
PingPong-128, A New Stream Cipher for Ubiquitous Application

HoonJae Lee, Kevin Chen
Dept. Information Network Eng., Dongseo University, Busan, Korea

ISI, Queensland Univ. of Technology, Brisbane, Australia
E-mail: hjlee@dongseo.ac.kr, chenk@isrc.qut.edu.au

Abstract

The PingPong family of keystream generator is

based on the LM-type summation generator. A mutual-
clock-control mechanism is added to the LM-type
summation generator to provide a security
enhancement. PingPong-128, a specific cipher from
the PingPong family, is proposed. It takes a 128-bit
key and a 128-bit initialisation vector, has 257 bits of
internal state, and achieves a security level of 128 bits.
In this paper, we present the security analysis of
PingPong-128, including the resistance to known
attacks against the summation generator and other
clock-controlled generators.

1. Introduction

The two basic methods for encrypting text into
ciphertext are stream and block ciphers. Stream ciphers
(as the name suggests) encrypt text bit-by-bit and are
fairly rare with only a few examples in commercial
applications such as RC4 [1]. The advantage of a
stream cipher is that it is faster and much more
efficient than block ciphers. For example, RC4 is close
to twice as fast as the nearest block cipher and can be
written in 30 lines of code whereas the typical block
cipher algorithm takes several hundred lines of code,
making them ideal for Internet applications like SSL
were speed and efficiency is more valuable [2].

The summation generator [3] was proposed in 1985,
and correlation attacks on it were published in [4, 5]. In
[6], a fast correlation attack on the summation
generator is described. The LM generator [7] was
proposed in 2000 as an improvement to the summation
generator. The proposed improvement is the addition
of an extra memory bit to the combining function. The
summation generator succumbs to a range of divide
and conquer attacks, from the straightforward divide
and conquer attack described in [5, 8], to correlation
and fast correlation attack in [4, 5] and [6], respectively.

In this paper, we propose a new generator,
PingPong, based on the summation generator, with the

addition of a mutual clock control structure. The
purpose of the mutual clock control structure is to
introduce irregular clocking of the underlying LFSRs
thus implicitly increasing the nonlinearity of the output
keystream. In other words, The PingPong generator is
a clock controlled generator. It is based on the LM
generator [7], which is a modification of a summation
generator [3] based on two linear feedback shift
registers (LFSRs). We demonstrate that the
modification defeats the known attacks against the
summation generator, and other attacks such as attacks
on irregularly clocked keystream generators. An
initialisation and rekeying process for the PingPong
generator is also defined.

The PingPong generator extends the LM generator
through the use of irregularly clocked underlying shift
registers.

2. Summation-like Generator

2.1. Description of the Summation Generator

Fig. 1. Summation Generator(r = 2)

The summation generator uses r regularly clocked

binary LFSRs and Log2n bits of carry. The LM
generator is based on a summation generator with r = 2.
Denote the two LFSRs L1 and L2, respectively, and the
carry bit is denoted by c. At time j, denote the output
of L1 as aj , the output of L2 as bj , and the output of fc
as cj, as shown in fig. 1. The initial state of the carry bit,

2007 International Conference on Convergence Information Technology

0-7695-3038-9/07 $25.00 © 2007 IEEE
DOI 10.1109/ICCIT.2007.375

1893

c-1, is defined to be 0. At time j, the output of the
function fz is the keystream bit, and is denoted by zj.
The outputs of functions fc and fd at time are defined
as:

1)(−⊕⊕== jjjjjcj cbabafc (1)

1−⊕⊕== jjjzj cbafz (2)

2.2. Cryptanalysis of the Summation
Generator

There are several ways to recover the initial state of
the summation generator. A simple approach is the
divide and conquer attack [5]. Alternatively, a fast
correlation attack [6] could be performed.

2.3. Description of the LM Generator

Fig. 2. LM Generator(r = 2)

The LM generator, shown in fig. 2 is very similar to
the summation generator, in that La, Lb and c are
defined in exactly the same way. Another bit of
memory, d, is added to the combining function, in an
attempt to overcome some of the published attacks on
the summation generator. The carry bit, c, is defined by
equation 1, identical to the summation generator. The
additional memory bit d is calculated by the function fd
and the output function fz is changed to include d. The
value of d-1 is defined to be 0.

