam patterns with low complexity for a given
set of system parameters. Numerical results show the effectiveness
of the proposed algorithm.

Index Terms—Channel estimation, massive MIMO systems,

spatio-temporal correlation, training signal design.

I. INTRODUCTION

M ULTIPLE-INPUT multiple-output (MIMO) systems

with large-scale transmit antenna arrays, so called mas-

sive MIMO systems, is one of the key technologies for future

wireless communications. The large size of the transmit antenna

array relative to the number of receive terminals can average

out thermal noise, fast channel fading, and some interference,

based on the law of large numbers [2], [3]. Massive MIMO

provides high data rates and energy efficiency with simple

signal processing because the propagation channels to terminal

stations served by a base station equipped with massive MIMO

are asymptotically orthogonal due to the increased beam reso-

lution [4]. However, in practice, such benefits may be limited

by channel estimation accuracy [2], [3]. This is especially true
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when full frequency reuse across neighboring cells is adopted;

in this case, pilot contamination [2] leads to imperfect channel

estimation which, in turn, yields severely degraded system

performance. Furthermore, in contrast to the conventional

MIMO system employing a small number of antennas, the

overhead required for channel estimation for massive MIMO

can be overwhelming and thereby severely limit the above

mentioned benefits of massive MIMO. Since the available

training resources are limited by either the channel coherence

interval or the amount of interference induced by neighboring

cells, fast and reliable channel estimation with reduced training

overhead is critical to massive MIMO systems.

To tackle the challenge of channel estimation, much of the

prior work focused on time-division duplex (TDD) operation

assumed channel reciprocity [2], [3], [5], and reciprocity cal-

ibration [4] under the assumption of time-invariant channels

within the coherence time. However, in most wireless systems,

frequency-division duplex (FDD) operation is employed, and

in this case the problem of channel estimation becomes more

challenging because MIMO channel sounding requires sub-

stantial overhead (such as feedback and/or dedicated times for

channel sounding) that scales with the number of antennas.

Such overhead can limit the performance improvement that

is expected in massive MIMO systems. There has been some

work on channel estimation and channel state information

(CSI) feedback techniques for FDD massive MIMO systems,

based on compressive sensing [6], limited feedback [7], [8],

and projected channels [9].

In this paper, we consider the problem of pilot beam design

for downlink channel estimation in FDD massive MIMO sys-

tems, for the case where the number of symbol times for channel

sounding within a channel coherence time is typically much

less than the number of antennas. To design efficient pilot beam

patterns, we here exploit channel statistics for massive MIMO

systems derived from dynamic channel modelling [10]–[12]

and analytical channel spatial correlation models [13]–[16].

Since the gain of beamforming in practical wireless sys-

tems is obtained mainly in slowly fading channels, we focus

on slowly fading and exploit the correlated time-variations

in the channel by adopting the widely-used Gauss-Markov

channel model [17]. Under this model, the channel estimation

performance can be enhanced through the use of optimal

Kalman filtering and prediction that exploits the current and

all previously received pilot signals, thereby shortening the

required time for accurate channel estimation. Our model

also incorporates spatial channel correlation that depends on

both the antenna geometry and the scattering environment;
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experimental investigations and analytical studies have con-

firmed that this information is typically available in (massive)

MIMO systems [4], [13]–[16], [18] and is locally1 time-wise

stationary. By exploiting both the channel dynamics and the

spatial correlation, we develop a low-complexity pilot beam

pattern design procedure that provides a sequence of optimal

pilot beam patterns that sequentially minimize the channel esti-

mation mean square error (MSE) at each training instant based

on a greedy approach. (The definition of sequential optimality

will be provided soon.) The key idea underlying the proposed

method is the joint use of spatio-temporal channel correlation

and signal-to-noise ratio (SNR) combined with the exploitation

of the structure of the error covariance matrices generated

with optimal Kalman filtering under the Gauss-Markov model,

to derive a sequence of optimal pilot beam patterns for each

training period.

This paper is organized as follows: The system model and

background are described in Section II. Section III describes the

proposed pilot beam pattern design method. Practical issues of

implementing the proposed method are discussed in Section IV.

Numerical results are provided in Section V, followed by con-

clusions in Section VI.

Notation Vectors and matrices are written in boldface with

matrices in capitals. All vectors are column vectors. For a ma-

trix , , , and indicate the transpose, Hermitian

transpose, and complex conjugate of , respectively. and

denote the trace of and the variance operator, respec-

tively. denotes the column vector obtained by stacking

the elements of columnwise. denotes the element of

at the -th row, and -th column. denotes

a diagonal matrix with diagonal elements , whereas

is the column vector containing the diagonal elements

of a matrix . For a vector , we use for 1-norm and

for 2-norm. For two matrices and , denotes the

Kronecker product, and means that is positive

semi-definite. represents the expectation of . stands

for the identity matrix of size , and denotes a column vector

with all one elements. denotes the set of non-negative real

numbers. is used for the imaginary number.

II. SYSTEM MODEL

A. System Setup

We consider a massive MIMO system with transmit

antennas and received antennas , where the

channel is given by an MIMO system with flat

Rayleigh fading under the narrowband assumption (which

easily extends to the case of wideband frequency-selective

channel when the system adopts OFDM transmission [19]).

