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Abstract 

 
The PingPong family of keystream generator is 

based on the LM-type summation generator. A mutual-
clock-control mechanism is added to the LM-type 
summation generator to provide a security 
enhancement. PingPong-128, a specific cipher from 
the PingPong family, is proposed. It takes a 128-bit 
key and a 128-bit initialisation vector, has 257 bits of 
internal state, and achieves a security level of 128 bits. 
In this paper, we present the security analysis of 
PingPong-128, including the resistance to known 
attacks against the summation generator and other 
clock-controlled generators.  
 
1. Introduction 
 

The two basic methods for encrypting text into 
ciphertext are stream and block ciphers. Stream ciphers 
(as the name suggests) encrypt text bit-by-bit and are 
fairly rare with only a few examples in commercial 
applications such as RC4 [1]. The advantage of a 
stream cipher is that it is faster and much more 
efficient than block ciphers. For example, RC4 is close 
to twice as fast as the nearest block cipher and can be 
written in 30 lines of code whereas the typical block 
cipher algorithm takes several hundred lines of code, 
making them ideal for Internet applications like SSL 
were speed and efficiency is more valuable [2]. 

The summation generator [3] was proposed in 1985, 
and correlation attacks on it were published in [4, 5]. In 
[6], a fast correlation attack on the summation 
generator is described. The LM generator [7] was 
proposed in 2000 as an improvement to the summation 
generator. The proposed improvement is the addition 
of an extra memory bit to the combining function. The 
summation generator succumbs to a range of divide 
and conquer attacks, from the straightforward divide 
and conquer attack described in [5, 8], to correlation 
and fast correlation attack in [4, 5] and [6], respectively. 

In this paper, we propose a new generator, 
PingPong, based on the summation generator, with the 

addition of a mutual clock control structure. The 
purpose of the mutual clock control structure is to 
introduce irregular clocking of the underlying LFSRs 
thus implicitly increasing the nonlinearity of the output 
keystream. In other words, The PingPong generator is 
a clock controlled generator. It is based on the LM 
generator [7], which is a modification of a summation 
generator [3] based on two linear feedback shift 
registers (LFSRs). We demonstrate that the 
modification defeats the known attacks against the 
summation generator, and other attacks such as attacks 
on irregularly clocked keystream generators. An 
initialisation and rekeying process for the PingPong 
generator is also defined. 

The PingPong generator extends the LM generator 
through the use of irregularly clocked underlying shift 
registers. 
 
2. Summation-like Generator 
 
2.1. Description of the Summation Generator 
 

 
 
 
 
 
 
 
 
 
 
 
 

Fig. 1. Summation Generator(r = 2) 
 
The summation generator uses r regularly clocked 

binary LFSRs and Log2n bits of carry. The LM 
generator is based on a summation generator with r = 2. 
Denote the two LFSRs L1 and L2, respectively, and the 
carry bit is denoted by  c. At time j, denote the output 
of L1 as aj , the output of L2 as bj  , and the output of fc 
as cj, as shown in fig. 1. The initial state of the carry bit, 
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c-1, is defined to be 0. At time j, the output of the 
function fz  is the keystream bit, and is denoted by zj. 
The outputs of functions fc and fd at time   are defined 
as: 

1)( −⊕⊕== jjjjjcj cbabafc                       (1) 

1−⊕⊕== jjjzj cbafz                                  (2) 
 
2.2. Cryptanalysis of the Summation 
Generator 
 

There are several ways to recover the initial state of 
the summation generator. A simple approach is the 
divide and conquer attack [5]. Alternatively, a fast 
correlation attack [6] could be performed. 
 
2.3. Description of the LM Generator 
 
 
 
 
 
 
 
 
 
 
 

Fig. 2. LM Generator(r = 2) 
 

The LM generator, shown in fig. 2 is very similar to 
the summation generator, in that La, Lb  and c are 
defined in exactly the same way. Another bit of 
memory, d, is added to the combining function, in an 
attempt to overcome some of the published attacks on 
the summation generator. The carry bit, c, is defined by 
equation 1, identical to the summation generator. The 
additional memory bit d is calculated by the function fd 
and the output function fz is changed to include d. The 
value of d-1 is defined to be 0. 

1)( −⊕⊕== jjjjdj dbabfd                          (3) 

11 −− ⊕⊕⊕== jjjjzj dcbafz                       (4) 
 
2.4. Cryptanalysis of the LM Generator 
 

Due to the similarity in construction between the 
summation generator and the LM generator, similar 
algorithms can be used to attack both generators. These 
are outlined below[14]. 

