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The formation and pinch-off of non-axisymmetric vortex rings is considered
experimentally. Vortex rings are generated using a non-circular piston–cylinder
arrangement, and the resulting velocity fields are measured using digital particle image
velocimetry. Three different nozzle geometries are considered: an elliptical nozzle with
an aspect ratio of two, an elliptical nozzle with an aspect ratio of four and an oval
nozzle constructed from tangent circular arcs. The formation of vortices from the
three nozzles is analysed by means of the vorticity and circulation, as well as by
investigation of the Lagrangian coherent structures in the flow. The results indicate
that, in all three nozzles, the maximum circulation the vortex can attain is determined
by the equivalent diameter of the nozzle: the diameter of a circular nozzle of identical
cross-sectional area. In addition, the time at which the vortex rings pinch off is found
to be constant along the nozzle contours, and independent of relative variations in the
local curvature. A formation number for this class of vortex rings is defined based on
the equivalent diameter of the nozzle, and the formation number for vortex rings of
the three geometries considered is found to lie in the range of 3–4. The implications
of the relative shape and local curvature independence of the formation number on the
study and modelling of naturally occurring vortex rings such as those that appear in
biological flows is discussed.

Key words: biological fluid dynamics, vortex flows, wakes/jets

1. Introduction

The formation of axisymmetric vortex rings by the ejection of fluid through
a circular aperture has been the subject of several experimental investigations
(Maxworthy 1972; Didden 1979; Glezer & Coles 1990; Gharib, Rambod & Shariff
1998; Dabiri & Gharib 2004a). In these studies, a fluid column of length L is ejected
through a circular aperture or nozzle of diameter D, by the action of a piston moving
with prescribed velocity inside of a hollow circular cylinder. Gharib et al. (1998)
found that such vortex rings cannot grow indefinitely, but rather there is a physical

limit to their size. When the non-dimensional formation time T̂ = Upt/D (where Up is
the mean piston velocity and D the nozzle diameter) exceeds approximately four, the
vortex rings reject additional vorticity flux and a trailing jet forms behind them. This
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transition, termed ‘vortex pinch-off’ by Gharib et al. (1998), is predicted by an energy

maximization argument due to Kelvin (1880) and Benjamin (1976).

The universality of the formation number has been verified by a number of

subsequent experimental (Dabiri & Gharib 2004a; Krueger, Dabiri & Gharib 2006;

Pawlak et al. 2007) and computational studies (Rosenfeld, Rambod & Gharib 1998;

Mohseni, Ran & Colonius 2000). In particular, Rosenfeld et al. (1998), Zhao, Frankel

& Mongeau (2000) and Mohseni et al. (2000), found the Reynolds number to have

little impact on the formation number, provided that ReΓ is sufficiently large to

ensure the formation process is completed before viscosity has a significant impact

(ReΓ > 2000 according to Mohseni et al. (2000)). The concept of the universal

formation number has also been extended to more complex vortex generator set-

ups and computational frameworks, by extending the definition of the dimensionless

vortex formation time to allow for variations such as the presence of bulk coflow

(Krueger et al. 2006) or bulk counterflow (Dabiri & Gharib 2004a), a time-varying

exit diameter (Mohseni et al. 2000; Dabiri & Gharib 2005), and differing velocity

programs (Rosenfeld et al. 1998; Mohseni et al. 2000; Krueger & Gharib 2003; Olcay

& Krueger 2010) and velocity profiles (Rosenfeld et al. 1998).

The existence of this constraint on vortex ring growth has powerful implications

for biological jetting flows, since vortex rings provide a propulsive advantage due to

their entrainment of ambient fluid (Auerbach 1991; Dabiri & Gharib 2004b; Olcay &

Krueger 2007; Shadden et al. 2007) and to the added mass of non-entrained fluid that

must be accelerated with the vortex ring (Baird, Wairegi & Loo 1977; Weihs 1977;

Krueger & Gharib 2003). A constraint on the growth of vortex rings therefore places

a limit on the performance of biological jetting flows. For example, Krueger & Gharib

(2003) showed that the normalized time-averaged thrust per pulse in pulsed jetting

flows reaches a maximum just after the limiting formation time T̂ = 4. This implies

that there is an ‘optimal’ T̂ for jetting propulsion. In fact, recent studies have found

evidence of ‘optimal vortex formation’ in jetting swimmers such as juvenile squid

(Bartol et al. 2009) and certain species of jellyfish (Linden & Turner 2004; Dabiri

et al. 2010), and in blood flow in the cardiac left ventricle (Dabiri & Gharib 2005;

Gharib et al. 2006).

However, naturally occurring vortices are rarely circular, and axisymmetric flows

such as those generated by squid or jellyfish, are scarce in nature. In fact, most

swimming and flying animals generate deformed loop-like vortices rather than circular

vortex rings (Kokshaysky 1979; Rayner 1979; Dickinson & Götz 1996; Kern &

Koumoutsakos 2006; Kim & Gharib 2011). Similarly, the mitral valve in humans

is not axisymmetric, so circular vortex rings do not describe the flow in the human

left ventricle with complete accuracy (Bellhouse 1972; Reul, Talukder & Muller 1981;

Wieting & Stripling 1984; Domenichini, Pedrizzetti & Baccani 2005). The departure

from axisymmetry of most vortex rings of biological relevance is of importance

because the limit on vortex ring growth imposed by the Kelvin–Benjamin principle has

only been shown to apply to axisymmetric jetting flows. In other, non-axisymmetric,

vortex-shedding configurations, no limit on the growth or size of vortices is known.

In the case of vortex formation from two-dimensional orifices, for example, recent

experimental (Afanasyev 2006) and computational (Pedrizzetti 2010) results suggest

that there is no limit on the growth of a vortex dipole.

In this regard, the work of Domenichini (2011) is of particular interest. Domenichini

(2011) studied the formation of vortices from slender orifices whose outline consisted

of two semicircular portions connected by two rectilinear segments of varying length.
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In his computations, the author found that the roll-up of the shear layer and vortex

formation process differed considerably on the circular and rectilinear segments. In

particular, for nozzles with rectilinear segments of sufficient length, he found evidence

of pinch-off at the centre of the circular portions at a non-dimensional time consistent

with the work of Gharib et al. (1998), but no evidence of pinch-off at the centre of

the rectilinear portions. The author attributed these differences to the dependence of

the self-induced velocity of the lead vortex ring on local curvature (Arms & Hama

1965; Leonard 1985; Saffman 1992), which caused the portions of the vortex closest

to the circular sides of the slender orifices to move away from the shear layer faster

than the portions near the rectilinear sides. Although Helmholtz’s laws dictate the

overall geometry of the vortex formation process, they do not preclude pinch-off

from happening at different times if the vortex filament geometry is complex. Hence,

Domenichini (2011) concluded that pinch-off in these non-axisymmetric vortex rings

can be a local phenomenon, determined by local curvature.

In his concluding remarks, Domenichini (2011) theorized that his findings could,

with small modifications, extend to other non-axisymmetric geometries in general, and

elliptical vortex rings in particular. However, while the behaviours of isolated non-

circular vortex rings and of non-axisymmetric jets have been the subject of extensive

study, the vortex formation process for non-axisymmetric rings has not been analysed

in detail. Hence, Domenichini’s conjecture remains untested.

The evolution of isolated vortex rings of non-circular shape has been examined in a

variety of computational, analytical and experimental investigations. In particular, the

behaviour of elliptical vortex rings is well documented in both computational (Arms

& Hama 1965; Viets & Sforza 1972; Dhanak & de Bernardinis 1981; Fernandez,

Zabusky & Gryanik 1995; Ryu & Lee 1997; Kimura 2006) and experimental studies

(Oshima et al. 1988; Hussain & Husain 1989; Hussain & Hussain 1991; Adhikari

2009). The bulk of these studies focused on the time-dependent deformation of the

elliptical vortex ring due to the curvature dependence of the vortex propagation

velocity (Arms & Hama 1965; Dhanak & de Bernardinis 1981; Viets & Sforza

1972). Similar experimental and numerical methods have been applied in studies of

the deformation of isolated vortex rings with other non-circular geometries, including

those with initially rectangular (Viets & Sforza 1972; Grinstein 1995; Kambe & Takao

1971) and lenticular (Kambe & Takao 1971; Oshima 1972) shapes. Viets & Sforza

(1972) also considered the evolution of a vortex ring whose initial shape was described

by a superellipse or Lamé curve. It is interesting to note that Kiya & Ishii (1991) and

Kiya et al. (1992) characterized the deformation of isolated ‘pseudo-elliptic’ vortex

rings of a shape identical to those considered by Domenichini (2011).