The received signal at symbol time is given by

(1)

where is the transmitted symbol vector at time , is

the MIMO channel matrix at time , and is the zero-

mean independent and identically distributed (i.i.d.) complex

Gaussian noise vector at time with covariance matrix ,

1It means that for a short period of time, the correlation characteristics do not

change much.

Fig. 1. Massive MIMO system model where is the eigenvalues of the pre-

diction covariance matrix .

as shown in Fig. 1. (Here, we used the complex conjugate on

to keep the notation consistent with (7).)

1) MIMO Channel Correlation Model: For channel corre-

lation, we consider the general Kronecker model that captures

the transmit and receive antenna correlation [14], [15]. The

transmit and receive channel covariance matrices reflect the ge-

ometry of the propagation paths and remain almost unchanged

(locally time-wise) when compared to the rapidly-varying

instant channel realization, since the array response to the

scattering environments changes slowly compared to the user’s

location [20], [21]. Thus, the channel covariance matrices are

assumed to be fixed over the considered time period for channel

estimation, and the considered Kronecker channel model is

given by

(2)

where is an ergodic se-

quence of random matrices with independent zero-mean

Gaussian elements with some variance, and

and are deterministic transmit and receive

correlation matrices, respectively, i.e., and

.

In the downlink training, the channel covariance ma-

trices can be estimated by subspace estimation methods

even without the knowledge of instantaneous channel state

information [22]–[24], and there also exist methods that es-

timate the downlink channel covariance matrix using uplink

training in FDD systems using techniques such as frequency

calibration matrix [25], log-periodic array [26], or duplex array

approach [27]. Furthermore, under some circumstances the

channel covariance matrices and are approximately

known a priori. For example, under the virtual channel con-

dition [13], the use of uniform linear arrays (ULAs) at the

transmitter and the receiver makes and approximately

Toeplitz. By extending the one-ring model introduced by

Jakes [19], the spatial correlation in the flat-fading case can be

determined by the physical environment such as angle spread

(AS), angle of arrival (AoA), and antenna geometry[14]. That

is, in the case of a ULA with the AoA and the antenna spacing

, the channel covariance matrix is given by

(3)

where is the wavelength, is the AS, and denotes propaga-

tion path loss defined in Section V. (This result can be extended

to two-dimensional or planar arrays [16].) When the number of

transmit antennas grows large, the eigenspace of is closely
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approximated by a unitary Discrete Fourier Transform (DFT)

matrix with the support of AoA distribution. Hereafter, we shall

assume that the transmitter and the receiver have the knowledge

of the channel covariance matrices. The assumption of known

will be revisited in Section IV.

2) Channel Variation in Time and Slotted Transmission

Structure: For channel variation in time, we adopt a state-space

model, i.e., the channel dynamic is given by the first-order

stationary Gauss-Markov process [10]–[12], [28]

(4)

that satisfies the Lyapunov equation

(5)

and for all [20], where

, is a zero-mean and temporally independent

plant Gaussian vector, and is the temporal fading

coefficient.2 (It is easy to verify that is a

stationary process under this assumption.) The temporal fading

correlation coefficient can be estimated [28]–[31], and we as-

sume that is known. Then, under the Kronecker channel model

(2) we have

(6)

We assume slotted transmission with consecutive sym-

bols as one slot which is comprised of a training period of

symbols and a data transmission period of symbols so that

.

B. Channel Estimation

We consider the minimum mean square error (MMSE) ap-

proach for channel estimation [32] based on the current and

all previous observations during training periods, i.e.,

where denotes all received signals during the

pilot transmission up to symbol time , given by

where .

At each training symbol time, a pilot beam vector (or beam pat-

tern) of size , , is transmitted for channel estima-

tion. During the data transmission period, on the other hand,

the base station sends unknown data with transmit beamforming

based on the estimated channel.3

Note that the received signal model (1) can be rewritten as

(7)

2For Jakes’ model, [19], where is the zeroth-order

Bessel function, is the transmit symbol interval, and is the maximum

Doppler frequency shift.

3Transmit beamforming in FDD requires feedback information for channel

state information (CSI) from the receiver. Thus, the quantized version of the

downlink channel or the index of the quantized version of the channel chosen

from a receiver can be fed back to the base station[33]. In addition, a quantized

(or analog) version of the received training signal can be fed back to

enable channel estimation at the base station with a reduced amount of feedback

[1]. The focus of the paper is not feedback quantization but optimal design of

the pilot beam pattern for channel estimation.

where is an matrix. Then, we have

a state-space model obtained from (4) and (7) and the optimal

channel estimation is given by the Kalman filter for this state-

space model [34]. During the training period, the Kalman filter

performs a measurement update step for channel estimation at

each symbol time, where the Kalman channel estimate and the

related error covariance matrices are given by [34]

(8)

(9)

(10)

where ,

, and . Here, and are the estima-

tion and prediction error covariance matrices, respectively, de-

fined as where

. During the data transmission period,

the channel is predicted based on the last channel estimate of

the previous training period as [34]

(11)

where . During the data transmission period, the

predicted channel can be used for transmit beamforming; for

example, eigen-beamforming [2], [35] based on the predicted

channel can be applied for maximum rate transmission.