Divide and Conquer Attack The attack on the 
summation generator given in [5] can be adapted to 

recover the initial state of the LM generator. The 
attacking algorithm is given below[14]: 

1. Guess the initial state of aL  and carry bits 1−c   
and 1−d   

2. Set j  = 0 

3. Calculate jb , bit j  of bR , using equation 2 and 
the known keystream bit jz  

4. Calculate jc  using equation 1 and the calculated 
jb  

5. Calculate jd  using equation 3 and the calculated 
jb  

6. Increment j , if kj <  then goto step 3 

7. Initialise the LM generator with the guessed 
initial state of aL  and the calculated initial states 

bL , 1−nc , and 1−nd  

8. Produce a candidate keystream sequence { }k
njjz

=
′  

and compare with observed keystream sequence 
{ }k

njjz
=

 

9. If { }k
njjz

=
′  and { }k

njjz
=

 are identical, then the 
correct initial states of aL  and bL  are 
successfully recovered, else go to step 1 

 
 
 
 
 
 
 
 

Fig.3. Fast Correlation Attack Model for the LM 
Generator 

 
This attack requires exhaustive search of m+2 bits, 

that is, the size of La and the carry bit c and the 
memory bit d, to recover the initial states of both 
registers, that is, the m+n bits of initial state. Under this 
attack, the addition of d offers only one extra bit of 
security over the summation generator. 

Fast Correlation Attack The LM generator can be 
modelled as the modulo-two sum of two LFSRs, plus 
some binary noise, as shown in fig. 3, where ej is the 
noise and zj is the output keystream bit. For the LM 
generator, the noise is provided by the modulo-two 
sum of the carry bit c and the memory bit d. The two 
memory bits are highly correlated, with P(cj = dj) 
=0.75. Therefore, modelling the LM generator this way, 
the noise level is 0.25. This is a significant deviation 
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from 0.5, and makes the LM generator vulnerable to a 
fast correlation attack, similar to the fast correlation 
attack on the summation generator. 

 

Table 1. Distribution of jc and jd in the LM Generator 

 

ja   jb   1−jc   1−jd  jc   jd  

0    0      0      0 

0    0      0      1 

0    0      1      0 

0    0      1      1 

0    1      0      0 

0    1      0      1 

0    1      1      0 

0    1      1      1 

1    0      0      0 

1    0      0      1 

1    0      1      0 

1    0      1      1 

1    1      0      0 

1    1      0      1 

1    1      1      0 

1    1      1      1 

0    0 

0    0 

0    0 

0    0 

0    1 

0    0 

1    1 

1    0 

0    0 

0    1 

1    0 

1    1 

1    1 

1    1 

1    1 

1    1 
 
The carry bit, c, and the memory bit, d, are identical 

with a probability of 0.75, as shown in Table 1. Recall 
that the output of the LM generator is defined as 

 
 
 
 
Since 011 =⊕ −− jj dc  is true with probability 0.75, 

jjj baz ⊕=  is also true with probability 0.75. This 
can be exploited in a fast correlation attack to recover 
the initial states of the LM generator [7]. 
3. PingPong Generator 
 
3.1. Description of the PingPong Generator 
 

Proposed PingPong family generators are simple, 
easy to implement in hardware and in software, and 
high secure. PingPong family in fig.4 is a hybrid 
generator, combining the LM generator (improved 
summation generator) with a high secure clock-
controlled generator. LFSR A is clock-controlled by 
function fb, it has a random integer output. And LFSR 
B is clock-controlled by function fa, it also has a 
random output. Two clock-controlled functions give a 
multiple clock to the other LFSR. It makes that the 
output should be more unpredictable. Pingpong Family 
generator outputs zj, cj and cj from each LFSR outputs 
aj and bj, previous carry cj-1 and previous memory dj-1 
as in fig.4. 

1−⊕== jjzj dyfz                                           (5) 

11 )(),,( −− ⊕⊕=== jjjjjjjdj dbabdbaffd
 (6) 

 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.4. PingPong Family Generator 
 
where (y) is the output sequence of summation 

generator, (a) the output sequence of LFSR 1, (b) the 
output sequence of LFSR 2, (c) carry sequence, c-1 = 0 
carry initialization value, (d) memory sequences, d-1 = 
0 memory initialization value. 

 
3.2. PingPong-128 
 

In this Section, we describe in detail PingPong-128, 
an instance from the PingPong family of stream 
ciphers. It has two mutually clocking LFSRs and a 
single memory bit. The LFSRs are of lengths 127 bits 
and 129 bits. Together with the memory bit they give 
PingPong-128 an internal state of 257 bits. PingPong-
128 takes a 128-bit key and a 128-bit initialisation 
vector to fill the internal state.  

