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Abstract—Many emerging applications such as intruder detec-
tion and border protection drive the fast increasing development
of device-free passive (DfP) localization techniques. In this paper,
we present Pilot, a Channel State Information (CSI)-based DfP
indoor localization system in WLAN. Pilot design is motivated
by the observations that PHY layer CSI is capable of capturing
the environment variance due to frequency diversity of wideband
channel, such that the position where the entity located can be
uniquely identified by monitoring the CSI feature pattern shift.
Therefore, a “passive” radio map is constructed as prerequisite
which include fingerprints for entity located in some crucial
reference positions, as well as clear environment. Unlike device-
based approaches that directly percepts the current state of
entities, the first challenge for DfP localization is to detect their
appearance in the area of interest. To this end, we design an
essential anomaly detection block as the localization trigger
relying on the CSI feature shift when entity emerges. Afterwards,
a probabilistic algorithm is proposed to match the abnormal
CSI to the fingerprint database to estimate the positions of
potential existing entities. Finally, a data fusion block is developed
to address the multiple entities localization challenge. We have
implemented Pilot system with commercial IEEE 802.11n NICs
and evaluated the performance in two typical indoor scenarios.
It is shown that our Pilot system can greatly outperform the
corresponding best RSS-based scheme in terms of anomaly
detection and localization accuracy.

Index Terms—Device-free Indoor localization, Channel State
Information, RSS, Physical Layer.

I. INTRODUCTION

Indoor location based services (LBSs) are becoming ubiqui-

tous popular for providing people location-aware information.

Advances have been made to enable the indoor LBS using

RF-based technologies such as WLAN, wireless sensors and

Radio-frequency identification (RFID), etc. Most of these

technologies share a common requirement that special devices

like WiFi-enabled smartphones or RFID tags must be car-

ried. However, as LBSs are bringing forth new expectations,

such device-based approaches become ineligible for satisfying

some emerging application demands. For example, exhibition

galleries and shopping centers are expecting to support the

pilferage prevention and missing people tracking services in

a way that the visitors and customers do not need to carry

on specific hardware. Important applications also exist in

other indoor settings like hospitals, residences and places of

entertainment. In hospital, health care providers need to grasp

the distribution of location of the wandered patients associated

without a device and quickly expand the relief operations.

Also, people can figure out the position of the intrusive indi-

viduals in a resident district for safety precaution. Therefore, a

device-free passive technique capable of detecting, positioning,

and tracking entities neither carry any devices, nor participate

actively in the localization process will be greatly helpful.

In general, the underlying technical challenges for designing

a passive device-free indoor localization system are in two

folds. First noted that device-based class can inherently obtain

the knowledge of current status with a device attaching to

the target and directly do localization. In contrast, the na-

ture of device-free scheme requires implementing a similar

functionality by detecting the occurrence of anomalous entity

in the area of interest. Therefore, the first challenge that has

to be addressed in order to enable the novel location-aware

applications is anomaly detection problem, also known as hu-

man/motion detection. Second, how to accomplish localization

when a motion event of an entity has been detected serves as

the new knotty problem. State-of-the-art researches [3], [8], [9]

adopt radio signal strength (RSS) as the base modality in an

attempt to overcome these difficulties. However, we argue that

the performance of device-free positioning systems based on

RSS is limited by the disadvantage of RSS itself. Specifically,

indispensable anomaly detection can be suffered from the high

variability of RSS, owing to its coarse measurement. More-

over, the inherent fluctuation of RSS makes it less sensitive to

entity-caused environmental changes, not to precisely signify a

location fingerprint. Consequently, there is a pressing need to

prompt a new modality superior to RSS for device-free indoor

localization.

Fortunately, physical layer Channel State Information (CSI)

from OFDM-based system promises new potential to over-

come the above limitations of RSS. Previously, CSI has proved

to be a reliable metric for locating the entity with WiFi-

enabled device [24]. Under this ground, we envision a future

of leveraging CSI for passive device-free indoor localization.