In the simple case of multiple-input single-output

(MISO) transmission, maximal ratio transmit beamforming

based on the current channel estimate can be applied,

and the transmit signal vector in this case is given by

, where is the data

symbol at symbol time , . From (7) and

, the received signal model can be

rewritten as

(12)

The second term in (12) denotes the additional noise

resulting from imperfect channel estimation. For sim-

plicity, we adopt the deterministic4 approximation to

[5]. Then,

the received SNR with the estimated channel is given by

(13)

III. THE PROPOSED PILOT BEAM PATTERN DESIGN

In this section, we present our proposed pilot beam pattern

design methods that minimize the channel estimation MSE as-

sociated with optimal Kalman filtering explained in the previous

section. The channel estimation MSE is directly related to the

effective SNR [38] and thus such pilot beam pattern design can

be leveraged to improve the training-based channel capacity.

4A rigorous SNR and achievable rate analysis for massive MIMO is available

in [36], [37].
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A. Greedy Sequential Design

We notice from (11) that the channel estimation error during

the data transmission period depends only on , and the esti-

mation error covariance matrix at the last pilot

symbol time. and are given, but the estimation MSE at

the last pilot symbol time, , can be mini-

mized by properly designing the pilot beam pattern sequence

, , . Here, since

is a function of

, should be jointly optimized

to minimize the MSE at time . However, this

joint optimization is too complicated because the impact of

on is intertwined over time.5 Furthermore, op-

timal channel estimation at for some is not the

only optimization goal since theMSE at for each

and every should be optimized for the -th data transmission

period. Therefore, we first adopt a greedy sequential optimiza-

tion approach to design the pilot beam pattern sequence, which

is formally stated as follows.

Problem 1: For each pilot symbol time starting from 1,

given for all pilot symbol time , design such that

(14)

(15)

The solution to Problem 1 is given by the following

proposition.

Proposition 1: Given all previous pilot signals ,

i) in the MISO case, the pilot beam pattern at time min-

imizing is given by a scaled dominant eigen-

vector of the error covariance matrix of the Kalman

prediction for time [1], and

ii) in the MIMO case, if the Kalman prediction error covari-

ance matrix for time is decomposed as

(16)

where and are unitary ma-

trices, and is a diagonal matrix with non-

negative real elements,6 then a locally optimal pilot beam

pattern at time for minimizing is given by

a scaled version of a column vector of the unitary matrix

in (16).

Proof: See Appendix A.

Interestingly, it can be shown in the MISO case that the pilot

beam pattern obtained from (33) is equivalent to the first

principal component direction of given by

(17)

As seen in the proof, in the MIMO case, it is not easy to ob-

tain a globally optimal solution, but the obtained locally optimal

solution yields a nice property that can be exploited to derive

an efficient pilot beam pattern design algorithm. Note that to

5The difficulty in applying standard dynamic programming (DP) [39] to the

problem is that the contribution of at time to the cost function is not lo-

calized at time . It affects the so-called branch metric at time and all the

following branch metrics.

6This assumption will be verified shortly in Proposition 2.

obtain the (sequentially) optimal , we need to perform the

eigen-decomposition (ED) of at each pilot symbol time ,

and this can be computationally expensive since is large for

massive MIMO systems. However, due to the following propo-

sition regarding the eigen-space of the Kalman prediction error

covariance matrix associated with Proposition 1, we can elim-

inate such heavy complexity burden when designing a sequen-

tially optimal pilot beam pattern sequence.

Proposition 2: The Kalman filtering error covariance matrix

and the Kalman prediction error covariance matrix

generated by sequentially optimal given by Proposition 1 are

simultaneously diagonalizable with for any and ,

under the assumption of .7

Proof: Proof is by induction. Let and

be the ED of and , respectively. Then,

, where .

For any pilot symbol time ,

suppose that the Kalman prediction matrix for time is given

by , where and

are unitary matrices, and is

a diagonal matrix given as

(18)

By Proposition 1, is given by a scaled version of a column

vector of , i.e., with

(19)

From the measurement update (10), is given by

(20)

where is a diagonal matrix with nonnegative elements.

(See Appendix B for details.) Thus, and are si-

multaneously diagonalizable. Since

, from the prediction step (9) is also

simultaneously diagonalizable with since is simulta-

neously diagonalizable with .

Now consider a symbol time during the first data transmis-

sion period. In this case, the prediction error covariance matrix

is given by

(21)

where and is defined in (20). Thus, any

prediction error covariance matrix during the first data period

is simultaneously diagonalizable with for . Since

this Kalman recursion repeats, we have the claim.

Note that the assumption (16) is valid under the Kronecker

channel correlation model together with the pilot beam pattern

selection proposed in Proposition 1. Proposition 2 states that all

7Such an initial parameter is a typical value for the Kalman filter, and there

will be no loss [39].
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Kalman error covariance matrices under the sequentially op-

timal pilot beam pattern design have the same set of eigen-

vectors as . This has an important practical implication: in

each pilot transmission period, the base station transmits a pilot

beam pattern at time chosen from a fixed set of orthogonal

beam patterns, i.e., the transmit eigenvectors of , according

to some order depending on (defined in

(18)). Note that (20) shows how a sequentially optimal pilot

beam pattern at time reduces the channel estimation error by

changing the eigenvalue distribution from to with the

measurement update step (only the -th subblock is updated as

), and (21) shows how the

eigenvalues of the channel prediction error covariance matrix

change (from to ) during the pure prediction pe-

riod. Exploiting these facts, we propose an efficient algorithm

to obtain the sequence of sequentially optimal pilot beam pat-

terns to minimize the channel estimation MSE at each symbol

time. The algorithm is summarized in Algorithm 1.