Keystream Generation The PingPong generator 
produces the output keystream by combining the LFSR 
sequences and the memory sequence. PingPong-128 
has two mutually clocking LFSRs La and Lb, and a 

)()( 11

11

−−

−−

⊕⊕⊕=

⊕⊕⊕=

jjjj

jjjjj

dcba

dcbaz
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single bit of memory c. Two primitive polynomials, 
Pa(x)  and Pb(x) are following: 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 5. PingPong-128 Generator 
 
Two clock-control functions, fa(La) and fb(Lb), and 

the output keystream bit z and memory bit c at time j 
are defined to be identical to the summation generator: 

1)()(2)( 8542 ++= tLtLLf aaaa                       (7) 

1)()(2)( 8643 ++= tLtLLf bbbb                        (8) 
 

1−⊕= jjj dyz                                                    (9) 

11 )(),,( −− ⊕⊕== jjjjjjjj dbabdbafd   (10) 
Clock Control For PingPong-128, both LFSRs are 

irregularly clocked, with each register controlling the 
clocking of the other. Two taps are taken from La to 
calculate a value in the range 1 . . . 4, and Lb is clocked 
1 to 4 times according to this value. Similarly, a value 
is calculated from two taps taken from Lb to clock La. 
The clock control is calculated by above two functions, 
fA and fB . This clocking scheme can be applied to the 
PingPong family of keystream generators with n 
underlying LFSRs, where Lj is used to clock Lj+1 and L1 
is clocked by Ln. 

Key Loading and Rekeying In some communication 
systems, errors occur which require that the entire 
message be resent. When a synchronous stream cipher 
is used, then security requires that a different 
keystream sequence be used. To achieve this, the 
rekeying of a stream cipher should include a method 

for reinitialisation using both the secret key and an 
additional initialisation vector which is sent in the clear, 
or otherwise publicly known. We now describe a 
proposed method for the initial key loading and for the 
rekeying of PingPong-128. For PingPong-128, both k 
and iv have a length of 128 bits, and together they fill 
257 bits of internal state. The initialisation process can 
also be used for rekeying. The process to generate the 
initial state for the keystream generator uses the 
generator itself twice. The starting state of La is 
obtained simply by XORing the two 128-bit binary 
strings of the key, k, and iv, that is, La = (k ⊕ iv)mod 
2127. The starting state of 129 bits for Lb is obtained by 
considering the 128-bit key, embedded in a 129-bit 
word and shifted 1 bit to the left, and XORing that with 
the initialisation vector embedded in a 129-bit word 
with a leading zero, that is, Lb =  (k<<1) ⊕ (0|iv). Now 
the cipher is run to produce an output string of length 
257 bits. For the second iteration of the cipher, the first 
128 bits of this output string are used to form the initial 
state of La, and the remaining 129 bits are used to form 
the initial state of Lb. The cipher is run a second time to 
produce an output string of length 257 bits. The output 
from this second application is used to form the initial 
state of the keystream generator when we begin 
keystream production. As previously, the first 128 bits 
form the initial state of La, and the remaining 129 bits 
form the initial state of Lb. It is very unlikely that either 
LFSR will be initialised with the all zero state. By 
employing the PingPong algorithm itself, we take 
advantage of both the known security properties of the 
algorithm and also its fast implementation. Due to the 
high security of PingPong we conclude that the best 
attack in the rekeying scenario is exhaustive key search. 

Implementation Issue Both LFSRs in PingPong-128 
use the Galois implementation rather than the 
Fibonacci implementation. This is a design decision 
based on the software performance of the 
implementation. It is observed that the Galois 
implementation is much more efficient in software 
than the Fibonacci, although both implementations are 
equally efficient in hardware. It is worth noting that 
these two implementations give different output 
sequences with the same initial LFSR states, therefore 
it is essential to specify the style of implementation. 
 
4. Analysis of the PingPong Generator 
 

In this Section, we present the keystream properties 
of the PingPong generator based on empirical 
results.We also show the resistance of the PingPong 
generator to known attacks. 
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4.1. Keystream Properties 
 

There are three basic requirements for the pseudo-
random binary sequences: long period, high linear 
complexity, and good statistical properties. Long 
period avoids the keystream to be reused when 
encrypting long messages. High linear complexity 
prevents attacks using the Berlekamp-Massey 
algorithm [12]. Good statistical properties guard 
against attacks exploiting the biases in the keystream. 
Experiments have been done on several instances from 
the PingPong family of keystream generators to 
observe the keystream properties of PingPong. Each 
instance of PingPong has a pair of LFSRs of different 
lengths. For each pair, we used a number of different 
feedback polynomials and took clocking taps from 
various stages of the registers. It was observed that the 
choice of feedback polynomials and clocking tap 
position did not influence the keystream properties. For 
each pair of LFSR lengths, 50 random initial states 
were used to run the experiment. The results of the 
experiments varied widely, for example, for register 
lengths 9 and 10, the linear complexity varied between 
400 and 822. The lowest resulting linear complexity 
and shortest period of the experiments are tabulated in 
Table 2. 

