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ABSTRACT

Protein–protein interactions (PPIs) are crucial to me-

diate biological functions, and understanding PPIs

in cancer type-specific context could help decipher

the underlying molecular mechanisms of tumori-

genesis and identify potential therapeutic options.

Therefore, we update the Protein Interaction Net-

work Analysis (PINA) platform to version 3.0, to in-

tegrate the unified human interactome with RNA-seq

transcriptomes and mass spectrometry-based pro-

teomes across tens of cancer types. A number of

new analytical utilities were developed to help char-

acterize the cancer context for a PPI network, which

includes inferring proteins with expression speci-

ficity and identifying candidate prognosis biomark-

ers, putative cancer drivers, and therapeutic targets

for a specific cancer type; as well as identifying pairs

of co-expressing interacting proteins across can-

cer types. Furthermore, a brand-new web interface

has been designed to integrate these new utilities

within an interactive network visualization environ-

ment, which allows users to quickly and comprehen-

sively investigate the roles of human interacting pro-

teins in a cancer type-specific context. PINA is freely

available at https://omics.bjcancer.org/pina/.
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INTRODUCTION

Protein–protein interactions (PPIs) are crucial for exerting
biological functions in most cellular processes. With the
quick accumulation of experimental PPI data, human pro-
tein interactome has been utilized in a variety of disease re-
search (1–3). However, human proteins could have different
interacting partners in different contexts (tissues, cell types,
disease conditions) (4,5), which is important for under-
standing their functions within a speci�c context and iden-
tifying associations with the context-related phenotypes (6).
Although this information is extremely valuable, a context-
speci�c view of PPI networks has been rarely available.
Building a context-speci�c PPI network by experimental

approaches is certainly precious. For example, Li et al. (7)
detected a set of 397 high-con�dence lung cancer-associated
PPIs between 83 genes with a high frequency of genomic
alterations in lung cancer, and discovered PPI network-
implicated tumor vulnerabilities for therapeutic interroga-
tion in lung cancer. However, it remains infeasible to sys-
tematically identify endogenous PPIs at protein interac-
tome level for hundreds of pathological and molecular tu-
mor types/subtypes. Thus, it is more common to predict
context-speci�c PPIs based on expression pro�les. Efforts
have been made to generate context-based PPI networks in-
cludingHIPPIE (8), IID (9), TissueNet (10),MyProteinNet
(11) andHURI (12).However, context-speci�c PPIs in these
databases were mostly inferred based on gene expression
pro�les of normal human tissues from the GTEx program
(13) or the HPA project (14), comprehensive resources to
investigate cancer contexts for human PPIs remain limited
(15).
Recently, a massive amount of cancer sequencing and

molecular pro�ling datasets have been publicly available
from several international consortiums (16–18), which en-
ables inferring tumor type-speci�c contexts for human ref-
erence interactomes, and offers unparalleled opportuni-
ties to reveal PPIs with functional signi�cance and ther-
apeutic implications, e.g. targeting interacting partners of
hard-to-drug tumor suppressors. The Cancer Genome At-
las (TCGA) releasedRNA-seq data for∼10 000 tumor sam-
ples across 33 cancer types, and the Clinical Proteomic Tu-
mor Analysis Consortium (CPTAC) is rapidly accumulat-
ing proteome and phosphoproteome data for TCGA se-
quenced tumor samples as well as new samples, across tens
of cancer types. Moreover, associating expression pro�les
with the accompanied patient outcome from these large co-
hort studies will help to indicate the functions of PPIs in
tumorigenesis and progression. Taken together, character-
izing tumor type-speci�c context for a given PPI network
could be with great functional and therapeutic implications.
Thus, we release PINA version 3.0 to facilitate PPI net-

work analysis within the cancer context. Using the inte-
grated TCGA and CPTAC datasets, we developed several
new utilities to infer proteins with tumor type-speci�c ex-
pression, to investigate expression correlations of interact-
ing proteins across tumor types, to indicate interacting pro-
teins associated with patient survival, to highlight muta-
tional cancer drivers and therapeutic targets in a given PPI
network. Furthermore, a brand-new web interface has been
provided to integrate these new functions within an interac-
tive network visualization environment, which allows users

to quickly and comprehensively investigate the roles of hu-
man interacting proteins across tumor types in PINA ver-
sion 3.0.

MATERIALS AND METHODS

PPI data update

PPI datasets were downloaded from �ve manually curated
databases including IntAct (version 4.2.15) (19), MINT
(download on 21 May 2020) (20), BioGRID (version
3.5.185) (21), DIP (version 20170205) (22) and HPRD (re-
lease 9) (23), and uni�ed as described in the previous ver-
sions (24,25) to build a non-redundant PPI database for
seven model organisms:Homo sapiens,Mus musculus, Rat-
tus norvegicus, Drosophila melanogaster, Caenorhabditis el-
egans, Saccharomyces cerevisiae and Arabidopsis thaliana.
All PPI data were stored in a MySQL relational database,
and statistics of the current PINA release is available at
https://omics.bjcancer.org/pina/stats.action.