Algorithm 1 Sequentially Optimal Pilot Beam Pattern Design

Require: Perform the ED of and ,

and . Store , and
.

and partition

while do

for to do

if then

(See (19) and (39).)

(Step )

end if

(Step )

end for

end while

(Here, denotes the element-wise division and is the -th
element of . Step incorporates the measurement update
step (20) and Step incorporates the prediction step (21).)

In Algorithm 1, the Kalman filtering error covariance matrix

is minimized at each time with the hope that such a

sequence minimizes the channel estimation MSE at the end of

the pilot period of a slot. Since the important estimationmeasure

is the estimation error at the end of the pilot period of each

slot (which affects the channel estimation quality for the data

transmission period under the time-varying channel assumption,

as seen in (11)), we consider a modification to Algorithm 1 to

design a pilot beam pattern sequence, targeting at the estimation

error only at for the -th transmission block.

1) Problem 2: For each pilot symbol time

starting from 1, given for all pilot symbol time , design

such that

(23)

(24)

where is the end of the pilot period to which belongs.

Since we have

(25)

the solution to Problem 2 is given by minimizing and

Algorithm 1 can be used for this purpose too.

B. Pilot Power Allocation

In the pilot beam pattern design in Section III-A, we consid-

ered equal pilot power for each pilot symbol time. We relax the

equal-power constraint here and consider the pilot beam pattern

design problem again.

First, we will derive a necessary condition of an optimal pilot

beam sequence that is useful for further pilot design. (This con-

dition is given in Proposition 3.) To do so, let us first define

some notations. For , let

be the time index

set in the -th slot for which the -th transmit eigenvector

(obtained from and ) is

used as the pilot beam pattern. Note that some eigenvectors

may not be used as the pilot beam pattern depending on the

channel statistics. Under the assumption that the transmitter has

total power for the pilot transmission period, we denote

by the pilot signal power for the use of the -th transmit

eigenvector at time and define a pilot interval vector

(22)
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Fig. 2. The use of the -th transmit eigenvector as the pilot beam in a slot

where and : (a) is not used and (b) is used.

as shown in Fig. 2. The following

proposition provides a property regarding optimal pilot power

allocation.

Proposition 3: An optimal pilot beam pattern sequence min-

imizing in the -th slot should satisfy the

condition that all the pilot power for a transmit eigen-direction is

allocated to the last use of the eigen-direction in the slot. That is,

one transmit eigen-direction should not appear more than once

in the pilot period of each slot.

Proof: See Appendix C.

Now consider the problem of joint design of beam pattern

index selection and power allocation. As seen in Section III-A,

the pilot beam pattern sequence design is a difficult problem

even with fixed pilot power. In the case of pilot beam pattern

sequence design with power control, we have a more compli-

cated situation. Our approach to this complicated joint design

problem is to separate the beam pattern index selection and the

power allocation, although it is suboptimal. We again use the

sequential beam pattern index selection based on (19) together

with Proposition 3, but now we do not know the allocated pilot

power beforehand. To circumvent this difficulty, we exploit the

property of the argument in (19). Note that the argument in (19)

is an increasing 8 function of for any positive . Hence,

if we choose s.t. for all , this index

is optimal. Note that for this selection method, we do not

need the knowledge of the current pilot power at time

( in the case of (19)). However, there may not be such an

index and hence, we replace this majorization criterion with a

simple trace criterion since all the elements are non-nega-

tive. (Having the maximum trace is at least a necessary condi-

tion for being the majorizing index.) Based on this, we propose

to choose the beam pattern index at time to minimize

(or equivalently as follows. First, consider time

under the assumption that the pilot sequence and

power is already determined for the previous slots. We choose

. With the first index selected, con-

sider . Now, applying the condition of Proposition

3, we choose . This is possible

without knowing since only is affected by

and is not considered from . Then, we proceed

to . In this way, we can choose without

knowing based on the trace criterion and

Proposition 3. For a selected index , and for an

unselected index , . Then, we have .

8A real-valued function defined on some set of Hermitian matrices

is increasing on if , whenever [40,

Ch. 16].

(Let us use for .) Once are determined, the op-

timization goal is given by (22).

Based on (22), the pilot power optimization problem is for-

mulated as

(26)

(27)

where . The problem (26) can be

solved by water-filling power allocation[41] (see Appendix E

for details), and the corresponding algorithm is summarized in

Algorithm 2. In the MIMO case, needs to be solved numer-

ically from (60), whereas in the MISO case we have a closed-

form solution given by

(28)

where and is evaluated from the power

constraint (27).

Algorithm 2 Sequential Pilot Beam Pattern Design with Power
Allocation

Require: Perform the ED of and
where . Store , and

.

and partition

while do

for

for to do

,

where

is the -th element of , i.e., .

Set

end for

Obtain the power allocation by solving (26).

for to do

if then

end if

end for

for to do

Perform Kalman measurement update and
prediction with the obtained to track the
correct error covariance matrix.

end for

end while

Note that in the first for-loop, the measurement update
step is not implemented since we do not choose the used
eigen-direction index again and thus we only need the
prediction steps to select the eigen-direction indices.
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In high and low SNR regimes, the optimal power allocation

can be approximated by simpler forms:

Case 1) High SNR:

(29)

where is the -th diagonal element of .