To this end, we start by investigating the feasibility of CSI-

based device-free scheme. Based on preliminary experiments,

we obtain two key observations. The primary one is that CSI
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Fig. 1: Delay Profile in Different Environments.

is capable of detecting anomaly that affected by changes in

the environment. This relies on the temporal stable feature of

CSI that ensures the sensitivity of capturing the environmental

variance owing to abnormal entities’ (i.e., human) occurrence

and movement. The second insight stems from adequacy of

CSI to differ a fixed location where the entity is present from

all the other locations. Frequency diversity [11] of CSI allows

it to reflect the varying multipath reflections due to entities’

existence. In Figure 1, the time domain delay profile obtained

by inverse fast Fourier Transform (IFFT) of frequency domain

CSI shows that an entity in different positions will change the

multipath reflections differently and result in different delay

profiles. Thus, CSI offers two major benefits when detecting

the abnormal entities and serving as location fingerprint.

In this paper, we design Pilot, a CSI-based Passive device-

free indoor localization system. Our main idea is to leverage

the beneficial characteristics of CSI to monitor the abnormal

appearance (anomaly or motion detection) and then to identify

the location of entity. In particular, we design three blocks

to enable the passive device-free localization functionality.

First, we explore the frequency diversity of CSI in passive

radio map construction block to generate normal and abnormal

fingerprints. Second, anomaly detection block utilizes the

correlation of CSI over time to monitor the abnormal variance.

This block is the prerequisite of finalizing locating the position

of the anomaly entities, which is more challenge. Third, we

tackle this knotty localization problem with position estimation

block. Nevertheless, we develop a data fusion algorithm to

determine the positions of multiple entities.

The main contributions of Pilot system are summarized as

follows:

1) We exploit the feasibility of using fine grained channel

state information for passive indoor localization. To the

best of our knowledge, this is the first work to leverage

PHY layer information CSI for DfP indoor localization

in WLAN.

2) We take the advantages (temporal stability and frequency

diversity) of CSI to design Pilot, a passive indoor local-

ization system, to realize passive radio map construction,

anomaly detection, and position estimation, respectively.

3) Extensive evaluations of Pilot with commercial 802.11

NICs are conducted in two typical indoor scenarios.

These measurements show that the Pilot provides higher

anomaly detection ratio than RSS-based RASID. Pilot,

Pilot greatly outperforms RSS-based Nuzzer system with

respective to localization accuracy.

The remainder of this paper is structured as follows. Sec-

tion III discusses the central two observations that motivate our

approach. Then we summarize the state-of-the-art researches

on indoor localization in Section II. Section IV presents

the overall architecture design of Pilot along with detailed

methodology. In Section V, we describe the implementation

of Pilot, and evaluate the performance in two typical indoor

environments. Finally, we render our conclusions and present

avenues for further research based on this work in Section VI.

II. RELATED WORK

Indoor localization has gained worldwide attention for its

advantages of providing location awareness for various kinds

of LBSs. There are primarily two categories of techniques

related to this and become an increasing popular research field,

namely device-based and device-free techniques. We expand

upon representative prior studies in each of these two-fold

techniques below.

Device-based techniques: Existing and emerging indoor lo-

calization systems mainly depends on device-based techniques

that targeted entities can only be localized with attaching a

device. To name a few, LANDMARC [19] employ densely

deployed RFID tags as receiver in the positioning region

of interest; Cricket [27] and Active Badge [16] separately

handle the localization problem by leveraging ultrasonic and

infrared sensors; wireless sensors such as MicaZ [7] and

TelosB [10] employed in various scale testbed enable an alter-

native approach for location estimation; FM radio [17] is also

proposed for positioning purpose. However, they all require a

specific hardware to facilitate measurements for localization.

In addition, some of them constrained to particular conditions

such as infrared can function with the necessity of light of

sight (LOS) existence. Alternatively, the pioneer RADAR [28]

system investigates radio signal strength (RSS) to measure

the distance between the APs and WiFi-enable receivers.

Horus [20] improves the accuracy by applying a probabilistic

model of RSS distribution. To avoid time-consuming site

survey, WILL [23] augments user motions with the RF signal

characterisers to construct a logical radio map for localization.

In [4], [5], [6], the authors propose to use temporal channel

response as link signature for differentiating locations. Even

though these systems employ the already installed WLAN

infrastructure without additional cost, they still require efforts

from carrying on device at the transmitter that inappropriate

for ubiquitous scale setting. On the contrary, our Pilot system

is purely passive and device-free.

Device-free techniques: Driven by the necessity of satis-

fying expectations of new kinds of location-aware services,

device-free techniques [1] - do not require the entities to carry
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any device - have gained widespread concern by research

community.