Considerable attention has also been devoted to the study of non-circular free jets,

much of it motivated by their favourable mixing properties and reduced jet noise

when compared to circular jets (Ho & Gutmark 1987; Ahuja, Manes & Massey 1990;

Gutmark & Grinstein 1999). Since the dynamics of the non-circular vortex rings

in these jets are thought to be the driving force behind these beneficial properties,

numerous studies on non-circular jets have focused on the dynamics of the vortex

rings in the jet. In particular, Husain and Hussain (Hussain & Husain 1989; Hussain

& Hussain 1991; Husain & Hussain 1993) conducted a comprehensive study of the

dynamics of vortex rings in elliptic jets. A similarly detailed treatment of the dynamics

of vortex rings in rectangular jets is found in the works of Grinstein, Gutmark and

others (Grinstein, Glauser & George 1995; Gutmark & Grinstein 1999; Grinstein

2001).
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Except for the work of Adhikari (2009), however, all of the aforementioned studies
focused on either isolated vortex rings at low stroke ratios or on the dynamics of
vortices in a steady jet. Adhikari (2009) considered the effect of increasing stroke
length on the formation of elliptical vortex rings, and compared the interaction of
the growing vortex ring with its trailing shear layer to the dynamics and pairing
of vortex rings in elliptic jets as described in Husain and Hussain’s study (Hussain
& Husain 1989; Hussain & Hussain 1991; Husain & Hussain 1993). In addition,
Adhikari (2009) conducted the only experimental study of non-circular vortex rings
using digital particle image velocimetry (DPIV) to date. However, the author did not
address the existence of any limits on the size of the vortex ring, nor did he compute a
formation number analogous to that of Gharib et al. (1998) or consider the dependence
of the vortex formation on curvature. As a result, the relationship of Adhikari’s vortex
rings to Domenichini’s conjecture remains unknown.

In this study, we considered the formation of non-axisymmetric vortex rings at long
stroke ratios, as well as the effect of curvature on the vortex formation process and
on the maximum size of the vortex ring. The present investigations aim to bridge
the gap in our current understanding of non-circular vortex rings, by considering the
intermediate states lying between isolated non-axisymmetric vortex rings and steady
non-circular jets. In particular, we tested Domenichini’s hypothesis in a wider class of
non-circular vortex rings, in order to determine what role local and global parameters
play in the onset of pinch-off in non-circular starting jets. Ultimately, the goal of this
study was to define an analogue to the formation number of Gharib et al. (1998),
for the development of vortex rings with moderate departure from axisymmetry of
relevance to biological flows. To this end, we conducted an experimental study of the
formation of vortex rings from three non-circular nozzles: two elliptical nozzles with
aspect ratios of two and four, respectively, and an oval nozzle constructed from two
pairs of tangent circular arcs.

In addition to classical Eulerian techniques, we visualized the non-circular vortices
by means of the Lagrangian coherent structures (LCS) in the flow. LCS are finite-
time analogues to the stable and unstable manifolds, for systems with arbitrary time
dependence. LCS were introduced in a series of papers by Haller and coworkers
(Haller & Poje 1998; Haller 2000, 2001a,b, 2002; Haller & Yuan 2000), and have
been employed for structure identification and for investigating vortex dynamics by
Shadden, Dabiri & Marsden (2006) and Shadden et al. (2007), Green, Rowley &
Haller (2007) and Green, Rowley & Smits (2010), O’Farrell & Dabiri (2010) and
others.

The results of the Eulerian and Lagrangian analyses suggested that, for vortex rings
with a moderate deviation from axisymmetry such as those found in biological flows,
global parameters dominate the formation process. Hence, a non-dimensional critical
formation time, or formation number, for this class of vortex rings was defined based
on the equivalent diameter of the nozzle (the diameter of a circular nozzle with
equivalent cross-sectional area).

The paper is organized as follows. In § 2 we describe the experimental set-up and
methods utilized to collect planar velocity data on the non-circular nozzles, as well as
the numerical methods used to compute the LCS. The formation and later deformation
of the vortex rings are described in §§ 3 and 4, from the Eulerian and Lagrangian
perspectives, respectively. The effect of curvature on the growth and limiting formation
number of non-axisymmetric rings is examined in § 5. Finally, a comparison of our
results with those of Domenichini (2011), and their implications to the study of
biologically relevant vortex flows are considered in § 6.



Pinch-off of non-axisymmetric vortex rings 65

Driving flow

2.54 cm

5.1 cm

12.7 cm

8.89 cm

19.05 cm (AR2, AR4) 

24.13 cm (oval)

FIGURE 1. Vortex ring generator geometry and dimensions. The vortex generator consisted
of an acrylic block attached to a non-circular nozzle with one of three cross-sectional shapes:
an ellipse with an aspect ratio of two, an ellipse with an aspect ratio of four and an oval
constructed from tangent circular segments of constant curvature. The dimensions of the
major and minor axes for the three nozzles considered are listed in table 1.

2. Methods

2.1. Experimental methods

We considered the formation of non-axisymmetric vortex rings from three nozzles of
different cross-sectional shape: an elliptical nozzle with an aspect ratio of two, an
elliptical nozzle with an aspect ratio of four and an oval nozzle constructed from four
connected segments with constant, non-zero curvature. These nozzles will henceforth
be referred to as the AR2 nozzle, the AR4 nozzle and the oval nozzle, respectively.
The three vortex generator devices consisted of an acrylic block culminating in a
sharp-edged nozzle with a cross-section in one of the three aforementioned shapes
(figure 1). A hollow cavity with the same cross-sectional shape as the nozzle ran the
length of the device, and an identically shaped piston was allowed to slide freely along
the cavity.

A summary of the geometrical properties of the three nozzle shapes considered
is given in table 1. The three nozzle shapes were selected to encompass a wide
class of those non-circular nozzles not considered by Domenichini (2011). In the two
elliptical nozzles, the curvature varied continuously from its minimum value at the
minor axis of the ellipse, to its maximum value at the major axis. However, the
range of curvatures was much larger in the AR4 nozzle than in the AR2 nozzle
(κmax/κmin ≈ 60 and ≈8, respectively). This allowed us to assess the importance of
relative variations in the local curvature and global parameters to pinch-off, and to
ascertain whether large variations in curvature were required to produce the spatially
varying results reported by Domenichini (2011).

However, the nozzles considered by Domenichini (2011) did not exhibit a smooth
variation in the curvature, but rather they contained discontinuities in their curvature
where the straight segments met the circular segments. Furthermore, the curvature
on the rectilinear segments of Domenichini’s nozzles was zero, while the elliptical
nozzles described above did not include regions of zero curvature. In order to ascertain
whether discontinuities in curvature are required to produce the spatially varying
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FIGURE 2. Cross-section of the oval nozzle. The two sections closest to the x-axis are
tangent to a circle of radius R = 0.8 cm (– –) and the two sections nearest to the y-axis are
tangent to a circle of radius R = 3.1 cm (– · –).

Dimension AR2 ellipse AR4 ellipse Oval nozzle

Deq (cm) 4.45 4.45 3.62
Dmajor (cm) 6.35 8.89 4.76
Dminor (cm) 3.17 2.22 2.86
κmin (cm−1) 0.16 0.06 0.33
κmax (cm−1) 1.26 3.6 1.31
Maximum piston stroke
(cm)

21.6 21.6 28.2

TABLE 1. Shape and dimensions of the three non-axisymmetric nozzle shapes considered.

pinch-off observed by Domenichini (2011), we constructed an oval nozzle from the
intersection of two pairs of circular segments with distinct but non-zero curvature,
which resulted in discontinuities in the curvature at the intersections of the segments
(see figure 2).

The vortex generators were submerged in a water tank and vortex rings were
generated using an arrangement similar to that described by Dabiri & Gharib (2004b).
Flow from a constant-head tank, delivered by a computer-controlled solenoid valve,
was allowed to drive the piston forward in its cavity. A column of fluid of was
impulsively ejected from the sharp-edged nozzle by the motion of the piston and rolled
up into a vortex ring which propagated through the surrounding fluid owing to its
self-induced velocity.