Case 2) Low SNR:

(30)

In the special case of static channels, i.e., , the pro-

posed power allocation strategy covers the result of Kotecha

and Sayeed [42], which considers the MMSE channel estima-

tion with power control for quasi-static channels.

C. Block-Fading Channel Model

In this subsection, we consider a block Gauss-Markov fading

channel model under which the channel is constant for each

slot, i.e., for , but

varies continuously across slots according to

. We assume that the base station equipped with

antennas serves a single-antenna terminal for simplicity [2];

each coherence time block of symbols is composed of a

training period of symbols and a data transmission period

of symbols; and . By stacking symbols during

the -th training period, we have the received signal ,

given by

(31)

where and

. We further assume that

[38], [43]. The following proposition provides a property of

optimal under the block-fading channel model.

Proposition 4: Given all previous pilot signals ,

the pilot beam signal at the -th training period minimizing

is given by the scaled version of the dominant

eigenvectors of the Kalman prediction error covariance matrix

for the -th training period.

Proof: See Appendix D.

As in the symbolwise Gauss-Markov channel model, all

Kalman prediction error covariance matrices that are used for

the orthogonal pilot beam pattern design have the same set of

eigenvectors of , i.e., , and are simultaneously

diagonalizable. (Proof is omitted since it can be shown simi-

larly as in Proposition 2.) Thus, the proposed algorithm in the

previous section can easily be extended to the block-fading

Gauss-Markov channel model. Previously, it was proposed by

some other researchers that the dominant eigenvectors of

are used for the pilot symbol times for every slot under

the block i.i.d. fading model [42]. However, in our proposed

method, we use for the pilot beam patterns in the -th slot

the dominant eigenvectors of instead of to incor-

porate channel dynamics and to track the most efficient

eigen-directions over time. Note that the full set of eigenvectors

is the same for and and that does not change over

time under the considered stationary Gauss-Markov channel

model. The tracking feature of the proposed method yields a

significant gain over the previous method in time-varying chan-

nels when the channel dynamic is known, as seen in Section V.

Some progresses on this approach are reported by relaxing the

orthogonality condition [44] and designing structured training

codebook [45].

IV. DISCUSSION: PRACTICAL IMPLEMENTATION

AND MULTI-USER SCENARIO

In this section, we make some comments relative to practical

implementation of our proposed pilot design and channel esti-

mation scheme in real-world massive MIMO systems.

First, consider the type and amount of feedback necessary

for a massive MIMO system. One approach is to have the mo-

bile station estimate the full channel state vector and feed that

back to the base station. For a massive MIMO system, this ap-

proach requires a large amount of feedback and may be difficult

to implement in practice. Alternatively, the mobile station may

simply feed back the received signal at each time in-

stant, i.e., have the mobile station effectively transmit back the

inner product between the current beamforming vector and the

current channel state vector plus noise, and use that information

to form an estimate of the channel at the base station [1]. The

latter method is more effective in terms of the amount of feed-

back and does not require any modifications to the algorithm

proposed in this paper.

Second, consider the estimation of the channel fading coeffi-

cient in the channel time-varying model (4). Since depends

on the mobile speed of the receiver, it can be estimated by using

the uplink received signal directly [28]–[31]. (A simple correc-

tion due to the uplink and downlink carrier frequency difference

in FDD systems should be applied.) This problem falls into the

general area of system identification of state-space models. Es-

pecially, blind techniques based on subspace approaches can be

applied here [31].

Next, throughout the paper, we assume that the downlink

channel covariance matrix is known to the system for a gen-

eral channel model. If is estimated at the receiver (mobile

station) and fed back to the base station through some control

channel, the feedback overhead may be significant. Fortunately,

there exist methods that can circumvent this difficulty. One way

is to estimate the downlink channel covariance matrix from

the uplink channel covariance matrix [25]–[27].9 The downlink

can be estimated from the uplink channel covariance matrix

even though they are a bit separated in the frequency domain in

the FDD case. Interested readers are referred to [25]–[27].

Furthermore, we here propose even a simpler method to ob-

tain based on the one ring model and the Toeplitz distribu-

tion theorem for 1-dimensional or 2-dimenional large uniform

arrays. Consider a 1-dimensional large uniform array with

antenna elements for simplicity. Each element of the array per-

forms spatial-sampling of the signal. Thus, if we view these

spatial samples as discrete-time samples, the conventional (dis-

crete-time) frequency domain corresponds to the virtual angle

9Note that in the MISO downlink case, the uplink is SIMO. In the time-do-

main duplex (TDD) case, the uplink and downlink channel covariance matrices

are the same.
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domain.10 For the one-ring model with a uniform array under

a far-field assumption, the channel covariance matrix is

Toeplitz [16]. It is known that when the size of a Toeplitz co-

variance matrix is large, the Toeplitz matrix can be eigen-de-

composed by a DFT matrix, which is known as the Toeplitz dis-

tribution theorem [16], [46], [47], i.e., where

is a DFT matrix and is a diagonal matrix that contains the vir-

tual angular power spectral values. (This is why the eigen-de-

composition of a Toeplitz covariance matrix is also called the

spectral decomposition.) For a one-ring model with angle-of-ar-

rival (AoA) and angle-dispersion ( ), the elements of are

non-zero only for the angle spectrum .