Computer vision [18], [22] and RFID tags [9], [31] have

been deployed in an indoor environment for device-free lo-

calization functionalities. In a similar fashion, the authors

propose a similar concept of “transceiver-free” [8], and use

wireless sensor networks for building a RF-based object

tracking system [21], [9]. In [29], [22], Radio Tomographic

Imaging (RTI) technique is presented for imaging the passive

moving objects by applying a linear model. In [26], the authors

makes improvement by leveraging motion-induced variance of

RSS measurements. Yang et. al. [12] develop a joint learning

GREEK algorithm to effectively diagnose the presence of

intrusions in Zigbee network. However, the above approaches

loss attraction in terms of scalability due to either high

specific hardware cost like video camera and RFID tags and

maintainable cost (i.e., sensors). WLAN-based approaches [1],

on the other hand, use the available infrastructure for indoor

localization. Recently, the authors have developed a RSS-

based Nuzzer system in a large scale indoor setting with pre-

installed WLAN infrastructure [3]. In this paper, we introduce

the use of a new metric CSI from PHY layer for device-free

indoor localization to replace the coarse RSS value, which can

be resist to temporal variance and sensitive to environment

changes by exploiting the frequency diversity. To the best of

our knowledge, this is the first work to apply fine-grained CSI

to improve performance of device-free indoor localization in

WLAN.

III. BACKGROUND AND HYPOTHESES

A. PHY Layer Channel State Information

Our system leverages CSI value for device-free indoor

localization. We therefore review such CSI value in this

section.

In wireless communications, Channel State Information

(CSI) is a fine-grained PHY layer information that describes

the channel property of a radio frequency (RF) link at the

subcarrier level. To be more specifically, CSI describes how a

RF signal propagates from the transmitter(s) to the receiver(s)

and reveals the combined effect of, for instance, scattering,

fading, and power decay with distance. Generally, CSI is

a collection of M × 1 matrices H that specifies channel

gain over a pairs of transmitter and receiver with multiple

antennas over M subcarriers. Mathematically, CSI on a single

subcarrier can be represented by amplitude(|h|) and phase(∠h)

as h = |h|ej sin{∠h}. Based on IEEE 802.11n standard, the

commercial wireless network interface card (NIC) allows us

to obtain CSIs conveniently.

CSI based on OFDM system has gained popularity in a

couple of applications. To name a few, authours in [30]

propose to utilize CSI for rate adaptation instead of widely

used RSS. That is, wireless packet delivery can be accurately

predicted by using CSI. In [24], CSI is shown to be appropriate

for device-based indoor localization. CSI offers the capability

of estimating the distances between transmitters and receivers.

In [25], we introduce the use of CSI for indoor motion

detection, which can be sensitive to environment changes and

resist to temporal variance. In this paper, we further explore

the favorable features of CSI for realizing device-free indoor

positioning.

B. Hypotheses and Measurements

In this section, we start our work by testing two hypotheses

of utilizing CSI for device-free localization. We demonstrate

that, such hypotheses provide insight for our eventual system

design. Afterwards, based on preliminary measurements, we

validate these hypotheses and shed some light on the design

of a new CSI-based device-free localization system.

We present two integrant hypotheses of designing a CSI-

based device-free localization system as follows:

Hypothesis 1: CSI over multiple subcarriers can reveal

the abnormal status caused by appearance of human. More

specifically, a motion behavior of an entity will cause CSIs

variance that exhibits some kind of feature pattern shift.

To support typical device-free location-aware applications

such as intruder localization, the primitive step we need to

conduct is detecting the presence of a suspicious device-

free entity, i.e., the motion. This motion behavior indicates

an abnormal event happened during the whole localization

process, termed as a “localization trigger”. Once a “trigger”

is detected, the location estimation block is followed and

finalized. However, how to perform passive anomaly detection

to serve as “localization trigger” is challenging as the intrusive

entities usually do not carry any radios or may not even

cooperative. Recently, RSS has been used for device-free

motion detection in RASID system [2]. However, the fatal flaw

of RSS lies in its susceptibility to measurement itself due to

severe multipath effect in indoor environment. For this reason,

we consider to study the feasibility of leveraging a more

reliable CSI for detecting the mobility of entity. The intuition

is to investigate whether the CSIs over multiple links can

appropriately infer a moving entity by extracting the feature

patterns. In our design, we first attempt to apply single pair

of AP and DP to monitor this “trigger” occurrence.

Hypothesis 2: CSI over multiple subcarriers can be lever-

aged to distinguish entity, i.e., human, in different locations.