 
Table 2. PingPong Keystream Properties 

 
Register Lengths Linear Complexity Period 

5, 6 

5, 7 

6, 7 

7, 8 

8, 9 

9, 10 

10, 11 

11, 13 

13, 15 

23 

50 

43 

93 

200 

400 

815 

3276 

13100 

25 

50 

51 

101 

200 

401 

815 

3276 

13105 
 
From the empirical results, we derived the 

following equations for calculating the minimum linear 
complexity and period. Denote the sum of register 
lengths n, the lower bound of the linear complexity LC 
can be expressed as 

  2/)11(6.42/)11( 22225 −− ×=×≥ nnLC  
Similarly, the period  P can be expressed as 

  2/)11(6.42/)11( 22225 −− ×=×≥ nnP  

For PingPong-128, n = 256, the lower bound of the 
linear complexity is therefore 

  1281236.42/)11256(6.4 22222 ≈×=×≥ −LC  
and the Period P is 

  1281236.42/)11256(6.4 22222 ≈×=×≥ −P  
The design strength of PingPong-128 is 2128. It is 

therefore resistant against attacks based on basic 
keystream properties such as linear complexity and 
period. 

 
4.2. Time Memory Tradeoff Attack 
 

The objective of time-memory tradeoff attacks is to 
recover the internal state at a known time. The attacks 
are conducted in two stages. During a preprocessing 
phase, the cryptanalyst constructs a lookup table, 
mapping possible internal states to prefixes of the 
corresponding output keystreams. In the real time 
phase of the attack, the cryptanalyst takes a segment of 
known keystream and tries to find the corresponding 
internal state, by searching through the lookup table. 

Let S, M, T, P and D denote the cardinality of the 
internal state space, the memory(in binary words of 
size equal to log2 S), the computational time (in table 
lookups), the pre-computation time (in table lookups), 
and the amount of data (without re-keying, this is the 
length of known keystream), respectively. For the 
time-memory attacks described in [15] T •M = S, P = 
M and D = T. For example, a 2128 •2128 = 2256 tradeoff 
could be used. Therefore PingPong-256 with 256-bit of 
internal state can only have 128 bits of security. 

The more general time-memory-data tradeoff[16] 
asserts that T •M2•D2 = S2, P = S/D, D2 = T. This 
decreases D at the cost of increasing P. For example, 
one may choose M = D = S1/3 and T = P = S2/3, but for 
PingPong-256, with S = 256, this gives M = D = 285.3 
and T = P = 2170.7, clearly better than exhaustive key 
search. 

 
4.3. Mutual Irregular Clocking of LFSRs 
 

In this section we consider two LFSRs that clock 
each other in an irregular fashion. Let La  and Lb be the 
two LFSRs with primitive polynomials and length lena 
and lenb respectively. When clocked autonomously 
they produce m-sequences with period 12 −alen  and 

12 −blen  for any non-zero initial state. Now consider 
the cycle structure for the situation where they clock 
each other using two bits from each register to select 
from 1, 2, 3 or 4 clock cycles for the other register to 
obtain the next state. This is the general model for the 
PingPong structure.  
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Let La be clocked stepa cycles by the bits Lb[c1] and 
Lb[c2] and similarly Lb is clocked stepb cycles by 
La[c3] and Lb[c4]. The clocking positions ci are fixed 
by the algorithm specification, and also 

 
 
 

Clearly stepa and stepb are in the set {1,2,3,4}. 
Now define the cumulative clocking values 

 
 

And similarly 
 
 

Then the state of the system at time t is given by 
 
 

Now consider how 
 
 

Evolves into 
 
 
Any state could have up to four precursor states, 

corresponding to stepa in {1,2,3,4}. Consider the 
precursor state associated with setpa = i, then we have 

 
 
Clearly there must also be some value for stepb = j. 

Noting that the values for i and j are specified by the 
bits in the registers at time t − 1. 
Clearly, in order to obtain state 

 
 
from the previous state with clocking of (i,j), we 

must have both 
 
 
 

And 
 
 
 

Where both 
 
 
 

And 
 
 
Given any state, there are 16 bits (4 bits after each 

of the 4 clocking taps) that could have influenced the 
progression to that state. Four checks of the above 
expressions gives the means to determine how many 
precursor states exist. Note that there will be states that 

are unreachable (the have no precursor states), and 
these are the states that exist as the starts of trails 
leading to cycles. The next-state diagram is more 
comparable to that of random functions, rather than 
random bijections. 

Although more precise work needs to be done in the 
analysis and security comparison of the PingPong style 
structure, it seems clear that it does not produce the 
same quality state sequences as an LFSR of the same 
size. 
 
5. Conclusion 
 

In this paper, we have proposed PingPong, a 
generator based on the summation generator with a 
mutual clock control structure. It defeats known attacks 
against the summation generator and other clock 
controlled keystream generators. 
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