Thus, when AoA and are given, can be constructed from

the corresponding columns of and the angular power spectral

values. Note that the -th column of is given by

(32)

This is simply the steering vector for the physical angle

. Under the model, the channel is

given by a random linear combination of column vectors

or steering vectors with the form (32) looking at the angle

range . (Channel estimation in the

previous sections is nothing but estimation of the random linear

combination coefficients.) The AoA can be estimated from

the uplink signal model (there are numerous practical AoA or

DoA estimation algorithms) and can be pre-measured or

predetermined for each carrier frequency by reflecting the typ-

ical scattering environment. The angular power spectrum can

also be estimated based on one of typical spectral estimation

methods [48]. Here, the angular power spectrum is estimated

by using the uplink signal and a correction similar to those

in [25]–[27] can be applied to obtain a downlink counterpart.

Simulations will be presented towards the end of the next

section in which the pilot beam patterns are approximated by

DFT vectors without much loss in performance.

In summary, the proposed pilot design and channel estimation

method can be run in the following practical way:

1) first estimate the AoA based on the uplink signal and se-

lects the columns of corresponding to

;

2) estimate the angular power profile for

from the uplink channel response [48], and finally ob-

tain a downlink power profile via correction [25]–[27].

This downlink angular power profile gives in Algo-

rithm 1;11

3) estimate the mobile speed of the terminal (i.e., ) based on

the uplink by using one of system identification algorithms

[28]–[31]; and

10The virtual angle is related to the physical angle by ,

where is the antenna spacing and is the carrier wavelength. When

, corresponds to .

11The simple assumption of wide-sense stationarity may not hold in real

wireless channels. However, wireless channels are usually characterized by

local quasi-stationarity [49], as per empirical measurements conducted under

urban macrocell conditions [50] (i.e., within local quasi-stationary time periods,

the proposed method can operate with a window-based average to update the

channel statistics of low-mobility users).

4) finally run one of the algorithms in the previous sections.

(By reciprocity, the AoA and the terminal velocity are the

same for the up and down links.)

Finally, consider the multi-user case. Note that the system

model (1) is for a single-userMIMO channel. However, many of

current real-world wireless communication systems as those in

3GPP support user-dedicated pilot and control channels in addi-

tion to a common pilot and control channel for effective channel

estimation for each user. Thus, the proposed method can be ap-

plied to these dedicated pilot channels. Furthermore, the pro-

posed method can well be combined with the recently proposed

joint spatial division and multiplexing (JSDM) framework for

multiuser massive MIMO systems [16]. In the JSDM, the mul-

tiple users (MU) in a sector are partitioned into groups each of

which has approximately the same channel covariance matrix.

(Each set of the partition can be viewed as a virtual subsector.)

Here, if the groups or subsectors are sufficiently well separated

in the AoA domain, the dominant eigenvectors of the channel

covariance matrices become linearly independent for different

groups. To serve MU-MIMO in the same time-frequency slot,

we can choose the users that have non-overlapping supports of

their AoA distribution as in [16]. Then, the optimal pilot beam

patterns become different and orthogonal among non-overlap-

ping groups. In this case, the system model (1) can be regarded

as the signal model for a scheduled user in one of the non-over-

lapping subsectors of the overall multi-user downlink.

V. NUMERICAL RESULTS

In this section, we provide some numerical results to evaluate

the performance of the proposed algorithms. We considered

transmit antennas and receive

antennas for our massive MIMO systems. We adopted

carrier frequency and symbol duration with a typ-

ical mobile speed range from

to . For all considered pilot design

methods, we used Kalman filtering and prediction for the

channel estimator. To evaluate the channel estimation per-

formance, we computed the normalized mean square error

(NMSE), given by . The pilot symbol SNR

was defined as , the data symbol SNR was defined as

, and the two SNR values were the same throughout the

simulation. The noise variance was determined according

to the SNR value with , and the received SNR is

defined as (13), which incorporates the effect of beamforming

gain and imperfect channel estimation. The channel estimation

performance for each of the considered methods was averaged

over 1,000 Monte Carlo runs.

First, we considered the exponential correlation model for

channel spatial correlation, given by and

, where and are the transmit and receive

correlation coefficients between two adjacent antenna elements,

respectively ( for simplicity). Since the phase of

is irrelevant to the eigenvalues of , we assume without

loss of generality that the phase of is fixed to be zero (i.e.,

). Fig. 3 shows the channel estimation performance of

several pilot pattern design methods [43] for the exponential

channel correlation model with , , and
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Fig. 3. NMSE and a lower bound on achievable rate (bit/s/Hz) versus time

index : , , , , , , and

(The dotted rectangles denote pilot transmission periods.).

(without path loss). The performance of the dominant

eigenvectors of as the pilot beam patterns for every

pilot period is also shown. It is seen that the proposed algorithm

tracks the channel state fast due to the ability of the proposed

method’s tracking the spectral distribution of the channel MSE.

Thus, the proposed method converges more quickly. The use

of orthogonal or random beam patterns (which span the overall

space) yields reasonable performance with slightly increased

convergence time compared to the proposed method. In the

case of the fixed dominant eigenvectors of for the

pilot beam pattern in every pilot period, one can only minimize

the channel MSE along the fixed eigen-directions, and

the coverage of only fixed eigen-directions in the space is

not enough for very large when is small. Hence, the

channel estimation MSE performance of the fixed pilot beam

pattern method is saturated quickly. By replacing the channel

estimation error plus noise with independent additive Gaussian

noise during the data transmission phase [38], we showed the

training-based lower bound on achievable data rate in Fig. 3.