The resulting velocity field was mapped using two-component, planar DPIV (Adrian
1991; Willert & Gharib 1991). A pulsed Nd:YAG laser sheet was used to illuminate
a plane through the non-axisymmetric nozzle and the flow was seeded with 13 µm
neutrally buoyant glass spheres. Light from the incident laser sheet was scattered by
the glass spheres onto a CCD camera whose image plane was positioned parallel
to the laser sheet. The test section measured approximately 18 cm × 18 cm, and the
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FIGURE 3. Data-collection points along the edge of the AR2 nozzle. The nozzle outline
is shown in solid lines and seven data-collection points spanning the range of available
curvatures are indicated by circles. The corresponding DPIV planes are denoted by the dashed
lines. The arrow shows the direction of the s coordinates for one DPIV plane.

resolution of the captured images was approximately 0.18 mm × 0.18 mm. Images
were recorded at 30 Hz, and sequential image pairs were interrogated using cross-
correlation. An interrogation window size of 32 × 32 pixels with a 50 % overlap
was utilized, yielding 63 × 63 velocity vectors. The velocity and vorticity fields
were calculated using an in-house code, and the spatial resolution for both was
approximately 3 mm × 3 mm. The measurement uncertainty associated with the
procession technique employed was 1 % for the velocity fields, and 3 % for the
vorticity fields (Krueger et al. 2006).

Planar DPIV data was recorded on at least two planes through each nozzle. To
investigate the effect of curvature on the vortex formation number, we recorded the
velocity field at seven locations between the major and minor axes of the AR2
elliptical nozzle. Figure 3 shows the outline of the AR2 nozzle, as well as the
location of the seven data-collection points along the nozzle edge. The local curvature
of the nozzle contour at the data planes spanned the entire available range from
κ = 0.16 cm−1 at the minor axis to κ = 1.26 cm−1 at the major axis.

At each curvature point, the vortex generator was oriented such that the laser sheet
was locally normal to the nozzle edge, so as to minimize out-of-plane motions. The
precise alignment of the laser sheet and nozzle at each curvature point was achieved
by constructing a device that secured the vortex generator at a set of predefined angles.
The mounting device consisted of a three-sided box, with slots etched into the inside
of the two opposing faces of the box (the sidewalls). The box sat on the bottom of
the tank on its bottom plate, and acrylic plates could be fitted into the two sets of
slots to complete the front and back walls of the open-top box (see figure 4). The
acrylic plates were laser-cut to hold the rectangular portion of the vortex generator at a
specific angle, and could be interchanged to achieve each of the preset angles precisely.
The laser sheet and camera were aligned with the mounting box at the start of the
experiment and remained stationary throughout data collection. Since the main body
of all three vortex generators consisted of a rectangular block with the same height
and width, the design of the mounting box allowed us to conduct experiments on the
remaining two nozzles.

On these two nozzles, velocity data was recorded only on the two symmetry planes
of each nozzle. In the case of the AR4 elliptical nozzle, the large range of curvatures
along the nozzle contour (κmax/κmin ≈ 60) led to the pronounced deformation of the
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FIGURE 4. Vortex generator mounting box. Pairs of acrylic plates slid into slots on the
sides of the mounting box. The plates were designed to hold the vortex generator at several
predefined angles, to collect data at different curvature values and ensure proper alignment of
the laser sheet and camera.

vortex ring, a process which was not adequately captured using two-component DPIV,
except on the two symmetry planes of the nozzle. On the oval nozzle, the presence
of four discontinuities in the local curvature along the outline of the nozzle led
to highly three-dimensional motions in their vicinity, which two-component DPIV
was not suited to capture on planes other than the two symmetry planes. Figure 2
shows the outline of this oval nozzle, which was constructed from two pairs of
tangent circular arcs. On the two segments nearest the x-axis, the curvature of the
nozzle was κ = 1.31 cm−1, whereas the curvature on the remaining two segments was
κ = 0.33 cm−1. The four circular segments were tangent at their intersection, but there
was a discontinuity in the local curvature at the four intersection points

For all three nozzle configurations, experiments were conducted at a Reynolds
number based on the piston speed and equivalent diameter of the nozzle (Re =
UpDeq/ν) of approximately 2000, and a Reynolds number based on vortex ring
circulation (Γring/ν) between 3000 and 4000. The Reynolds numbers considered
here are comparable with those observed in jetting swimmers such as paralarval
and juvenile squid (O’Dor 1988; Bartol et al. 2009) and several species of jellyfish
(Gladfelter 1973; Colin & Costello 2002; Peng & Dabiri 2009), which have been
observed to operate at Reynolds numbers in the range of 102–103. We did not
consider the effects of varying the Reynolds number, since they have been previously
characterized for circular vortex rings, and found to have little impact on the formation
number, in the intermediate range of Reynolds numbers (Rosenfeld et al. 1998;
Mohseni et al. 2000; Zhao et al. 2000).

The coordinate system for all experiments was defined relative to the nozzles as
follows: the z-axis was parallel to the direction of fluid ejection, and set to coincide
with the nozzle centreline, with the nozzle exit plane located at the plane z = 0. The
x-axis was aligned with the major axis of the nozzle and the y-axis coincided with
the minor axis of the nozzle. An impulsive piston velocity programme was employed
in all experiments and for all nozzle configurations, and an ultrasonic flow meter



Pinch-off of non-axisymmetric vortex rings 69

0

1

2

3

4

5

6

0 1 2 3 4 5

FIGURE 5. Piston velocity programme for the AR2 nozzle. The shaded region indicates the
4 % measurement uncertainty band associated with the Transonic Systems T-110 ultrasonic
flow meter.

was used to monitor the fluid volume displaced by the piston. Figure 5 shows a
typical piston velocity programme, in this case for the AR2 nozzle. The mean piston
velocity was Up = 4.5 cm s−1 for the two elliptical nozzles, and Up = 5.5 cm s−1 for
the smaller oval nozzle.

For each set of experimental conditions, experiments were conducted at least three
times, in order to verify the repeatability of the vortex formation process. The velocity
and vorticity results presented in §§ 3 and 4 are representative of those observed
through repeated trials. The repeatability of the results and robustness of the vortex
formation process are discussed in § 5, where we consider the circulation of the
non-circular vortex rings and jets.

2.2. LCS

To identify the LCS in the flow, we computed a scalar quantity known as the finite-
time Lyapunov exponent (FTLE) at each point in the domain, at several time instants
during vortex formation. The FTLE is a measure of the separation of neighbouring
trajectories initialized near a point in the domain x. The FTLE at a point x and time t0

is given by

σ T
t0

=
1

|T|
ln

(

dx(t0 + T)

dx(t0)

)

(2.1)

where dx(t0 + T)/dx(t0) is the deformation tensor. Here σ T
t0

measures the maximum

linearized growth rate of trajectories starting near x(t0) over a time interval T: T may
be positive (indicating that the FTLE field is calculated by integrating trajectories in
forward time) or negative (indicating integration in backward time).

The FTLE field was computed on a Cartesian grid with a resolution of 0.6×0.6 mm,
using the Newman software for efficient FTLE computation (Du Toit 2010). At each
time t, each point on the grid was advected by the flow by numerically integrating
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the velocity field data for the integration time T . A fourth-order Runge–Kutta scheme
was used for the numerical integration, and bilinear interpolation was used whenever
interpolation of the velocity data was required. The deformation tensor was then
computed at each point on the grid using central differencing with neighbouring grid
points. Finally, the FTLE field was computed by evaluating (2.1) at each point on the
grid. Here T was chosen to be ±3.3 s (UpT/Deq = ±4 for the elliptical nozzles and
±5 for the oval nozzle), since this integration time was found to yield the complete
boundary of the vortex, while remaining practical in terms of computational expense.

Regions of maximum fluid particle separation (for T > 0) or maximum fluid particle
attraction (for T < 0) produce local maximizing curves known as ‘ridges’ in the FTLE
field (Haller & Yuan 2000). Since LCS are analogous to the stable and unstable
manifolds in time-independent systems, they can be identified from the ridges in the
FTLE field. Just as two points straddling the stable manifold of a hyperbolic fixed
point in a time-independent system will diverge exponentially in forward time, points
straddling a repelling LCS will diverge in forward time. Likewise, points straddling
an attracting LCS will diverge in backward time, a behaviour akin to the exponential
divergence in backward time of points straddling the unstable manifold of a hyperbolic
fixed point. Thus, repelling LCS correspond to ridges in the forward-time FTLE field,
while attracting LCS correspond to ridges in the backward-time FTLE field. Like
stable and unstable manifolds, LCS act as barriers to transport and as separatrices
between kinematically distinct regions in the flow (Shadden et al. 2006). Hence, they
are useful in identifying distinct structures in complex flows.