1)(−⊕⊕== jjjjdj dbabfd (3)

11 −− ⊕⊕⊕== jjjjzj dcbafz (4)

2.4. Cryptanalysis of the LM Generator

Due to the similarity in construction between the
summation generator and the LM generator, similar
algorithms can be used to attack both generators. These
are outlined below[14].

Divide and Conquer Attack The attack on the
summation generator given in [5] can be adapted to

recover the initial state of the LM generator. The
attacking algorithm is given below[14]:

1. Guess the initial state of aL and carry bits 1−c
and 1−d

2. Set j = 0

3. Calculate jb , bit j of bR , using equation 2 and
the known keystream bit jz

4. Calculate jc using equation 1 and the calculated
jb

5. Calculate jd using equation 3 and the calculated
jb

6. Increment j , if kj < then goto step 3

7. Initialise the LM generator with the guessed
initial state of aL and the calculated initial states

bL , 1−nc , and 1−nd

8. Produce a candidate keystream sequence { }k
njjz

=
′

and compare with observed keystream sequence
{ }k

njjz
=

9. If { }k
njjz

=
′ and { }k

njjz
=

 are identical, then the
correct initial states of aL and bL are
successfully recovered, else go to step 1

Fig.3. Fast Correlation Attack Model for the LM
Generator

This attack requires exhaustive search of m+2 bits,

that is, the size of La and the carry bit c and the
memory bit d, to recover the initial states of both
registers, that is, the m+n bits of initial state. Under this
attack, the addition of d offers only one extra bit of
security over the summation generator.

Fast Correlation Attack The LM generator can be
modelled as the modulo-two sum of two LFSRs, plus
some binary noise, as shown in fig. 3, where ej is the
noise and zj is the output keystream bit. For the LM
generator, the noise is provided by the modulo-two
sum of the carry bit c and the memory bit d. The two
memory bits are highly correlated, with P(cj = dj)
=0.75. Therefore, modelling the LM generator this way,
the noise level is 0.25. This is a significant deviation

1894

from 0.5, and makes the LM generator vulnerable to a
fast correlation attack, similar to the fast correlation
attack on the summation generator.

Table 1. Distribution of jc and jd in the LM Generator

ja jb 1−jc 1−jd jc jd

0 0 0 0

0 0 0 1

0 0 1 0

0 0 1 1

0 1 0 0

0 1 0 1

0 1 1 0

0 1 1 1

1 0 0 0

1 0 0 1

1 0 1 0

1 0 1 1

1 1 0 0

1 1 0 1

1 1 1 0

1 1 1 1

0 0

0 0

0 0

0 0

0 1

0 0

1 1

1 0

0 0

0 1

1 0

1 1

1 1

1 1

1 1

1 1

The carry bit, c, and the memory bit, d, are identical

with a probability of 0.75, as shown in Table 1. Recall
that the output of the LM generator is defined as

Since 011 =⊕ −− jj dc is true with probability 0.75,

jjj baz ⊕= is also true with probability 0.75. This
can be exploited in a fast correlation attack to recover
the initial states of the LM generator [7].
3. PingPong Generator

3.1. Description of the PingPong Generator

Proposed PingPong family generators are simple,
easy to implement in hardware and in software, and
high secure. PingPong family in fig.4 is a hybrid
generator, combining the LM generator (improved
summation generator) with a high secure clock-
controlled generator. LFSR A is clock-controlled by
function fb, it has a random integer output. And LFSR
B is clock-controlled by function fa, it also has a
random output. Two clock-controlled functions give a
multiple clock to the other LFSR. It makes that the
output should be more unpredictable. Pingpong Family
generator outputs zj, cj and cj from each LFSR outputs
aj and bj, previous carry cj-1 and previous memory dj-1
as in fig.4.

1−⊕== jjzj dyfz (5)

11)(),,(−− ⊕⊕=== jjjjjjjdj dbabdbaffd
 (6)

Fig.4. PingPong Family Generator

where (y) is the output sequence of summation

generator, (a) the output sequence of LFSR 1, (b) the
output sequence of LFSR 2, (c) carry sequence, c-1 = 0
carry initialization value, (d) memory sequences, d-1 =
0 memory initialization value.