The proposed method also guarantees a good (average) lower

bound on achievable rate due to precise channel estimation.

Next, we considered the (more realistic) one-ring channel

model which well models typical cellular configurations [14],

[16]. The channel spatial correlation with a ULA is given by

(3) and depends on AoA and AS , and this model can be ex-

tended to the 2-dimensional array case (See [14] for details.) In-

deed, we considered a transmitter employing a 10 25 uniform

planar array (UPA) on half-wavelength lattice, with

. In order to compute the vertical and horizontal channel

covariance matrices , we assume that the transmit an-

tenna is located at an elevation of , the scattering

ring of the receiver has radius , and the distance

from the transmitter is . The path loss between the

transmitter and the receiver is given by ,

where the path loss exponent is set as and the ref-

erence distance is set as . Then, the parameters

for the channel covariance matrices and are given

by ,

,

, and . Finally, the channel

Fig. 4. Empirical eigenvalue CDF of and .

Fig. 5. NMSE versus time index where , , and

.

covariance matrix is given by [16]. Fig. 4

shows the empirical cumulative distribution function (CDF)

of the eigenvalues of obtained in the above, and exhibits

rank-deficiency in the spatial channel covariance matrices due

to local scattering around the receiver. Note that 70% to 80%

of the eigenvalues are zero.

Fig. 5 shows the performance of the two proposed algorithms

for the considered one-ring channel model: one with fixed pilot

power and the other with pilot power design. It is seen that

proper power allocation can enhance the channel estimation per-

formance especially both in low SNR and initial tracking pe-

riods, but the performance gain is small and the two methods

yield almost the same performance at the steady state. Thus,

simpler Algorithm 1 with fixed pilot power can be used without

much performance loss.

Fig. 6 shows the channel estimation performance of several

pilot pattern design methods for the considered one-ring model.

It is seen that the proposed method (Algorithm 1) significantly

outperforms other pilot design methods both in the transient

and steady-state behaviors. Especially, the proposed method

yields a received SNR loss of approximately 3dB compared to

the perfect channel state information case during the transient

tracking phase. Orthogonal and random pilot beam patterns are

ineffective since they span all the -dimensional space and

such patterns cannot capture the dominant channel uncertainty

in space at each pilot symbol time [1]. The fixed eigen-di-

rection method outperforms the random or orthogonal pilot
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Fig. 6. NMSE and received SNR versus time index where , , , and (a) Transient tracking (b) Steady-state tracking.

Fig. 7. BER performance for 16-QAM modulation.

design methods in the beginning. This is because the estimated

channel from the fixed eigen-direction pilot design is a

linear combination of the fixed eigen-directions, and the

use of this channel estimate as the beamforming direction

yields a rough channel matching in the beginning. However, as

time goes, the channel estimation in the limited subspace is not

enough for accurate channel estimation, and this yields the per-

formance saturation. To assess the actual system performance

loss due to channel estimation error, we investigated the bit

error rate (BER) performance. In Fig. 7, we examine the BER

performance based on the estimated channel corresponding to

Fig. 6 for the same setup. It is seen that the proposed method

significantly outperforms other methods. Note that the channel

MSE performance directly affects on the BER performance.

We also investigated the performance variation due to themo-

bile speed. Fig. 8 shows the steady-state performance of sev-

eral pilot beam pattern design methods and the corresponding

Kalman filtering channel estimation channel as the mobile ve-

locity varies from to . Note that the proposed

design yields much better performance in the case of fast-fading

when compared to the other design methods.

Finally, we evaluated the proposed design in the considered

one-ring model using the estimation method based on the

DFT matrix and the Toeplitz distribution theorem (TDT) pre-

sented in Section IV. Fig. 9 shows the received SNR perfor-

mance. (Here, we used the block-fading channel Gauss-Markov

model in Section III-C since this case was not covered so far,

but the performance is not much different from the same for the

symbol fading case.) We assumed that AoA and are known. It

is seen that the DFT/TDT-based method yields almost the same

performance as the proposed algorithm with perfectly known

! Thus, the simple practical estimation of based on the

DFT and the TDT seems to work well. Here, to overcome the

drawback of the method of using the fixed dominant eigen-

vectors of , we also considered a modified method that ini-

tially chooses dominant eigenvectors of

and uses patterns out of the chosen patterns in

a round-robin manner. was used for Fig. 9. Note that

up to the first 5 slots the modified method almost tracks the pro-

posed method. This means that roughly 10 eigen-directions out

of are most significant and contain most of the channel

power. Hence, if were 10, the performance of the modified

method should be very good and be comparable to that of the

proposed method. However, the problem is that one does not

know the number of dominant eigen-directions containing most

of the channel power a prioriwith a proper threshold level. One

can view that the proposed algorithm exploits both the most sig-

nificant eigen-direction and the channel power of each direction

over time.

VI. CONCLUSIONS

We have considered the problem of pilot beam pattern design

for massive MIMO systems, and proposed a new method for

pilot beam pattern design for massive MIMO systems, based

on the stationary Gauss-Markov channel model, by exploiting

channel statistics such as temporal and spatial channel cor-

relation that can be used for better system performance. The

proposed method yields a greedy (i.e., sequentially optimal)

sequence of pilot beam patterns with low computational com-

plexity by exploiting the properties of the Kalman filtering and

prediction error covariance matrices. Furthermore, we have

considered the joint design problem of pilot beam pattern and

pilot beam power and the extension of the proposed method to

the case of the block Gauss-Markov channel model. Numerical

results have validated the effectiveness of the proposed algo-
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Fig. 8. NMSE and SNR versus the terminal velocity where , , and (a) Channel estimation (b) Received SNR.

