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ABSTRACT

The Protein Interaction Network Analysis (PINA)

platform is a comprehensive web resource, which

includes a database of unified protein–protein inter-

action data integrated from six manually curated

public databases, and a set of built-in tools for

network construction, filtering, analysis and visual-

ization. The second version of PINA enhances its

utility for studies of protein interactions at a

network level, by including multiple collections of

interaction modules identified by different cluster-

ing approaches from the whole network of protein

interactions (‘interactome’) for six model organisms.

All identified modules are fully annotated by

enriched Gene Ontology terms, KEGG pathways,

Pfam domains and the chemical and genetic per-

turbations collection from MSigDB. Moreover, a

new tool is provided for module enrichment

analysis in addition to simple query function. The

interactome data are also available on the web site

for further bioinformatics analysis. PINA is freely ac-

cessible at http://cbg.garvan.unsw.edu.au/pina/.

INTRODUCTION

Protein–protein interactions (PPIs) mediate biological
function and play a pivotal role in many cellular processes.
Different small- and large-scale experimental approaches
generate ever-increasing amounts of publicly accessible
data. Given the availability of vast amounts of PPI data,
analysis of PPI networks has become a major challenge
and considerable efforts have been undertaken.
A common type of analysis focuses on the whole

network of protein interactions for a given species
(‘interactome’) (1). A number of studies have shown that
interactomes follow a power-law degree distribution,
exhibit small world behavior and tend to be modular
(2,3). Identification of sub-networks with special

characteristics using graphical approaches can also lead
to biologically relevant insights. It is well established
that densely interconnected regions of a global PPI
network often correspond to functionally related groups
of genes/proteins that can be identified as modules (4).
Understanding how these modules are organized can
lead to a better understanding of how cellular processes
are coordinated in normal cells and perturbed under
pathological conditions. Several efforts have been
undertaken to identify modules, which might represent
protein complexes or signaling pathways, from
interactome networks (5–10). However, there is no
unified resource for biologists to interrogate these
interactome modules extracted from a regularly updated
PPI database with extensive functional annotations and
advanced network analysis tools.

In PINA v2.0, we generated the interactome data for six
model organisms based on the existing PINA PPI integra-
tion database and applied different clustering algorithms
to identify collections of modules. To improve biological
interpretation, the identified modules have been compre-
hensively annotated by different knowledge databases.
Both modules and annotations were saved in PINA v2.0
database and an advanced tool was developed for module
enrichment analysis in addition to a simple query form.
These new data and tools have been seamlessly integrated
and can co-operate with the existing resources in PINA,
which together provides a unique portal for biologists to
better understand their genes of interest in the context of a
PPI network.

INTERACTOME DATASET

The first version of PINA (11) has established a
non-redundant PPI database, updated quarterly based
on the integration of protein interaction data from six
publicly available, manually curated databases: IntAct
(12), MINT (13), BioGRID (14), DIP (15), HPRD (16)
and MIPS MPact (17). We exported interactome data
from the PINA PPI integration database in PSI-MI
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(Proteomics Standards Initiative Molecular Interactions)
tab-delimited data exchange format (18) for six model or-
ganisms (Homo sapiens, Mus musculus, Rattus norvegicus,
Drosophila melanogaster, Caenorhabditis elegans and
Saccharomyces cerevisiae). Each exported interactome
file includes self and binary interactions with one inter-
action per row. The UniProt accession number was used
as the protein identifier. These files will be updated con-
currently with each new release of the PINA integration
database and can be freely downloaded from the PINA
website for further bioinformatics analysis.

INTERACTOME MODULES

Module identification from interactomes

Several algorithms have been developed to identify highly
interconnected groups of nodes within a network (5–10).
These algorithms are mostly either agglomerative
(‘bottom-up’) or divisive (‘top-down’). We selected mo-
lecular complex detection (MCODE) method (6) and
Markov clustering (MCL) method (5) as representatives
from each category (19), and applied them to the
interactomes from each of the six species. We selected a
range of parameter settings (Supplementary Table S1) to
control the properties of the resulting modules, from small
and densely interconnected (protein-complex-like), to
large and loosely interconnected (pathway-like). From a
total of 30 analysis runs, we detected approximately 2400
modules containing at least five proteins. Modules
identified from each run were saved as a module collection
in the PINA module database. End users can select which
collection to be used in the query or the enrichment
analysis depending on whether they are looking for
protein-complex-like modules, or pathway-like modules,
with advice given on the PINA website. As the body of
PPI data accrues over time, the interactomes will become
more complete, and thus some modules identified from an
interactome may change. To facilitate historical compari-
sons, we will timestamp each module collection and retain
the last five releases.