Although more computationally intensive than other, Eulerian, metrics the LCS
method presents several advantages that are of particular relevance to the present
experiment. Although streamlines have been successfully employed to determine the
extent of the vortex bubble in previous studies of isolated vortex rings (Dabiri &
Gharib 2004b; Gan, Dawson & Nickels 2012), these methods required the streamlines
be computed in the frame of reference translating with the vortex ring. In the current
study, long stroke ratios and non-axisymmetry were both expected to lead to the
appearance of complex vortex structures translating with different and highly time-
dependent speeds. Hence, a Galilean transformation to a suitable frame of reference
could not be easily performed, and the aforementioned vortex bubble methods were
not well suited to these complex flows (O’Farrell & Dabiri 2010). In addition, the
LCS method has the advantage of being robust to errors in the velocity field, including
those arising from interpolation of measured velocity data (Haller 2002), thus allowing
the calculation of FTLE fields of much higher resolution than the original data (Green
et al. 2007).

3. Eulerian analysis

3.1. AR2 nozzle

We recorded the velocity field at seven locations along the edge of the AR2 nozzle,
where the local curvature was κ = 1.26 cm−1 (major axis), 1.04, 0.82, 0.60, 0.39, 0.20
and 0.16 cm−1 (minor axis). In order to investigate the separation of the leading vortex
ring from its trailing shear layer, experiments were conducted at the longest piston
stroke length possible (21.6 cm). In accordance with Hussain and Husain’s finding that
the equivalent diameter (the diameter of a circle with equivalent cross-sectional area)
is a proper choice of length scale in elliptic jets with moderate aspect ratio (Hussain
& Husain 1989), distances were normalized by Deq and time by Deq/Up. The resulting
stoke ratio in experiments conducted on this nozzle was L/Deq = 4.8.
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FIGURE 6. Exit velocity profile across (a) the major axis plane and (b) the minor axis plane
of the AR2 nozzle.

Figure 6 shows typical exit velocity profiles across the major plane (figure 6a) and
the minor plane (figure 6) of the AR2 nozzle, obtained from DPIV measurements.
Unlike Hussain & Husain (1989), who used a nozzle which contracted smoothly from
a circular shape into an elliptical shape, and was carefully contoured to ensure a
constant momentum thickness, the pistons used in this study were identical in cross-
section to their respective nozzles and the nozzle was not contracting. The resulting
velocity profiles at the nozzle exit were hence parabolic, as is evident in figure 6.
On the minor axis the vortex ring translated away from the nozzle exit plane at
lower velocities than at the major axis (figure 7) and remained close to the nozzle
during most of the fluid ejection phase. This resulted in significant induced velocities
at the nozzle exit plane, which are evident from the non-zero velocities observed in
the regions immediately outside of the nozzle in figure 6(b). The proximity of the
vortex ring to the nozzle exit plane on the minor axis is also evident in the slight
asymmetry of the velocity profile. At later times, the vortex ring was often found to
translate slightly off the centre axis of the nozzle, resulting in an asymmetric induced
velocity field. On the minor axis plane, where the vortex ring remained close to the
exit plane until fluid ejection was almost complete, this asymmetry is visible in the
exit velocity profile. The velocity profiles shown in figure 6 are representative of the
results observed in the symmetry planes of the three nozzle configurations.

Figure 7 shows contours of the out-of-plane vorticity ω at two time instants, for all
seven curvature planes. Since the flow is symmetric about the major and minor planes
of the nozzle, on these two planes we recorded nearly symmetric data corresponding
to the two locations where the DPIV plane intersected the nozzle contour at right
angles. The major axis symmetry plane is aligned with the x–z plane (figure 7a,h) in
our coordinate system, and the minor axis symmetry plane is aligned with the y–z

plane (figure 7g,n).
On the remaining planes, the flow was not symmetric, and the DPIV plane only

intersected the nozzle contour at right angles at one location. In parts (b–f ) and (i–m)
of figure 7, results have been plotted in s–z coordinates, where s is the coordinate
along the DPIV plane, in the direction normal to the exit jet (the z-axis). The origin
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FIGURE 7. For the caption see the next page.
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FIGURE 7. (cntd) (a–g) Contours of vorticity at T̂ = 1.6 on the planes of the AR2
nozzle where: (a) κ = 1.26 cm−1 (major axis); (b) κ = 1.04 cm−1; (c) κ = 0.82 cm−1;
(d) κ = 0.60 cm−1; (e) κ = 0.39 cm−1; (f ) κ = 0.20 cm−1; and (g) κ = 0.16 cm−1 (minor

axis). (h–n) Contours of vorticity at T̂ = 4.8 on the planes of the AR2 nozzle where: (h)
κ = 1.26 cm−1 (major axis); (i) κ = 1.04 cm−1; (j) κ = 0.82 cm−1; (k) κ = 0.60 cm−1; (l)
κ = 0.39 cm−1; (m) κ = 0.20 cm−1; and (n) κ = 0.16 cm−1 (minor axis). Contour levels:
min = 25 % of ωmax, max = 95 % of ωmax, increment = 10 %. Dashed lines indicate negative
vorticity. Flow is from left to right.
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of the s-axis is located at the intersection of the DPIV plane and the major axis of

the nozzle (see figure 3). Only the vorticity fields in the region where s > 0 were

analysed, since it was in these regions that the DPIV plane was correctly aligned with

the nozzle.

Figure 7(a–g) depicts the growing elliptical vortex ring in its early stages of

development, at T̂ = Upt/Deq = 1.6. At this stage, the roll-up of the shear layer was

locally two-dimensional, on a plane normal to the nozzle edge (Domenichini 2011). As

a result, the vortex core cross-section was roughly the same shape and size on all data

planes, and had advected approximately 0.3Deq downstream in all cases.

At later stages in the development of the elliptical vortex (figure 7h–n), however,

significant differences were evident in the major and minor axes cross-sections. Since

the velocity induced by a vortex ring is a function of the local curvature, the self-

induced velocity of the elliptical vortex ring was greater at the major axis than at the

minor axis. As a result, the vortex ring deformed. On the major axis, the vortex cores

advected downstream faster than anywhere else on the nozzle contour and the resulting

deformation caused the cores to move towards each other along the direction parallel

to the x-axis (figure 7h). In contrast, on the minor axis, the downstream velocity of the

vortex cores reached a minimum value which was lower than the jet velocity, causing

the shear layer to curve around the front of the ring in order to feed into the vortex

cores (figure 7n). On this plane, the deformation caused the cores to move away from

each other along the y-axis. As a result, what was originally the minor axis became

the major axis of the deformed vortex ring; the curvature trend was reversed, and the

deformation process continued.

This deformation has been observed in both isolated elliptical vortex rings (Arms

& Hama 1965; Dhanak & de Bernardinis 1981) and elliptic jets (Hussain & Husain

1989). In addition, the vorticity fields on the major and minor axes were qualitatively

in good agreement with those reported by Adhikari (2009), who showed the evolution

of the vorticity field only for stroke ratios of two and six. A stroke ratio of two

resulted in the formation of only an isolated vortex ring, but at a stroke ratio of

six, the geometry of the vortex ring and shear layer reported by Adhikari (2009) is

qualitatively very similar to that shown in figure 7.

The shape of the entire vortex ring can be appreciated by reconstructing the three-

dimensional vorticity field from the planar vorticity data. In each of the seven data

planes, the out-of-plane vorticity was assumed to dominate and was taken as an

approximate measure of the total vorticity magnitude. Because the deformation of the

vortex ring was symmetric about the x- and y-axes, we were able to reconstruct the

deformed vortex ring from the approximate vorticity magnitude on the seven planes of

available data. At each z-location, we interpolated the vorticity field onto a rectangular

x–y grid from the data available along the seven data planes. This was achieved by

finding the Delaunay triangulation of the available data points, using it to construct

a surface of the form ω = f (x, y), and finally interpolating this surface at the points

specified by our rectangular grid. By compiling the planar data at each z-location into

a volume, we then obtained an approximate three-dimensional field of the magnitude

of the vorticity.

Figure 8 shows isosurfaces of constant vorticity magnitude for the reconstructed

vorticity field at four time instants. Initially, the vortex shape closely resembled

the nozzle shape, and the plane of the vortex ring was parallel to the nozzle exit

plane, as shown in figure 8(a). However, at later stages (figure 8c,d) the vortex had

deformed significantly, and the deformed vortex resembled the seam on a tennis ball
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FIGURE 8. Isosurfaces of 33 % of the maximum vorticity at (a) T̂ = 0.5, (b) T̂ = 1.6, (c)

T̂ = 3.2 and (d) T̂ = 4.8. The AR2 elliptical nozzle is shown in grey and the black line is a
spline fit through the core centre at each plane.