That is, CSIs show some kind of differential feature patterns

when an entity appears at different locations.

After a motion behavior is detected, next comes to identify

the location of the entity in the region of interest. In fact, the

presence of an entity will influence the RF links between APs

and DPs in a typical indoor environments. On the basis of the

location of entity, the two-way impacts can be classified as:

• Direct light-of-sight (LOS) blocking: the entity is located

exactly between the AP and DP such that blocks the direct

LOS transmitting link;

• Indirect non-light-of-sight (NLOS) reflection: the position

of entity lies beside the LOS link and influences the

multipath propagation of RF signals.

CSI is capable of revealing the change of channel status due

to the blockage of LOS path. In addition, it can present

multiple NLOS reflection due to frequency diversity as shown

This is the Pre-Published Version 
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Fig. 2: Anomaly Detection by CSI Feature Shift.
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Fig. 3: Location Distinction by Variant CSI Features.

in Figure 1. Therefore, we hypothesize that the CSI will exhibit

unique feature pattern at a given location that different from

the others due to the impact of an entity’s motion behavior. In

this way, a “passive” radio map can be constructed by storing

the CSI over each RF link as a fingerprint for each location.

We verify these two hypotheses using the following prelim-

inary experiments.

Experiment 1: Anomaly Detection by CSI Feature Shift
Our first experiment examines the effects on CSI when

an anomalous entity is appeared in the monitoring region.

We expect that CSI will exhibit distinguishable characteristics

between static status and dynamic status. Under static status,

we collect CSIs of n packets and store them into a passive

radio map, namely normal fingerprints database (DB) HNor

as:

HNor = (H1, H2, . . . , Hn) (1)

We calculate the self-correlation of the CSIs of each packet i
with all the rest packets and afterwards average the aggregated

correlation sum as follow,

C
i
Nor =

1

n

n∑
j=1

corr(Hi
Nor,H

j
Nor) (2)

This C
i
Nor is set as a “normal” correlation value for detecting

an abnormal behavior. We set up an abnormal environment

where only one person is present in the area of interest.

Similarly, we measure the CSIs and compare them to the

constructed normal profiles by applying correlation function

as:

C
i
Abn =

1

n

n∑
j=1

corr(Hj
Nor,H

i
Abn) (3)

Figure 2 plots the empirical probability density function

(PDF) of CSIs feature patterns between these two kinds of

statuses. Clearly, there is an obvious feature shift of CSI cor-

relation when encountering an anomalous event. It means that

CSI is temporal stable in static environment while sensitive

enough for an instantaneous motion response.

Experiment 2: Location Distinction by Variant CSI
Features

Our next experiment is to inspect if the variant feature

patterns of CSIs show uniqueness for a given location with

entity and can be applied as fingerprints for localization.

In Figure 3, we depict the cumulative distributive function

(CDF) of CSI feature pattern across 6 locations. To be specific,

the red curve presents the CDF of self-correlation for position

1, while other 5 curves show the CDF of cross-correlation

between each with position 1, respectively. It is observed that

one location can be distinguished from the others by analyzing

the statistical properties of cross correlation. More concretely,

these CSI feature patterns provide appropriate information

regarding differentiating locations as fingerprints.

In summary, we have made two important observations in

this section:

1) CSI can capture the environment variance due to its

temporal stability;

2) CSI can differ a given location where the entity appears

from all the other locations.

This motivates us to apply CSI in device-free technique

to achieve high localization accuracy. In what follows, we

detailed design a novel CSI-based passive indoor localization

system.

IV. THE PILOT DESIGN

In this section, we present the design of Pilot system. We

begin with an overview of Pilot architecture with three key

constituent blocks. Then, we lay out detailed description of

each block in subsequent subsections.

A. Overview

Pilot is built on the WLAN infrastructure without additional

deployment and management cost. In our design, Pilot consists

of three hardware elements: access points (APs), detecting

points (DPs), and Pilot server as depicted in Figure 4. A radio

frequency (RF) link will be established between a pair of AP

and DP kept stationary during the whole localization period.

The AP broadcasts beacon message periodically. Besides

involved in the activity of localization, those APs can also

serve as hotspots simultaneously. The DP is a general wifi

compatible device which is responsible for interacting with

This is the Pre-Published Version 
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Fig. 4: Hardware elements of Pilot. Fig. 5: Pilot Architecture.

both AP and server. Upon receiving beacon messages from

the AP, the DP will record the according CSI. These raw CSIs

across multiple subcarriers at the PHY layer are then uploaded

to the Pilot server. Figure 5 shows the architecture of Pilot

system. Pilot server will perform localization by carrying out

three main procedures as below.