3.2. PingPong-128

In this Section, we describe in detail PingPong-128,
an instance from the PingPong family of stream
ciphers. It has two mutually clocking LFSRs and a
single memory bit. The LFSRs are of lengths 127 bits
and 129 bits. Together with the memory bit they give
PingPong-128 an internal state of 257 bits. PingPong-
128 takes a 128-bit key and a 128-bit initialisation
vector to fill the internal state.

Keystream Generation The PingPong generator
produces the output keystream by combining the LFSR
sequences and the memory sequence. PingPong-128
has two mutually clocking LFSRs La and Lb, and a

)()(11

11

−−

−−

⊕⊕⊕=

⊕⊕⊕=

jjjj

jjjjj

dcba

dcbaz

1895

single bit of memory c. Two primitive polynomials,
Pa(x) and Pb(x) are following:

Fig. 5. PingPong-128 Generator

Two clock-control functions, fa(La) and fb(Lb), and

the output keystream bit z and memory bit c at time j
are defined to be identical to the summation generator:

1)()(2)(8542 ++= tLtLLf aaaa (7)

1)()(2)(8643 ++= tLtLLf bbbb (8)

1−⊕= jjj dyz (9)

11)(),,(−− ⊕⊕== jjjjjjjj dbabdbafd (10)
Clock Control For PingPong-128, both LFSRs are

irregularly clocked, with each register controlling the
clocking of the other. Two taps are taken from La to
calculate a value in the range 1 . . . 4, and Lb is clocked
1 to 4 times according to this value. Similarly, a value
is calculated from two taps taken from Lb to clock La.
The clock control is calculated by above two functions,
fA and fB . This clocking scheme can be applied to the
PingPong family of keystream generators with n
underlying LFSRs, where Lj is used to clock Lj+1 and L1
is clocked by Ln.

Key Loading and Rekeying In some communication
systems, errors occur which require that the entire
message be resent. When a synchronous stream cipher
is used, then security requires that a different
keystream sequence be used. To achieve this, the
rekeying of a stream cipher should include a method

for reinitialisation using both the secret key and an
additional initialisation vector which is sent in the clear,
or otherwise publicly known. We now describe a
proposed method for the initial key loading and for the
rekeying of PingPong-128. For PingPong-128, both k
and iv have a length of 128 bits, and together they fill
257 bits of internal state. The initialisation process can
also be used for rekeying. The process to generate the
initial state for the keystream generator uses the
generator itself twice. The starting state of La is
obtained simply by XORing the two 128-bit binary
strings of the key, k, and iv, that is, La = (k ⊕ iv)mod
2127. The starting state of 129 bits for Lb is obtained by
considering the 128-bit key, embedded in a 129-bit
word and shifted 1 bit to the left, and XORing that with
the initialisation vector embedded in a 129-bit word
with a leading zero, that is, Lb = (k<<1) ⊕ (0|iv). Now
the cipher is run to produce an output string of length
257 bits. For the second iteration of the cipher, the first
128 bits of this output string are used to form the initial
state of La, and the remaining 129 bits are used to form
the initial state of Lb. The cipher is run a second time to
produce an output string of length 257 bits. The output
from this second application is used to form the initial
state of the keystream generator when we begin
keystream production. As previously, the first 128 bits
form the initial state of La, and the remaining 129 bits
form the initial state of Lb. It is very unlikely that either
LFSR will be initialised with the all zero state. By
employing the PingPong algorithm itself, we take
advantage of both the known security properties of the
algorithm and also its fast implementation. Due to the
high security of PingPong we conclude that the best
attack in the rekeying scenario is exhaustive key search.

Implementation Issue Both LFSRs in PingPong-128
use the Galois implementation rather than the
Fibonacci implementation. This is a design decision
based on the software performance of the
implementation. It is observed that the Galois
implementation is much more efficient in software
than the Fibonacci, although both implementations are
equally efficient in hardware. It is worth noting that
these two implementations give different output
sequences with the same initial LFSR states, therefore
it is essential to specify the style of implementation.

4. Analysis of the PingPong Generator

In this Section, we present the keystream properties
of the PingPong generator based on empirical
results.We also show the resistance of the PingPong
generator to known attacks.