(Hussain & Husain 1989). The shape of the vortex ring obtained from isosurfaces

of the reconstructed vorticity was in excellent agreement with the dye visualizations

of Adhikari (2009) for similar stroke ratios. As a consequence of the deformation

observed in figure 8, the DPIV planes which were not aligned with symmetry axes

of the nozzle did not intersect the vortex ring cores locally normally at longer times.

This deformation was more significant on the AR4 and oval nozzles, and restricted our

ability to record data on the off-symmetry planes, as discussed in § 3.2.

In addition to deformation of the vortex ring, the development of a trailing shear

layer of significant length was observed on all planes by the termination of fluid

ejection at T̂ = 4.8. In figure 7(n), it is also evident that the velocity field induced by

the deforming vortex ring led to the curving of the shear layer towards the centreline

of the nozzle. The motion of the shear layer towards the jet centreline led to a

local decrease in its strength, and eventually to its disappearance due to vorticity

cancellation, which was found to begin at T̂ = 6.7. A similar phenomenon was

observed for axisymmetric starting jets by Mohseni et al. (2000), and was associated

with pinch-off of the leading vortex ring in that case. In contrast, no appreciable

motion of the shear layer towards the y-axis is apparent in figure 7(h).



76 C. O’Farrell and J. O. Dabiri

0.5 1.0 1.5 2.0 2.5

–1.0

–0.5

0

0.5

1.0

0.5 1.0 1.5 2.0 2.5

–1.0

–0.5

0

0.5

1.0

0.5 1.0 1.5 2.0 2.5

–1.0

–0.5

0

0.5

1.0

0.5 1.0 1.5 2.0 2.5

–1.0

–0.5

0

0.5

1.0

(a)

(b)

(c)

(d)

FIGURE 9. (a,b) Contours of vorticity at T̂ = 1.6, on (a) the major axis and (b) the minor

axis of the AR4 nozzle. (c,d) Contours of vorticity at T̂ = 4.8, on (c) the major axis and (d)
the minor axis of the AR4 nozzle. Contour levels: min = 25 % of ωmax, max = 95 % of ωmax,
increment = 10 %. Flow is from left to right.

3.2. AR4 nozzle

A second set of experiments was conducted on the AR4 elliptical nozzle, at the largest
possible stroke ratio of L/Deq = 4.8. Figure 9 shows contours of vorticity on the major
and minor axes of the AR4 nozzle. As mentioned in § 2.1, we were only able to
collect data on planes aligned with the major and minor axes of the ellipse, since the
deformation was symmetric about these two planes. On other planes along the nozzle
contour, we found that the vortex deformed so rapidly as to exit the DPIV plane
before the lead vortex had pinched off. The severity of the deformation is in qualitative
agreement with the results of Hussain & Husain (1989), who encountered similar
effects when studying elliptic jets with aspect ratios greater than approximately 3.5.

On the symmetry planes, however, the development of the vortex ring was
qualitatively similar to that of the AR2 vortex ring shown in figure 7, although the
deformation was much more pronounced in the AR4 ring. Figure 9(a) and (b) show

the growing AR4 vortex ring in its early stages of development, at T̂ = 1.6. Even at
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this early stage, the deformation of the vortex ring was already evident, since the cores
had translated approximately 0.5Deq on the major axis, but only 0.25Deq on the minor

axis. At T̂ = 4.8, the displacement of the vortex cores towards the centreline of the
nozzle along the major axis (figure 9c), and away from the centreline on the minor
axis (figure 9d) was apparent. Once again, a significant trailing jet was observed on

both planes at T̂ = 4.8, in a configuration that is qualitatively similar to that observed
by Domenichini (2011). In this case, however, significant motion of the trailing jet
towards the nozzle centreline is apparent on the major axis of the nozzle. On the
minor axis, the relative thickness of the shear layer compared to the nozzle minor
semi-axis obscured the motion of the shear layer. However, the localized disappearance
of the shear layer through vorticity cancellation was evident on this plane starting at

T̂ = 6.2. In contrast, no such cancellation was apparent on the major axis while the
vortex ring and shear layer remained within the field of view.

3.3. Oval nozzle

The final set of experiments was conducted on the oval nozzle. This nozzle had a
smaller cross-sectional area than the elliptical nozzles (Deq = 3.62 cm for the former
and Deq = 4.45 cm for the latter) and was longer, which allowed us to consider stroke
ratios up to L/Deq = 7.8. Figure 10 shows contours of vorticity on the major and
minor axes of the two-contour nozzle, for a stroke ratio of L/Deq = 6.3. It is evident
from this figure that the development of the vortex ring ejected from the oval nozzle
was qualitatively similar to that of the two elliptical vortex rings considered in this
study. The deformation of the vortex ring due to the curvature dependence of the
ring’s propagation velocity is once again evident in figure 10(c) and (d), as is the
development of a trailing jet similar to that observed by Domenichini (2011). The
motion of the shear layer towards the nozzle centreline on the minor plane is also
apparent in figure 10(d), while the localized vanishing of the shear layer on this plane

was observed after T̂ = 8.3.

4. Lagrangian analysis

The length of the trailing jet observed from vorticity contours in all three nozzles
(e.g. figure 10c,d) suggested that pinch-off was likely to have occurred on at least
some portions of the nozzles. Hence, we sought to determine the formation time at
which pinch-off occurred. This required applying the method of Gharib et al. (1998),
i.e. comparing the total circulation ejected by the vortex generator, to the lead vortex
circulation. However, in some of the vorticity distributions presented in the previous
section, the boundaries of the leading vortex ring were ambiguous. On the major axis
(and the data planes adjacent to it, in the AR2 case), the boundaries of the leading
vortex were easily identifiable, as the vorticity field consisted solely of a shear layer
and circular lead vortex core (e.g. figure 10c). On the data planes closer to the minor
axis, however, the vorticity field consisted of a shear layer, circular lead vortex core,
and a crescent-shaped vortex segment connecting the two (e.g. figure 10d).

Adhikari (2009) also identified this crescent-shaped vortex structure, which he
termed ‘flow structure 1’ in his visualizations of elliptic vortex rings generated with
a stroke ratio of L/Deq = 2. At these small stroke ratios, Adhikari (2009) found the
crescent vortex to merge with the vortex ring completely at later times. In contrast,
for larger stroke ratios (e.g. L/Deq = 6), he found that this structure overtook and
separated from the circular vortex cores on the minor axis plane, and developed into
what he termed an ‘arc-like structure’. However, this arc-like structure was observed
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FIGURE 10. (a,b) Contours of vorticity at T̂ = 1.6, on (a) the major axis and (b) the minor

axis of the oval nozzle. (c,d) Contours of vorticity at T̂ = 4.8, on (c) the major axis and (d)
the minor axis of the oval nozzle. Contour levels: min = 25 % of ωmax, max = 95 % of ωmax,
increment = 10 %. Flow is from left to right.

from dye visualizations to connect to the outer regions of the core on the major axis

(cf. figures 4-41 and 4-42 of Adhikari (2009)). As a result, it was unclear whether the

crescent vortex observed in contours of vorticity on the minor axis of all three nozzles

constituted a part of the leading vortex ring or a separate flow entity.

In these situations, where the vortex structure consists of several component vortices

moving at different velocities, Eulerian quantities such as vorticity can prove difficult

to interpret. This is especially true when the perceived size and shape of the vortices

varies depending on the thresholds or contour levels in use. In contrast, LCS often

prove useful in these cases because they are frame invariant, their location is

independent of threshold selection, and they identify kinematically distinct regions

even in complex vortex flows (Shadden et al. 2006; Green et al. 2007; O’Farrell &

Dabiri 2010). Therefore, to resolve the ambiguity in defining the boundary of the

leading vortex ring, we considered the LCS in the flow.
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FIGURE 11. Contours of the forward-time (white to blue) and backward-time (white to red)
FTLE for a vortex ring formed from the oval nozzle with a stroke ratio of 1.8: (a–d) major
axis; (e–h) minor axis. Contours of vorticity are superimposed: min = 10 % of the maximum
ω, max = 95 % of the maximum ω, increment = 15 %. Formation time increases down each

column: T̂ = 1.2, 4.1, 7, 10.