1) Passive Radio Map Construction Passive Radio Map

Construction block is primarily developed for two pur-

poses: 1) to generate a normal CSI profile for anomaly

detection; 2) to build up an abnormal database corre-

sponding to different positions where entity is located

for position estimation. It is worth mentioning that this

radio map is “passive” since its generation involves no

active participation with device-based entity.

2) Anomaly Detection We then design the Anomaly De-

tection block to capture environmental changes due to

entity’s appearance. Pilot continuously executes mon-

itoring of CSI feature variance that indicates whether

an entity emerges or not in the area of interest. Once

an abnormal event has been detected, it triggers the

immediately subsequent execution of localization.

3) Position Estimation The Position Estimation block is

designed to map the instant abnormal CSIs to passive

radio map, and fuse the data over multiple links. Such

that the exact location of an abnormal entity can come

to knowledge.

In the following subsections, we will describe each block

of Pilot in a divide-and-conquer manner.

B. Passive Radio Map Construction

First, we propose an offline block - Passive Radio Map

Construction - as a basis to facilitate subsequent operations in

fingerprinting system Pilot. Map construction block consists of

two functions: processing the measurement data and generate

the fingerprints database. In OFDM-based networks, a RF

signal is transmitted over multiple subcarriers simultaneously
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occupied a wide band. In a typical indoor setting, the chan-

nel is affected by frequency-selective fading and frequency

independent attenuation. The coarse RSS fails to uncover the

channel state at subcarrier level. In comparison, significant

diversity over heterogeneous subcarriers can be captured by

CSI. Therefore, the underlying idea is to exploit the frequency

diversity of CSI, which reveals diverse feature patterns of dif-

ferent locations due to appearance and movement of abnormal

entities.

To begin with, we collect CSIs samples over the RF links

between APs and DPs in a normal state, i.e., with no entity

appearance. We then process these sample data received from

multiple DPs on Pilot server. A normal fingerprints database

denoted as CNor composes of a set of n processed CSI

samples will be constructed. As stated in previous section, the

process of the normal profile construction is to average the

sum of the self-correlation of CSI samples over each RF link.

We use QQ−plot to test the Gaussian distribution hypothesis

of CNor, and Figure 6 shows that it doesn’t pass Gaussian

hypothesis test, nor tests for other well-known distributions.

This is the Pre-Published Version 



6

����������	���
	

���
����
���

��������	

���

���

���

���

Fig. 7: Sensing Zone and Dead Spot.

Note that the calibrated normal profile is a premise for

anomaly detection. In what follows, we need to generate a

passive radio map in an offline phase for indoor localization.

Unlike map construction of device-based fingerprinting sys-

tem, this passive radio map construction is conducted with

entities located at different positions without any devices, and

the CSIs are collected by the DPs over each RF link. Similarly,

the self-correlation of the CSIs for each position is stored in

the database.

With the objective of narrowing the fingerprint mapping

range, and also improving the localization accuracy with single

link, we introduce two novel concepts as following:

Definition 1. Sensing Zone is the zone where the present of
entity can be detected by a specific AP-DP link.

Definition 2. Dead Spot is the position in the area of interest
that outside the sensing zone of any AP-DP link.

Intuitively, the further the entities away from the monitor

link, the less influence its appearance on the CSI measure-

ments. Hereby, “Sensing Zone” is christened to capture the

influence of abnormal entities on RF links as shown in

Figure 7. If the entity is positioned in the “Dead Spot” (i.e.,

outside the sensing zone), the server will not be able to

distinguish this situation between normal one, and results in

false negative.

Note that, due to the multipath reflection and LOS blocking

of signal in indoor environment, the shape of the Sensing Zone

of a transceiver link is not a regular one like circle or ellipse,

but much more complicated. Therefore, the Sensing Zone can

only be characterized with field measurements. In this work,

we determine the Sensing Zone with CSI correlation feature

for each link as following. We calculate the cross correlation of

CSIs on each position in the passive radio map and the normal

CSIs for each link according to Eq.(3). Then we will check

the density distributions of CNor and CAbn are significantly

different. If the difference is big enough, the position is within

the Sensing Zone of this RF link. Since the distribution is not

Gaussian or well-approximated by other known distributions,

we can use nonparametric hypothesis test. Specifically, we

perform Ansari-Bradley test [13] where the null hypothesis

defined as:

H0: CNor and CAbn follow the same distribution.