Integrated cancer datasets

Cancer transcriptomic pro�les (26) were downloaded from
the Genomic Data Commons (GDC) portal of TCGA (ver-
sion 20190101). The batch-corrected and upper quartile
normalized RSEM measurements were log2 transformed
for further processing. Cancer proteomic pro�les were
downloaded from CPTAC data portal (version 20200511).
The relative abundance of proteins generated by the Com-
mon Data Analysis Pipeline (CDAP) (27) was subjected
to quantile normalization using normalizeQuantiles func-
tion implemented in R package limma (28) v3.36.1. Both
mRNA and protein expression pro�les were �ltered by re-
moving genes with zero or NA values in >80% samples in a
dataset. Clinical information (survival time, tumor site, age,
ethnicity and grade) were downloaded from both GDC and
CPTAC for corresponding samples with molecular data.
Only primary tumors were included in the PINA database.

Tumor type-speci�c prognosis biomarkers

We used R package ‘survival’ (version 2.43.3) for Kaplan–
Meier survival analysis. Samples were strati�ed into two
groups: high expression versus low expression using six
pairs of cutoffs for users’ choice (90% quantile versus 10%
quantile, 80% quantile versus 20% quantile, 70% quantile
versus 30%quantile, 75%quantile versus 25%quantile, 60%
quantile versus 40% quantile and 50% quantile versus 50%
quantile). Overall survival (OS) was used as the clinical end-
point. P-value was calculated by log-rank test for Kaplan–
Meier analysis, and a gene with P-value less than 0.05 was
considered as a candidate prognosis marker in a given tu-
mor type.

Identi�cation of genes with tumor type-speci�c expression
speci�city

Tumor type speci�city score was calculated using the
method reported by Sonawane et al. (29), which compared
the median expression level of a gene in a given tumor type
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to the median and interquartile range (IQR) of its expres-
sion across all tumor types. Speci�city scores of each gene
were calculated for mRNA and protein expression datasets
respectively.

Annotations of cancer driver genes and therapeutic targets

Cancer driver genes were obtained from a recent TCGA
pan-cancer analysis (30), which characterized 9423 tumor
exomes (comprising all 33 TCGA projects) and identi�ed
299 mutational driver genes with implications regarding
their anatomical sites and cancer types, including 258 genes
from a systematic approach and 41 genes recovered after
manual curation of previous TCGA marker papers of each
individual study. Drugs and their potential targets were
downloaded from theGenomics ofDrug Sensitivity in Can-
cer (GDSC) release 8.3, which have been screened in >1000
human cancer cell lines in a previous pharmacogenomics
study (31); and 812 cell lines weremapped to 30 cancer types
based on TCGA classi�cation. The pan-cancer information
and links will be shown for a normal PPI network, while tu-
mor type-speci�c information will be provided for a cancer-
context PPI network.

Website implementation

Since the last update of PINA, signi�cant advances have
been achieved in web technologies and network visualiza-
tion (32). To provide better visualization effects in mod-
ern Internet browsers, we implemented a new web interface
using HTML5 and open-source templates based on Boot-
strap4 (http://getbootstrap.com/). The web application was
built using Java Server Pages (JSP) technology hosted by an
Apache Tomcat web server. Open-access web frameworks
including Spring (https://spring.io/) and MyBatis (https:
//github.com/mybatis/mybatis-3/) were utilized to improve
the sustainability and reliability of the web services.
PPI network visualization wasmainly implemented using

Cytoscape.js (32) (http://js.cytoscape.org/), and customized
network functions were developed using native JavaScript
libraries and JQuery (http://jquery.com). We implemented
interactive plots using Plotly.js (https://github.com/plotly/
plotly.js/), and dynamic tables using DataTables.js (https:
//www.datatables.net/).

RESULTS

PINA 3.0 integrated non-redundant human PPIs with
RNA-seq pro�les of 9870 tumors across 33 cancer types
from TCGA, and mass spectrometry-based proteomic pro-
�les of 936 tumors across eight cancer types from CPTAC,
to enable tumor type context-speci�c PPI network analysis.
The schematic overview of PINA 3.0 is illustrated in Fig-
ure 1. The detailed documentation and a step-by-step case
study tutorial are provided on the PINA website.