Since the oval nozzle had a smaller cross-sectional area and a longer cavity, it
allowed us to consider a greater range of stroke ratios than the elliptical nozzles. As
a result, we conducted a set of experiments on the oval nozzle, at four stroke ratios
ranging from 1.8 to 7.8, and we observed the evolution of the crescent vortex. For
each of these cases, we recorded the velocity and vorticity fields and computed the
FTLE field at several time steps using the methods outlined in § 2.2. In figures 11–14
we present the forward-time and backward-time FTLE fields at four separate time
instants, for experiments conducted using stroke ratios of L/Deq = 1.8, 3.3, 6.3 and 7.8.
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The forward-time and backward-time FTLE fields are represented in the form of
contours ranging from white to blue and white to red, respectively, and contours of
vorticity are superimposed on the FTLE fields for reference.

Figure 11 shows contours of vorticity and FTLE for an experiment conducted using
a stroke ratio of 1.8. In this case, the stroke ratio was sufficiently small as to result
in the formation of an isolated circular vortex core on both the major and minor axis

planes of the oval nozzle. Figure 11(a,e), depict the vortex ring at T̂ = 1.2, on the
major and minor axes of the nozzle, respectively. At this stage, fluid ejection had not
yet stopped, so the rear boundary of the vortex (formed by the repelling LCS) was not

complete. By T̂ = 4.1, fluid ejection had stopped and the attracting and repelling LCS
formed the boundaries of the vortex ring on both planes (figure 11b,f ). In this case,
the LCS structure on both planes qualitatively resembled that observed by Shadden
et al. (2006) for isolated circular vortex rings formed at similar stroke ratios. In
addition, the time-varying deformation of the isolated vortex ring was evident from
the oscillations in the diameter of the vortex ring on both the major and minor planes
(figure 11b–d and f–h).

When the stroke ratio was increased to 3.3, a small crescent vortex was evident on
the minor plane during formation (figure 12f,g). Pinch-off was not observed in this
case, so nearly all of the vorticity ejected from the nozzle was entrained into the
vortex ring and the remainder dissipated due to viscous diffusion. Once the vorticity in
the short shear layer had been entrained into the leading vortex core, the LCS structure
largely resembled that observed in the case where L/Deq = 1.8 (cf. figure 12c,g and
figure 11b–d,f–h). However, two new branches were observed to form in the repelling
LCS, and they are shown to intersect the crescent vortices on the minor plane at

T̂ = 5.9 in figure 12(g). The small amounts of vorticity which were separated from
the main vortex core by these new branches in the repelling LCS, were found to
overtake the leading vortex core and form the flow structure observed by Adhikari

(2009) (figure 12h). At T̂ = 8.6, the core was also observed to become more diffuse on
the major axis, leading to the appearance of a gap between the attracting and repelling
LCS on this plane (figure 12d). This structural change in the LCS was indicative of
the connection of the flow structure identified on the minor axis, to the outer regions
of the core on the major axis as observed in Adhikari’s dye visualizations at larger
stroke ratios. Throughout the formation process, the crescent vortex was found to
remain within the bounds of the leading vortex formed by the LCS, thus indicating
that the crescent vortex was part of the leading vortex ring. Portions of the crescent
vortex did separate from the cores in finite time and this separation was concurrent
with the disintegration of the vortex core on the major axis plane.

The LCS structure observed in figure 12 for a stroke ratio of 3.3 persisted for higher
stroke ratios, including those exceeding 4, in which the formation of a persistent
trailing jet was observed. Figure 13 shows the LCS structure and contours of vorticity
for the experiment conducted with a stroke ratio of 6.3, and previously analysed
in § 3.3. In this case, a clear crescent vortex was observed in the minor plane
(figure 13g), and the portions of this crescent vortex delimited by the branching
repelling LCS were observed to form a much stronger vortex pair which overtook the
leading vortex core at large formation times (figure 13h). The breakup of the core on
the major axis at large formation times, due to the connection of the vortex pair on
the minor axis to the outer regions of the core on the major axis, was found to be
more pronounced in this case as well (figure 13d). In addition, a significant amount of
vorticity was found to trail in the regions behind the boundaries of the leading vortex
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FIGURE 12. Contours of the forward-time (white to blue) and backward-time (white to red)
FTLE for a vortex ring formed from the oval nozzle with a stroke ratio of 3.3: (a–d) major
axis; (e–h) minor axis. Contours of vorticity are superimposed: min = 10 % of the maximum
ω, max = 95 % of the maximum ω, increment = 15 %. Formation time increases down each

column: T̂ = 1.2, 4.0, 5.9, 8.6.

core and a secondary vortex ring was even observed to form in the minor plane by

T̂ = 9.1 (figure 13h). However, unlike the secondary vortex in the wake, the crescent
vortex was found to remain within the bounds formed by the LCS for the duration of
the vortex formation process.
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FIGURE 13. Contours of the forward-time (white to blue) and backward-time (white to red)
FTLE for a vortex ring formed from the oval nozzle with a stroke ratio of 6.3: (a–d) major
axis; (e–h) minor axis. Contours of vorticity are superimposed: min = 10 % of the maximum
ω, max = 95 % of the maximum ω, increment = 15 %. Formation time increases down each

column: T̂ = 1.2, 4.0, 6.4, 9.1.

A similar structure was observed in the experiments conducted on the oval nozzle at
the maximum achievable stroke ratio of 7.8. Figure 14 shows the LCS structure and
contours of vorticity for this stroke ratio. In this case, several Kelvin–Helmholtz-type
vortices were seen to develop in the wake of the leading vortex at long formation
times (figure 14h). With the formation of new vortices in the trailing jet, new repelling
LCS were also observed to appear in the wake, and the merger of these repelling
LCS due to the merger of vortices was also observed. New repelling LCS similar
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FIGURE 14. Contours of the forward-time (white to blue) and backward-time (white to red)
FTLE for a vortex ring formed from the oval nozzle with a stroke ratio of 7.8: (a–d) major
axis; (e–h) minor axis. Contours of vorticity are superimposed: min = 10 % of the maximum
ω, max = 95 % of the maximum ω, increment = 15 %. Formation time increases down each

column: T̂ = 1.2, 4.0, 5.9, 8.6.

to those observed in a circular starting jet with a long stroke ratio by O’Farrell &
Dabiri (2010), are visible in the wake in figure 14(e,h). However, the kinematics of the
crescent vortex remained unchanged.

The main features of the LCS structure observed in figures 13 and 14 can also be
identified in figures 15 and 16, which depict contours of vorticity superimposed on
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FIGURE 15. Contours of the forward-time (white to blue) and backward-time (white to red)
FTLE for a vortex ring formed from the AR2 nozzle with a stroke ratio of 5.8: (a–d) major
axis; (e–h) minor axis. Contours of vorticity are superimposed: min = 10 % of the maximum
ω, max = 95 % of the maximum ω, increment = 15 %. Formation time increases down each

column: T̂ = 0.8, 2.7, 4.7, 6.7.



Pinch-off of non-axisymmetric vortex rings 85

0 1 2 3

–1.0

–0.5

0

0.5

1.0

–1.0

–0.5

0

0.5

1.0

–1.0

–0.5

0

0.5

1.0

–1.0

–0.5

0

0.5

1.0

0 1 2 3

0 1 2 3

–1.0

–0.5

0

0.5

1.0

–1.0

–0.5

0

0.5

1.0

–1.0

–0.5

0

0.5

1.0

–1.0

–0.5

0

0.5

1.0

0 1 2 3

(a)

(b)

(c)

(d)

(e)

( f )

(g)

(h)

FIGURE 16. Contours of the forward-time (white to blue) and backward-time (white to red)
FTLE for a vortex ring formed from the AR4 nozzle with a stroke ratio of 5.8: (a–d) major
axis; (e–h) minor axis. Contours of vorticity are superimposed: min = 10 % of the maximum
ω, max = 95 % of the maximum ω, increment = 15 %. Formation time increases down each

column: T̂ = 0.9, 2.8, 4.8, 6.8.
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FIGURE 17. Time history of the total circulation emanating from the nozzle (solid lines) and
the circulation in the lead vortex (dashed lines) on (a) the major axis of the AR2 nozzle and
(b) the minor axis. The different line colours denote separate trials at the same experimental
conditions, with the solid and dashed lines in a particular colour corresponding to the total
and vortex ring circulation measured in the same trial. The error in the measurements was
≈6 %, and it is indicated by the shaded bands.

the contours of the forward-time and backward-time FTLE fields for the AR2 and

AR4 nozzles, respectively. Once again, the crescent vortex was found to remain within

the boundaries of the vortex ring during formation, and branches of the repelling

LCS were found to delimit the portions of the crescent vortex which would later

form the arc-like structure observed by Adhikari (2009). Therefore, the LCS analysis

revealed that the crescent vortex observed in the minor planes of all three nozzles

was part of the leading vortex ring. In addition, the LCS predicted the development

of the arc-like structure, which was found to connect portions of the crescent vortex

to the outer boundaries of the core on the major axis. The deformation and eventual

break-up (Adhikari 2009) that results from the formation of this arc-like structure,

while interesting, is not relevant to the study of vortex pinch-off, since it occurs after

the vortex has separated from the nozzle. Thus, it has no impact on the properties of

the vortex ring during formation.