Module annotation and visualization

Following module identification, we annotated each
module by looking for enriched terms from multiple func-
tional databases including Gene Ontology (20), KEGG
pathways (21), Pfam domains (22) and the chemical and
genetic perturbations collection from MSigDB (23). Since
modules often show strong functional coherence (24), the
diverse set of annotations provide a complementary
overview of module function. The back-end module anno-
tation tool uses a hypergeometric test to identify the
overrepresented terms, with a correction for multiple
testing using false discovery rate (25). For each module,
we stored at least the 10 most significant terms, and any
other significant terms (adjusted P-value< 0.05) in the
PINA annotation database. Based on approximately
25.7 million comparisons, there are approximately
270,000 significant terms saved in the PINA annotation
database.

A thumbnail image is available for each module
(Figure 1b), which offers a quick impression of the
module’s topology. Users can also launch our previously
developed visualization tool to interactively visualize and
manipulate the selected module. Since each module can be
treated as a network, other existing PINA tools can be
applied to filter and analyze the selected module,
through web pages or the visualization tool.

Module query and enrichment analysis tool

There are two ways to make use of the interactome
modules in PINA. Users can either perform a simple
search to find modules which have at least one protein
from their query proteins or use the newly developed
module enrichment tool to identify statistically enriched
modules. The module enrichment tool compares a list of
proteins from a user query with all the modules in a
specified collection, by using a hypergeometric test to
identify modules that are overrepresented in query
proteins relative to the background frequency in either
the interactome or the whole proteome. Fig. 1 shows the
module enrichment result of a set of proteins, which
contain non-synonymous coding single nucleotide vari-
ations (SNV) in two primary pancreatic adenocarcinoma
tumors (APGI-1959 and APGI-1992) and one pancreatic
cancer cell line (CRL-2557 Panc-05.04). These mutated
genes (Supplementary Table S2) were detected by
next-generation sequencing and downloaded from the
International Cancer Genome Consortium (ICGC) (26)
data portal (http://dcc.icgc.org; Pancreatic cancer AU
project). The annotation summary indicates that the top
module may play an important role in cancer through its
influence on the cell’s transcriptional machinery.

IMPROVED USER ACCESS

In the first version of PINA, protein annotations were
fetched on the fly through the UniProt web service,
which was slow for construction of a large PPI network
consisting of hundreds of proteins. In PINA v2.0, we have
saved the UniProt annotations into the PINA annotation
database, which has significantly improved the query
speed for large networks. The PINA web services were
also updated for easier use and quicker response, by
adopting a lightweight RESTful web service, as opposed
to the previously used SOAP service. In addition, PINA
has been wrapped as a component of the Anduril frame-
work (27), which is a component-based workflow frame-
work for large-scale biological data analysis. The PINA
component can be executed as either standalone or as one
step of a complex workflow analyzing high-throughput
screening data, such as SNP, gene expression or exon
microarray, which can start from preprocessing and nor-
malization of raw data to functional annotation of the
identified genes/proteins.

IMPLEMENTATION

AllegroMCODE 1.0 (http://www.allegroviva.com/
allegromcode), which is a GPU-enabled Cytoscape 2.8.1
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(28) plug-in for running MCODE (6), and MCL v10-201
(5) were used for identifying interactome modules.
The specified parameters are listed in Supplementary
Table S1. The output files of each tool were parsed
using custom R scripts and the functional enrichment
analyses were performed on an SGE cluster using
GOstats (29) and a custom extension to the Category
package from the Bioconductor project v2.8, using

R v2.13.1. The mappings from genes to KEGG, GO
and PFAM were from the AnnotationDbi package,
and the c2.cgp.v3.0.symbols.gmt geneset collection
were from MSigDB (23). Module thumbnails were
generated using igraph (30). The RESTful web services
were implemented using a Java library jersey, and
example code for a Java client is available on the PINA
web site.

Figure 1. An example of the module enrichment result, showing the top two modules. (a) The top link is to the page showing the complete list of
functional annotations, while the bottom link is to the page showing the list of protein interactions in the module. (b) The link underlying the
thumbnail image will launch the interactive visualization tool. (c) A summary of module function, only showing the top three terms in each
functional annotation categories. (d) The left number is the number of query proteins found in this module, while the right number is the total
number of query proteins found in the background. (e) The left number is the total number of proteins in the module, while the right number is the
total number of proteins in the background. (f) The enrichment P-value is based on a hypergeometric test. (g) The adjusted P-value for multiple
hypothesis testing.
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FUTURE DIRECTION

In PINA v2.0, we seamlessly integrate interactome
modules and the associated functional annotations with
the existing PINA resource including the PPI integration
database and a set of network-based tools, providing
significant new functionalities for researchers looking to
analyze PPI data at a network level. We intend to continue
this effort and plan to integrate built-in network align-
ment tools, which will allow the comparison of two
networks either generated by user queries, or selected
from the interactome modules. In addition, another im-
portant model organism Arabidopsis thaliana will be
added to PINA in the near future.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online:
Supplementary Tables 1 and 2.
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