New web interface with enhanced network visualization and
interactive data reporting

We re-designed and implemented a brand newweb interface
using modern JavaScript libraries in this release, to improve

network visualization and data reporting. After querying a
network, all related information will be shown within a sin-
gle web page consisting of two panels: a graphical network-
view panel (Figure 2A) and a network-details panel (Figure
2B–D).

The network-view panel depicts proteins and their inter-
actions as nodes and edges respectively with a force-direct
layout by default. A toolbar menu is provided for changing
network layout, highlighting proteins of interests, �ltering
interactions, building a cancer-context PPI network, pre-
senting links to analysis tools, downloading network inmul-
tiple �le formats, and saving network in the user space for
long-term access. The newly developed highlight function
enables users to highlight single protein, common interact-
ing proteins, and cancer-related proteins (cancer drivers and
therapeutic targets), which will be useful to ef�ciently iden-
tify proteins of interests in a big PPI network.
The network-details panel presents diverse rich informa-

tion of interactors and interactions in a network. It consists
of four tabs including network details (Figure 2B) using a
sortable and searchable table, and a number of newly intro-
duced cancer utilities (described in the next section). This
panel is highly interactive with the network-view panel, by
dynamic showing corresponding information upon clicking
a node (Figure 2C) or an edge (Figure 2D) in the network-
view panel.

Novel features to help reveal tumor type-speci�c insights from
PPI networks

We integrated TCGA and CPTAC datasets and developed
new utilities to provide a ‘cancer context’ for a PPI network,
which can be dynamically inferred through the network
menu (‘Cancer Context’ tab, Figure 3A). A cancer-context
PPI network provides multiple novel features to help reveal
tumor type-speci�c insights from the original PPI network,
as shown in the following sub-sections.

Cancer driver genes and therapeutic targets. Associating
undruggable tumor suppressors with therapeutic targets in
their interacting partners could inform cancer treatment op-
tions, thus both pan-cancer and cancer type-speci�c anno-
tations of cancer driver genes and potential therapeutic tar-
gets were integrated into PINA 3.0. By clicking a node in
a normal PPI network, pan-cancer information regarding
cancer driver genes and available drugs (links toGDSCpan-
cancer pharmacogenomic analysis results) will be shown in
the network-details panel (‘Details’ tab, Figure 2C). For a
cancer-context PPI network, the information and links will
be changed according to the speci�ed tumor type. Besides,
PINA 3.0 provides the highlight function in the network
menu (Figure 2A) to quickly identify all cancer driver genes
and candidate therapeutic targets in a given PPI network.

Tumor type-expression speci�city. Tissue-speci�c func-
tions are largely mediated by interactions between tissue-
speci�c proteins and uniformly expressed cellular mem-
bers (12), and molecular pro�les of tumors typically ex-
hibit a cell-of-origin pattern (26), thus novel insights could
be obtained from interacting proteins showing tumor type-
expression speci�city. This analysis also complements re-

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/n
a
r/a

rtic
le

/4
9
/D

1
/D

1
3
5
1
/5

9
9
9
8
8
9
 b

y
 g

u
e
s
t o

n
 2

1
 A

u
g
u
s
t 2

0
2
2

http://getbootstrap.com/
https://spring.io/
https://github.com/mybatis/mybatis-3/
http://js.cytoscape.org/
http://jquery.com
https://github.com/plotly/plotly.js/
https://www.datatables.net/


D1354 Nucleic Acids Research, 2021, Vol. 49, Database issue

Figure 1. A schematic overview of PINA 3.0. PPIs were integrated and uni�ed from �ve public databases to generate protein interactomes, which will
be used to construct a user PPI network for input proteins of interests. PINA 3.0 enables cancer context-speci�c network annotation, visualization and
analysis for a user PPI network, based on the integrated cancer datasets.

Figure 2. Enhanced network visualization and data reporting. A newly designed web interface consists of two panels: a graphical network-view panel
(A) and a network-details panel showing respective details for an analyzed PPI network (B), a selected node (C) and a selected edge (D) correspondingly.
Co-expression signi�cance for a selected edge will only be available after cancer context annotated. Contents of ‘Tumor type specify’, ‘Pan-Cancer’ and
‘Cancer Survival’ tabs are shown in Figure 3C, D, F correspondingly.
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Figure 3. New features for cancer context annotation and analysis. (A) Query parameters to specify a cancer type context to annotate for a PPI network.
(B) An example cancer-context PPI network of LKB1 using LUAD (Lung adenocarcinoma) mRNA pro�les with parameters shown in (A). Candidate
prognosis biomarkers are indicated as orange (poor prognosis) and green (good prognosis) nodes. Positive correlations with statistical signi�cance between
the expression levels of interacting proteins are represented as blue edges, while negative correlations are indicated as red edges. Edge width is proportional
to the correlation coef�cient. (C) A scatter plot illustrating relationships between the median expression of each gene in this network and their tumor type-
speci�city scores. (D) Correlation coef�cients of mRNA expression levels and relatively protein abundance for the selected edge ‘LKB1-CDC37’ across all
integrated tumor types. (E) Correlation coef�cients of mRNA expression levels between all interaction pairs in the example network across cancer types.
(F) A Kaplan–Meier survival curve showing signi�cant survival differences between patients with high and low expression of H2AX.