5. Vortex formation number

Following Gharib et al. (1998), we computed the total circulation emanating from

the piston–cylinder apparatus, as well as the circulation in the leading vortex ring,

by integrating the vorticity contained within the lowest detectable contours. Figure 17

shows the time history of the total circulation emanating from the nozzle, as well at

the circulation in the leading vortex ring, for both the major plane (figure 17a) and the

minor plane (figure 17b) of the AR2 nozzle. For each plane, results corresponding to

three separate trials are presented, each denoted by a different line colour. In all cases,

the time histories of both the total circulation and the leading vortex ring circulation

were found to match very closely between trials and the vortex formation process was

found to be very robust.
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FIGURE 18. Time history of (a) the total circulation emanating from the nozzle and (b) the
circulation in the lead vortex, at seven different curvature points on the AR2 nozzle. The
error in the measurements was ≈6 %, and it is shown in grey for the curve on the major
axis, for reference. Here κ = 1.26 cm−1 (—); κ = 1.04 cm−1 (– –); κ = 0.82 cm−1 (red line);
κ = 0.60 cm−1 (dashed red line); κ = 0.39 cm−1 (blue line); κ = 0.20 cm−1 (dashed blue
line); κ = 0.16 cm−1 (–·–).

The shaded bands in figure 17 denote the uncertainty in each set of circulation
measurements, which was found to be approximately 6 %. The uncertainty in the
circulation measurements was derived from propagation of the uncertainty in the
vorticity measurements, as well as the error associated with defining the area
containing the vortex ring and jet. This last quantity was derived from repeated
measurements of the total and vortex ring areas, and conservatively estimated to be
approximately 10 % of the total area.

Figure 18(a) shows the total circulation as a function of formation time based on
nozzle equivalent diameter, for the seven curvature planes along the contour of the
AR2 nozzle. In all of the planes considered, the total circulation increased at an

almost constant rate until fluid ejection stopped at approximately T̂ = 4.8, when it
ceased increasing. The final value of the total circulation in all planes ranged between
Γ = 48 cm2 s−1 and Γ = 54 cm2 s−1. Near the minor axis, the shear layer was pushed
towards the nozzle centreline by the velocity field induced by the vortex ring. On these
planes, vorticity cancellation was evident at longer times, and led to the decrease in

the total circulation evident at formation times in excess of T̂ = 4.8 in figure 18(a).
In figure 18(b), we present the time history of the circulation in the leading vortex
ring for the seven curvature points. Once again, the seven cases considered exhibited
similar trends, with the lead vortex circulation achieving a final value ranging from

Γring = 31 cm2 s−1 to Γring = 36 cm2 s−1, at a approximately T̂ = 6.
When computing the lead vortex circulation, we defined the lead vortex core as

outlined in § 4. The fact that the circulation within the core as defined above was
found to be constant at long formation times confirms our definition of the lead vortex
on planes near the minor axis. In contrast, the circulation of the circular portion of
the leading vortex on the minor plane continuously increased by drawing circulation
from the crescent-shaped vortex, until the breakup of the vortex ring and the formation
of the arc-like structure. Hence, although the final circulation in the lead vortex was
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FIGURE 19. Time history of the total circulation (—) and lead vortex circulation (◦) on
(a) the major axis and (b) the minor axis of the AR2 elliptical nozzle. Comparing the
final circulation in the lead vortex with the time history of the total circulation yields the
non-dimensional time at which the vortex stopped accepting vorticity (– –).

found to be approximately constant across the different curvature planes (figure 18b),
the shape of the lead vortex varied significantly between the major axis and the minor
axis.

By comparing the time history of the total circulation to the final circulation in
the lead vortex, one can determine the non-dimensional time at which the lead vortex
ceased to accept additional circulation. We performed this comparison at each data
plane, in order to determine whether the formation time at pinch-off varied with the
local curvature. Figure 19 illustrates this comparison for two of the seven curvature
planes considered: the major and minor axes. On the major axis (figure 19a), the

formation time at pinch-off was found to be T̂ = 3.6 ± 0.4, whereas on the minor axis

(figure 19b) it was found to be T̂ = 3.4 ± 0.4.
Figure 20 shows the time history of the total circulation emanating from the AR4

elliptical nozzle, as well as the circulation in the lead vortex ring, on the major and
minor axes of the nozzle. Comparing the final circulation in the lead vortex ring
to the time history of the total circulation yielded a formation time at pinch-off of

T̂ = 3.1 ± 0.4 on the major axis and T̂ = 3.5 ± 0.4 on the minor axis. Therefore, the
formation number based on equivalent diameter for the AR4 nozzle was found to be
identical to the formation number for the AR2 nozzle, to within experimental error.

The results in figure 20 are similar to those for the symmetry planes of the AR2
nozzle, with the exception of a step-like increase in the circulation of the lead vortex

ring at T̂ = 5.5 in figure 20(a), which is absent in figure 19(a). In their study of
circular vortex rings, Gharib et al. (1998) found that for large stroke ratios, the
vortex ring circulation increased in a step-like fashion after long formation times. This
step-like increase was caused by the first vortex in the trailing wake catching up to,
and coalescing with, the leading vortex ring. This same phenomenon was responsible
for the jump in the lead vortex circulation on the major axis in figure 20(a). However,
unlike in the circular case, the jump occurred before the lead vortex circulation has
levelled off (i.e. before the vortex ring had pinched off).
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FIGURE 20. Time history of the total circulation (—) and lead vortex circulation (◦) on
(a) the major axis and (b) the minor axis of the AR4 elliptical nozzle. Comparing the
final circulation in the lead vortex with the time history of the total circulation yields the
non-dimensional time at which the vortex stopped accepting vorticity (– –).
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FIGURE 21. Time history of the total circulation (—) and lead vortex circulation (◦) on (a)
the major axis and (b) the minor axis of the oval nozzle for a stroke ratio of 6.3. Comparing
the final circulation in the lead vortex with the time history of the total circulation yields the
non-dimensional time at which the vortex stopped accepting vorticity (– –).

Figure 21 shows the time history of the total circulation emanating from the oval

nozzle, as well as the circulation in the lead vortex ring, on the major and minor axes

of the nozzle, for a stroke ratio of 6.3. The circulation time histories for this nozzle

were qualitatively very similar to those for the symmetry planes of the two elliptical

nozzles, although those cases considered shorter stroke ratios. By comparing the time

histories of the vortex ring circulation and the total circulation, pinch-off was found to
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FIGURE 22. Non-dimensional pinch-off time (T̂ = Upt/Deq) as a function of curvature for
the three nozzle shapes: ©, AR2 nozzle; △, AR4 nozzle; �, oval nozzle. The average over all

curvature points in the three nozzles (T̂ = 3.4 ± 0.4) is denoted by the solid black line.

occur at a formation time of T̂ = 3.9 ± 0.4 and T̂ = 3.6 ± 0.4, on the major and minor

axes of the oval nozzle, respectively.

Our results are summarized in figure 22, which shows the formation time at pinch-

off as a function of curvature, for all three nozzles. The symbols show the formation

time at pinch-off at every data plane on the three nozzles and the black line shows the

average formation time at pinch-off (T̂ = 3.4 ± 0.4), over all data planes. These results

suggest that there is no dependence of the formation time at pinch-off on the local

curvature, but rather pinch-off occurs simultaneously throughout the nozzle contour, at

a formation number based on the equivalent diameter of the nozzle of T̂ = 3.4 ± 0.4.

Moreover, it appears that, for the nozzle shapes considered, the formation number is a

function of the equivalent diameter of the nozzle, independent of the nozzle shape. In

addition, in all cases, pinch-off was found to occur well before the induced motion of

the shear layer towards the nozzle centreline on the minor plane led to axis-touching

and localized vorticity cancellation.

6. Conclusions

We investigated the formation of vortex rings from three different non-circular

nozzles: an elliptical nozzle with an aspect ratio of two, an elliptical nozzle with

an aspect ratio of four and an oval nozzle constructed from tangent circular arcs.