If H0 of identical distributions cannot be rejected at the

α% significance level, we can conclude that they follow the

same distribution, and the corresponding position is outside

the sensing zone of the specific link. With these two concepts,

we can reduce the searching space when motion is detected

by a specific RF link. In addition, we can also optimize the

positions of transmitters and receivers, so that all the monitor

spots in the area of interest can be covered with minimal

deployment cost.

C. Anomaly Detection

A process of determining abnormal events from CSI mea-

surements is a prerequisite for device-free indoor localization.

Anomaly Detection block is designated to continuously ex-

ecute this process. As mentioned in Section III, we observe

that CSI stays relatively stable over time in a normal state (i.e.,

static) without entities’ appearance or movement. Whereas in

an abnormal status (i.e., mobile), CSI experiences a feature

pattern shift. Therefore, the basic idea is to leverage the

temporal stability characteristic of CSI consistent with normal

status so as to distinguish from the feature patterns under

abnormal environments. In Pilot, we utilize this different

feature pattern shift as a “localization trigger” for deciding

whether a localization process should be started.

The main idea is to check the probability of each CSI

feature to be in normal profile. To decrease the effect of

outliers, we use a sliding window to average those raw CSI

measurements. Now we attempt to estimate the probability

of the current CSI correlation sample C according to the

statistics of CNor. However, the distribution of normal profile

cannot be assumed as Gaussian and an alternative method for

distribution estimation is in need. Therefore, we alternatively

adopt a kernel density-based function approach as explained

below.

In statistics, this approach is known as kernel density

estimation (KDE). The benefit of KDE is that it can estimate

the density directly from the data without assuming a particular

form for the underlying distribution. For RF link l between

a pair of AP and DP, we denote W as the sliding window

length, and n as the total number of correlation samples in

the normal profile. Now consider a sequence of independent

and identically distributed (i.i.d.) random correlation samples

(C1,C2, . . . ,CM ) of M +W − 1 packets. In our method, we

define the kernel density estimator as f̂l,

f̂l(C) =
1

nhl

n∑
j=1

K(
C− C

l,j
Nor

hl
) (4)

where K is the kernel function and hl is the bandwidth.

In particular, Epanechnikov quadratic kernel [14] is chosen
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owing to ensure the fairness of comparison to the counterpart

RSS-based approach [2] and given by:

K(u) =

{
3
4 (1− u2), if|u| ≤ 1

0, otherwise
(5)

hl is a scaling factor that controls how wide the probability

mass is spread around a point as well controls the smoothness

or roughness of a density estimate. According to Scott’s

rule [15], the optimal bandwidth is given by:

h∗
l = 2.345σ̂ln

−0.2 (6)

where σ̂l is an estimate for the standard deviation for C
l,j
Nor.

For each RF link, we examine the cumulative distribution

function (CDF) of the sample CSI correlation as F̂ (CNor). It

should be noted that CAbn is always smaller than CNor. Thus,

the anomaly detection problem is equivalent to determine

whether C is smaller than a lower bound F̂−1(β) determined

by a preset value β. The selection of β provides a tradeoff

between false alarm and miss detection.

D. Position Estimation
In the previous two blocks, Pilot offlinely maintains a set

of fingerprints into an abnormal radio map and continuously

monitors the anomaly event in an online phase. As the target

of locating the entities in real time, we now introduce the

Position Estimation block.
Our objective is to accurately map the current fingerprint

of the abnormal entity to the passive radio map during the

online phase. The overall idea is to compare the obtained

CSI measurements against the abnormal passive fingerprints

database and thus selects the best match. Pilot chooses the

maximum a priori probability (MAP) algorithm, which is a

well-known probabilistic algorithm for performing fingerprint-

based position estimation.
During the online localization stage, for an unknown lo-

cation L where an abnormal entity is presented, we col-

lect the abnormal CSI measurement Hl
Abn from link l. Let

L = L1, L2, · · · , Lm be the set of m locations on the passive

radio map. Then, our position estimation task equates to

find a location L ∈ L that maximizes a priori probability

P (Hl
Abn|L). On the basis of Bayes’ law, we formulate this

optimization object function by:

L∗ = argmax
L

P (L|Hl
Abn) = argmax

L
[
P (Hl

Abn|L)P (L)