cent systematic efforts (33,34) in investigating how tissue-
speci�c genes interact with other genes to mediate cancer-
speci�c functions. Tumor type speci�city scores were pre-
calculated for each gene to represent the level of deviation
of expression in a given tumor type compared to the full
spectrum of tumor types. The cutoff of speci�city score was
set as 2 for mRNA expression levels (Supplementary Fig-
ure S1A–C), as suggested in previous studies(12,29). Genes
having a speci�city score >2 were considered as highly-
expressed in the analyzed tumor type, and genes having a
score ≤ 2 were considered as lowly-expressed (Figure 3B).
As the proteomic datasets that PINA integrated were pro-
�led by iTRAQ or TMT labelling methods, protein abun-
dances were quanti�ed relative to pooled samples or paired
normal tissues. This resulted in a distribution different from
mRNA levels, thus we set the cutoff as 0.5 by default for
protein abundances, to have reasonable numbers of proteins

with tumor type-expression speci�city in each dataset (Sup-
plementary Figure S1D–F). Users can also modify this cut-
off at their will during analysis of a PPI network (Figure
3A). Moreover, a scatter plot will be shown in the network
details panel (‘Tumor type Speci�city’ tab) to illustrate the
relationships between the median expression and the tumor
type-speci�city scores for a PPI network (Figure 3C).

Expression correlations of interacting proteins across tumor
types. Gene co-expression analysis is valuable to identify
functionally associated genes, and disease candidate genes.
Thus, we pre-calculated the Pearson and Spearman correla-
tion coef�cients between all pairs of interacting proteins in
PINA, for all integrated tumor types respectively. By click-
ing an edge in a network, a heatmap will be shown in the
network-details panel (‘Pan-cancer’ tab) to present corre-
lation coef�cients between expression levels (mRNA and
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protein abundance) of interacting proteins across all inte-
grated cancer datasets (Figure 3D). Two-tailed t-test will
be applied to evaluate the statistical signi�cance of corre-
lation in a speci�c tumor type, with P-values corrected by
the Benjamini-Hochberg method, which takes all PPIs in
the analyzed network into account. Positive correlations
and negative correlations with statistical signi�cance (FDR
< 0.05) between pairs of interacting proteins will be high-
lightedwith different edge colors (blue and red) (Figure 3B),
while edge width will be proportional to correlation coef�-
cients. Furthermore, we developed a new analysis tool to
show an overview of the expression correlation pattern for
all pairs of interacting proteins in a given network (Figure
3E), which could help to identify the potential core module
and variable components of a PPI network across tumor
types.

Tumor type-speci�c prognosis biomarkers. Identifying tu-
mor type-speci�c prognosis biomarkers in a PPI network is
valuable to discover translational potentials. By specifying
a tumor type and a threshold to dichotomize patients based
on expression levels, proteins with their expression associ-
ated with signi�cant survival difference will be highlighted
in a cancer-context PPI network. Proteins associated with
good prognosis (log-rank test P-value < 0.05, hazard ratio
< 1) and poor prognosis (log-rank test P-value < 0.05, haz-
ard ratio > 1) will be indicated with different node colors
(Figure 3B). By clicking a node in a cancer-context PPI net-
work, a Kaplan–Meier survival curve will be shown in the
network-details panel (‘Cancer survival’ tab) to present sur-
vival differences between the patients with high-expression
and low-expression of the selected protein (Figure 3F).

DISCUSSION

PINA 3.0 is equipped with a revamped web interface, and a
number of new functions to characterize the cancer contexts
of human protein interactome. We hope to provide a valu-
able platform, to bridge the gap between cancer genomics
research and PPI network analysis, by allowing users to
quickly and comprehensively investigate the roles of hu-
man interacting proteins across cancer types, which has sub-
stantial functional and therapeutic signi�cance. Although
genome-wide proteomics data are currently available for a
limited number of tumor samples compared to RNA-seq
data, it is continuously accumulating from large Interna-
tional studies; thus the cancer datasets integrated in PINA
will be updated quarterly to maximize its potentials. In
addition, visualization and analysis tools regarding cancer
functional screening and pharmacogenomic pro�les will be
integrated in the future to further extend its utilities in can-
cer research.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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