The nozzles selected encompass a wide class of those non-circular nozzles not

considered by Domenichini (2011), since they include nozzles with both smooth and

discontinuous variation in the curvature, and span from nozzles with a moderate range

of curvatures to those with extreme variations in curvature (κmax/κmin = 4 in the oval

nozzle and ≈60 in the AR4 nozzle).
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On all three nozzles, we found that the limiting size and circulation at saturation
of the vortex ring were not spatially varying along the local contour and thus not
a function of relative variations in the local curvature. Therefore, pinch-off was not
found to be a local phenomenon in either of the three nozzle shapes considered. The
shape of the leading vortex ring was found to vary along the contour of the nozzle
in all three cases and to be strongly dependent on the local curvature. However, the
LCS analysis revealed the leading vortices of various shapes to belong to a single
coherent leading vortex core during the formation process, thus leading to the observed
invariance of the circulation. In addition to the spatial variation in the vortex ring
shape, we observed the time-dependent deformation of the vortex, which, in the
case of elliptical nozzles, was in agreement with previous studies (Viets & Sforza
1972; Dhanak & de Bernardinis 1981; Hussain & Husain 1989; Adhikari 2009). The
deformation of vortex rings from oval nozzles is reported here for the first time, and
was found to be qualitatively similar to the deformation of elliptical vortex rings.

In agreement with Hussain & Husain (1989), we found that the equivalent diameter
of a non-circular nozzle is a proper length scale in quantifying the formation of
vortex rings with moderate departure from axisymmetry. As a result, we extended
the definition of the formation number introduced by Gharib et al. (1998), to vortex
rings of this class, using the equivalent diameter of the nozzle as the relevant length

scale (T̂ = Upt/Deq). In all three nozzles considered, we found the formation number
thus defined to be constant along the contour of each nozzle, and to lie in the range
between 3 and 4. This range falls slightly below that observed in circular vortex rings
by Gharib et al. (1998) (approximately 3.6–4.5), yet is in remarkably good agreement
given the wide class of nozzles considered, and their departure from axisymmetry.

The present results for the shape and deformation of elliptical vortex rings are in
good agreement with those of Adhikari (2009). However, our results for the formation
number of vortex rings of the three shapes considered contradict Domenichini’s
conjecture that pinch-off in these geometries should be a local phenomenon governed
by the curvature. Given the stark differences between our conclusions about the role of
relative curvature in vortex formation, and those of Domenichini (2011), a comparison
of the results of the two studies is illuminating.

At the early stages of vortex development, our findings regarding the shape and
deformation of the vortex agreed qualitatively with those of Domenichini (2011).
Moreover, our results appear compatible with Domenichini’s results for the formation
of small aspect ratio vortex rings (h = 0.05 and 0.5 in Domenichini’s formulation,
where h is the ratio of the length of the rectilinear portion to the diameter of the
circular portion). In these cases, Domenichini (2011) found the evolution of the
non-circular vortices to be similar to that of circular vortex rings, albeit with some
deformation. Furthermore, in these cases, pinch-off appeared to occur simultaneously
on the straight and circular sections of the vortex ring.

For larger aspect ratios (h = 1.5 and 2 in Domenichini’s formulation), the geometry
of the vortex ring and shear layer on the symmetry planes was similar in
Domenichini’s computations and our experimental results. In both studies, a leading
vortex ring and trailing shear layer were observed on the major axis plane, while a
geometry consisting of a leading vortex ring, crescent vortex and circular vortex core
was observed in the minor plane. However, Domenichini (2011) concluded that the
circulation in the leading vortex was higher in the flat portions of the vortex than in
the circular portions and that pinch-off occurred exclusively on the circular portions of
the orifice at a formation time T∗ = Ut/D = 3.6 based on the diameter of the circular
portion of the orifice (D).
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The discrepancy between our results and those of Domenichini’s computations for

more slender orifices can be attributed, at least in part, to a difference in the definition

of the boundaries of the leading vortex on the minor axis between the two studies.

Domenichini (2011) presented only results for the circulation on the plane coinciding

with the circular portion of one of his pseudo-elliptic orifices (h = 2). However, the

author kindly granted us access to time-resolved vorticity fields on the two symmetry

planes for two of his orifices: one where h = 2 and one where h = 4. When computing

the circulation of the vortex in both symmetry planes of the h = 2 orifice using the

definition of the vortex boundaries outlined in § 4, we found the circulation in both

planes to be similar, indicating that pinch-off occurred simultaneously on both sections

of the orifice.

On both axes of the h = 2 orifice, however, pinch-off appeared to take place at a

formation time of 3.6 based on the diameter of the circular portion of the orifice

(T∗ = Ut/D), which corresponded to a formation time of T̂ = 1.9 based on the

equivalent diameter of the orifice. Since Domenichini (2011) did not present the

time history of the total circulation and vortex ring circulation for orifices other than

the h = 2 case, the relevance of the diameter of the circular segments (D) or the

equivalent diameter of the orifice (Deq) as length scales for Domenichini’s flows cannot

be ascertained.

In addition, the crescent-shaped vortex observed in the minor plane in both our

experiments and those of Adhikari (2009) was not found in the vorticity data for

Domenichini’s most slender orifices (h = 4). In this case, the shear layer was found to

curve around the leading vortex, but no separation of the crescent-shaped portion of

the shear layer from its main section was observed. The absence of the crescent vortex

might be indicative of a change in the vortex formation process for very-high-aspect-

ratio orifices. Such a change is consistent with the two-dimensional rollup observed in

the limiting case of extremely thin slits (Afanasyev 2006; Pedrizzetti 2010).

The planar DPIV method utilized in this study allows for the reconstruction of an

approximate three-dimensional vorticity field only for vortex rings with relatively small

departures from axisymmetry. In order to analyse the three-dimensional dynamics of

vortex rings such as the oval vortex ring and AR4 elliptical vortex ring considered

in this study, three-dimensional velocimetry is required. The three-dimensional, three-

component defocusing digital particle image velocimetry (DDPIV) technique (Willert

& Gharib 1992; Pereira & Gharib 2002; Pereira et al. 2006) has been applied

successfully to non-axisymmetric vortex ring flows by Troolin & Longmire (2009) and

Kim & Gharib (2011), and is a promising candidate for performing three-dimensional

velocimetry measurements on vortex rigs undergoing large deformations.

The results presented in this study covered a class of vortex rings with moderate

departure from axisymmetry, which is representative of many vortex rings of biological

relevance. However, at present the extent to which our results extend to vortex rings

outside of this class is unknown. In addition, the limitations of our results in terms

of aspect ratio and nozzle geometry are also unknown. Given the differences in

the formation number between the present results and those of Domenichini (2011),

determining the extent to which the equivalent diameter is the relevant length scale

in defining a global formation number is of interest. Further studies on the formation

of vortices outside of the biologically relevant class could enable the definition of a

(possibly locally varying) analogue to the formation number of Gharib et al. (1998),

which extends to a large class of vortex ring geometries and recovers the asymptotic

behaviour of circular vortex rings and two-dimensional vortex dipoles.
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The present results have potentially far-reaching implications for the study and

modelling of vortex ring flows of biological relevance. Elliptical, elongated and

otherwise non-circular vortex rings such as those investigated here are known to be

a distinguishing feature in many biological flows (Bellhouse 1972; Kokshaysky 1979;

Dickinson & Götz 1996; Domenichini et al. 2005; Kern & Koumoutsakos 2006). Our

results on the formation number of vortex rings of this class therefore allow for a more

accurate understanding of the parameters governing the formation of vortex rings in

the human left ventricle, for example.

Furthermore, the concepts of the vortex formation number and optimal vortex

formation have been applied successfully to evaluating the efficiency or optimality

of propulsive flows (Krueger & Gharib 2003; Linden & Turner 2004; Dabiri

et al. 2010) which feature vortex rings of almost circular shape. However, in

other locomotory flows where non-axisymmetric vortex rings are the norm, the

absence of known limits on vortex ring size previously precluded this sort of

analysis. The present results, however, suggest that we can reduce vortex rings

with moderate departure from axisymmetry to circular vortex rings with the same

equivalent diameter. Such a reduction allows for greater ease of modelling, and a

decrease in computational complexity in numerical studies, through the exploitation

of axisymmetry. Simplifications of this kind have been perfumed in the past by

researchers studying both cardiac (Steen & Steen 1994; Gharib et al. 2006; Kheradvar

& Gharib 2007) and locomotory flows (Drucker & Lauder 1999; Dickinson et al.

2000; Hsieh & Lauder 2004).
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