P (Hl
Abn)

]

(7)

Assume that all locations are equally probable, and P (Hl
Abn)

is independent of location L, we have

L∗ = argmax
L

P (Hl
Abn|L) (8)

Since H
l
Abn is high-dimensional (52 subcarriers out of total

64 in 802.11n standard) and partially correlated, the statistical

analysis of H
l
Abn is very complicated. Therefore, similar to

anomaly detection, we consider the cross correlation of Hl
Abn

over the fingerprints at each position L, and denote it as

C
l
Abn,L. We use kernel density to represent the probability

in Eq.(9) whose calculation is similar to that in Eq.(4).

E. Data Fusion

If the detection points are deployed with high density, it

is possible that a single motion can be detected by multiple

links as shown in Figure 7. Therefore, we can extend our

basic scheme to such scenarios in order to further improve the

localization accuracy with data fusion method.

Given the measurements of multiple RF links, the final es-

timation is the position that the joint possibility is maximized,

i.e.,

L∗ = argmax
L

∏
l

P (Hl
Abn|L) (9)

To reduce the computational complexity, only links with

motion being detected will be included in the above calcula-

tion. Moreover, only the positions in the common area of the

sensing zone of these links will be selected as the candidate

for fingerprint mapping.

In summary, given the abnormal CSI measurement at each

RF link, the kernel density-based MAP algorithm outputs the

location L with maximal kernel density. Note that, we only

consider the scenario when a single intruder exists, the local-

ization of multiple intruders will be much more complicated

and thus beyond the scope of this paper.

V. PERFORMANCE EVALUATION

In this section, we implement and evaluate Pilot in two

typical indoor scenarios. We first describe our testbeds and

data collection methodology in Section V-A. Afterwards, we

validate the performance of anomaly detection and localization

in Pilot, along with the comparison against state-of-art RSS-

based approaches.

A. Implementation

I. Experimental Scenarios: We set up two typical indoor

testbeds in Hong Kong University of Science and Technology

as listed below:

1) Laboratory First, we performed experiments in a re-

search laboratory covers an area of 7m × 11m. It is

surrounded by various office facilities such as shelf, desk

and chair, and therefore is subject to multipath effects.

A total of 2 pairs of DPs and APs are placed according

to the floor plan in Figure 8.

2) Lobby Second, we deployed Pilot a larger testbed in

an “L”-shape lobby, which spreads over approximately

776m2. In this experimentation site, we symmetrically

place two pairs of APs and DPs in opposite sides of

parallelogram. The area of lobby is separated into a

couple of squares and we choose 30 reference positions,

each of them are 4m apart as shown in Figure 9.

II. Data Collection: In our experiments, we use TL-

WR941ND router as wireless AP that transmit information

over a RF link to DPs. Pilot DP is a standard HP laptop

equipped with commercial 802.11n 5300 NICs, and the op-

erating system is the Linux kernel 2.6.34. The Pilot server is

running on one of these laptops. In our current implementation,

we only use the first antenna and the enhancement with

multiple antennas is left for our future work.
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Fig. 8: Fingerprint Layout in Laboratory.
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Fig. 9: Fingerprint Layout in Lobby.
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Fig. 10: Accuracy of Anomaly Detection.

During the whole localization period, APs will continuously

send out beacon messages to DPs. DPs gather these messages

along with CSIs and upload them to detection server for

processing. In each scenario, we first collect measurement

of every link in static environment without any person in

the area, and construct normal profile. Then, we divide the

geographic area of interest into uniform square grids, and mark

some of them as crucial reference positions. Passive abnormal

fingerprints are collected when one volunteer stand on each

reference position. In this way, we construct passive radio

maps in both lab and lobby.

B. Accuracy of Anomaly Detection

High accuracy of anomaly detection is necessary to guar-

antee the efficiency of device-free localization. In this section

we evaluate whether Pilot can achieve this goal and conduct

a comparison with the best RSS-based device-free motion

detection system RASID [2].

Figure 10 plots the anomaly detection results in lab and lob-

by using an Receiver Operating Characteristic (ROC) curve.