Fig. 9. Received SNR versus slot index where , ,

, and .

rithm, and it is shown that the proposed pilot design method

significantly outperforms other pilot design methods especially

under the realistic one-ring channel correlation model.

APPENDIX

Proof of Proposition 1:

See [1] for the MISO case. We here prove the MIMO case.
Case 1) : From (10), can be

written as

(33)

Since and , the cost
function in (33) can be rewritten as

(34)

Since the Kalman prediction error covariance matrix
by the assumption, where

, and ,
and since the columns of span , we

have , where , and (34) can be
rewritten as

(35)

(36)

where is the -th unit vector, and the last step (36) holds
because

(37)

where and is the Kronecker delta. The cost func-
tion (36) can be rewritten as

(38)

where . The Lagrangian of the opti-
mization of (38) is given by

where is a Lagrange dual variable. The Karush-Kuhn-Tucker
(KKT) conditions of the optimization of (38) are given by

It is easy to verify that for some
and for all with

satisfies the KKT conditions. Since (38) is not convex in terms
of , the solution to the KKT conditions is not unique. How-
ever, all such solutions with only one non-zero are stationary
points of the optimization, i.e., each of them is a local optimum.



798 IEEE JOURNAL OF SELECTED TOPICS IN SIGNAL PROCESSING, VOL. 8, NO. 5, OCTOBER 2014

Among such solutions the best one is given by for
and for all , where

(39)

and is a locally optimal solution to minimizing

.
Case 2) : We have prediction steps without

a measurement update step before the first pilot symbol time
in the -th slot. In this case, still the measurement update form
(10) at is valid with replaced by the error covari-
ance matrix of the Kalman prediction for time
based on all the previous pilot beam patterns. Hence, the proof
in Case 1) is applicable to this case just with replaced
by .

Derivation of :

(40)

where the equality follows because

(41)

and the equality follows because
. The equality holds because

Proof of Proposition 3:

For the -th pilot transmission period , let
be a power allocation vector with the

pilot beam pattern sequence determined by , .
The MSE at time is given by

(42)

where is the -th diagonal sub-block of
defined (20). ( , when .) (42)

holds because only affects the -th subblock of the eigenvalue
matrix and the MSE for the -th block at the end of the pilot
period is given by channel prediction from the last pilot use of
at time . Combining Kalman prediction and measurement

update steps, we have

(43)

(44)

where , , and are defined in
(46), (47), respectively. (Here, we have slight abuse of nota-
tion. means for two matrices and .) Proof
is by an iterative argument. We start from and

for the original . By Lemma 1 and
Remark 1, (43) is reduced by updating

and , when we consider the two power values for

and . With this improvement, we construct a new
with and a new

power allocation for .

Then, we apply the same argument to the last two power terms
of the newly constructed . In this way, (43) is minimized by
allocating all the power for the -th eigen-direction to for

the original . Since (42) is a monotone increasing function

of , we have the claim.
Lemma 1: Given any , set

and for any . Then, the following

holds:

(45)

where

(46)

(47)

(48)

(49)

Proof: For notational simplicity, we omit the upper

index of and when there is no ambiguity. De-
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fine and

with .

Then, (45) can be rewritten as

(50)

Note that the denominator of the right-hand side (RHS) in (50)

is obviously positive definite and the numerator is also positive

semi-definite because each term on the RHS in (51) is positive

semi-definite because

(51)

Note that for all . (Remember that the channel

is stationary and the measurement update only improves the

channel estimation quality.) Hence, we have the claim.

Remark 1: In case that we control ,

is minimized when . This can easily

be shown by . One can write a

similar equation to (50). Although the detail is not shown here,

in this case the corresponding denominator is positive definite

and the corresponding numerator includes obviously positive

semi-definite term and the term

which is positive semi-definite.

Proof of Proposition 4:

From (10) and (34), can be written as

(52)

For orthogonal pilot signals, the objective function (52) can be

rewritten as

(53)

Define and

. Then, (53) can be rewritten as

(54)

where . The equality holds by the posi-

tive definiteness of and . Because

, the optimal that maximizes (54) is given by the

dominant eigenvectors of by Ky-Fan

[51]. Let the ED of be , where the

diagonal matrix contains the eigenvalues of in a de-

creasing order. Then, is given by

(55)

from . Since

is a monotone increasing func-

tion of , which is achieved by

.

Power Allocation:

The problem of (26) can be solved by the standard convex

optimization method. The Lagrangian of the problem is given

by

where and are the Lagrange multipliers associated to the

constraints, and for . The Karush-

Kuhn-Tucker (KKT) conditions are then written as

(56)

(57)

From the above conditions, we have

(58)

(59)

If , (58) holds only if

, and by (59) this implies that

(60)

If , then because

we have

(59) holds only if .
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When , the optimal power allocation is determined

from (60) as

(61)

where and is determined by the power constraint

(56), given by

Suboptimal Power Allocation:

Consider the high SNR case first, i.e., , where

. The cost function (26) can be approxi-
mated by

This can be solved and the solution is given by (29).

In low SNR , the cost function (26) can be
written as

This can be solved and the solution is given by (30).
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