This ROC curve graphically reveals the inherent tradeoff

between the false positive (FP) rate and detection rate. FP

rate (X-axis) also known as false alarm, represents the pro-

portion that normal state is falsely detected as an anomaly. As

mentioned in Section IV-C, the parameter β plays an important

role in striking a balance of high detection rate with respect to

low FP rate. In our experiment, we adapt β and fix the sliding

window length to be 10. From the Lab scenario Figure 10(a),

we have two obvious observations: 1) for a FP rate less than

or equal to 10%, the detection rate of both approaches is alike

to be around 40%; 2) for a FP rate greater than or equal to

30%, the detection rate of Pilot is about 90% that far exceeds

RSS-based RASID. We have similar observations in the lobby

scenario as shown in Figure 10(b). These results confirm that

the CSI-based Pilot is superior to RSS-based approach in terms

of anomaly detection.

C. Accuracy of Localization

So far, we have described the performance of anomaly

detection in a typical laboratory scenario. Clearly, a foremost

criteria – localization accuracy is left for discussion in the

following sections.

We analyze the location distinction accuracy of Pilot when

there is only one single abnormal entity in Lab. In this scenari-
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Fig. 11: Single Entity Localization Accuracy with Different Link Numbers
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Fig. 12: Single Entity Localization Accuracy with Different Sample Numbers

o, Pilot deployment composes of 2 pairs of APs and DPs and 4
RF links in total. We evaluate the effect of increasing numbers

of links (from 1 to 4) on the performance of the approach

proposed in Pilot and the best RSS-based Nuzzer [3]. Instead

of Gaussian distribution assumption, we use kernel density

function to depict the distribution of RSS. Since kernel density

is a better distribution approximation, the RSS-based system

is Nuzzer-like but improved one. These results are presented

in Figure 11(a), such that if only 1 link is available in the

area, Pilot achieves higher accuracy (6%) than Nuzzer-like

approach. As changing the links from 2 to 4, the accuracy of

Pilot can extend to over 90% even to 98% while Nuzzer-like

approach only has a slight improvement. In other words, the

use of more RF links would lead to an obvious increase in

location distinction accuracy of CSI-based Pilot rather than

RSS-based Nuzzer. This indicates the benefits of Pilot over

RSS-based method in gaining distinction capability. We also

study the location distinction performance of a single abnormal

entity in Lobby. Similar performance is achieved with similar

deployment as shown in Figure 11(b). Comparing Figure 11(a)

and Figure 11(b), we can observe that our system performs

better in Lab scenario due to the more abundant multipath

reflections.

Figure 12(a) is a result in Lab that compares the preci-

sion of Pilot and Nuzzer with respect to different numbers

of samples collected as fingerprints. This figure shows that

increasing sample number will bring in higher accuracy in

some extent, because with more fingerprints, we can better

approximate the distribution of CSI correlation, and results

in lower fingerprint mapping error according to (8). More

than 10% percents accuracy improvement can be obtained

with more samples in our experiment. However, more samples

means longer offline phase is required for map construction.

Therefore, there is a tradeoff between the data collection time

and localization accuracy. It is also shown that the proposed

CSI-based Pilot always outperforms the corresponding RSS-

based Nuzzer with respect to localization accuracy. Similar

performance is achieved in the Lobby scenario as shown in

Figure 12(b).

From empirical experiments in these two scenarios, we

can conclude that frequency diversity of CSI helps Pilot

outperform the RSS-based scheme and such advantage is

obvious when more RF links are available.
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VI. CONCLUSIONS AND FUTURE WORK

In this paper, we present Pilot, a CSI-based passive device-

free indoor fingerprinting system in WLAN. It is the first

proposal to leverage temporal stability and frequency diversity

characteristics of CSI for developing a “passive” fingerprint

for device-free localization. In contrast to the traditional fin-

gerprint approach, we integrate an Anomaly Detection block to

facilitate the device-free nature. We apply the kernel density-

based approach to calculate the CSI correlation and thus detect

abnormal entities. Moreover, we develop another block for

estimating the location of target, and analysis the feasibility

of distinguish multiple entities simultaneously. We implement

Pilot with commercial IEEE 802.11n NICs and evaluated its

performance in two different indoor scenarios. Pilot outper-

forms the RSS-based RASID system on anomaly detection and

Nuzzer system on localization with the same infrastructure de-

ployment. The high accuracy of Pilot system demonstrates its

potential to dramatically improve the performance of existing

location-dependent applications.

In the perspective of future research, we intend to ex-

ploit other approaches other than fingerprinting for CSI-based

device-free indoor localization to offload the calibration effort-

s, and improve accuracy as well. Moreover, multiple antennas

can also be leveraged to achieve better system performance.
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