1

)(

1

26712131619202123

27303437414245485255

56636667738491109127

⊕

⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕
⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕

⊕⊕⊕⊕⊕⊕⊕⊕⊕=

x

xxxxxxxxxx
xxxxxxxxxx

xxxxxxxxxxpa

1

)(

5913

17212529333741454953

57616569737781858993

97101105109113117121125129

⊕⊕⊕
⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕
⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕

⊕⊕⊕⊕⊕⊕⊕⊕⊕=

xxx
xxxxxxxxxx
xxxxxxxxxx

xxxxxxxxxxpb

1896

4.1. Keystream Properties

There are three basic requirements for the pseudo-
random binary sequences: long period, high linear
complexity, and good statistical properties. Long
period avoids the keystream to be reused when
encrypting long messages. High linear complexity
prevents attacks using the Berlekamp-Massey
algorithm [12]. Good statistical properties guard
against attacks exploiting the biases in the keystream.
Experiments have been done on several instances from
the PingPong family of keystream generators to
observe the keystream properties of PingPong. Each
instance of PingPong has a pair of LFSRs of different
lengths. For each pair, we used a number of different
feedback polynomials and took clocking taps from
various stages of the registers. It was observed that the
choice of feedback polynomials and clocking tap
position did not influence the keystream properties. For
each pair of LFSR lengths, 50 random initial states
were used to run the experiment. The results of the
experiments varied widely, for example, for register
lengths 9 and 10, the linear complexity varied between
400 and 822. The lowest resulting linear complexity
and shortest period of the experiments are tabulated in
Table 2.

Table 2. PingPong Keystream Properties

Register Lengths Linear Complexity Period

5, 6

5, 7

6, 7

7, 8

8, 9

9, 10

10, 11

11, 13

13, 15

23

50

43

93

200

400

815

3276

13100

25

50

51

101

200

401

815

3276

13105

From the empirical results, we derived the

following equations for calculating the minimum linear
complexity and period. Denote the sum of register
lengths n, the lower bound of the linear complexity LC
can be expressed as

  2/)11(6.42/)11(22225 −− ×=×≥ nnLC
Similarly, the period P can be expressed as

  2/)11(6.42/)11(22225 −− ×=×≥ nnP

For PingPong-128, n = 256, the lower bound of the
linear complexity is therefore

  1281236.42/)11256(6.4 22222 ≈×=×≥ −LC
and the Period P is

  1281236.42/)11256(6.4 22222 ≈×=×≥ −P
The design strength of PingPong-128 is 2128. It is

therefore resistant against attacks based on basic
keystream properties such as linear complexity and
period.

4.2. Time Memory Tradeoff Attack

The objective of time-memory tradeoff attacks is to
recover the internal state at a known time. The attacks
are conducted in two stages. During a preprocessing
phase, the cryptanalyst constructs a lookup table,
mapping possible internal states to prefixes of the
corresponding output keystreams. In the real time
phase of the attack, the cryptanalyst takes a segment of
known keystream and tries to find the corresponding
internal state, by searching through the lookup table.

Let S, M, T, P and D denote the cardinality of the
internal state space, the memory(in binary words of
size equal to log2 S), the computational time (in table
lookups), the pre-computation time (in table lookups),
and the amount of data (without re-keying, this is the
length of known keystream), respectively. For the
time-memory attacks described in [15] T •M = S, P =
M and D = T. For example, a 2128 •2128 = 2256 tradeoff
could be used. Therefore PingPong-256 with 256-bit of
internal state can only have 128 bits of security.

The more general time-memory-data tradeoff[16]
asserts that T •M2•D2 = S2, P = S/D, D2 = T. This
decreases D at the cost of increasing P. For example,
one may choose M = D = S1/3 and T = P = S2/3, but for
PingPong-256, with S = 256, this gives M = D = 285.3
and T = P = 2170.7, clearly better than exhaustive key
search.

4.3. Mutual Irregular Clocking of LFSRs

In this section we consider two LFSRs that clock
each other in an irregular fashion. Let La and Lb be the
two LFSRs with primitive polynomials and length lena
and lenb respectively. When clocked autonomously
they produce m-sequences with period 12 −alen and

12 −blen for any non-zero initial state. Now consider
the cycle structure for the situation where they clock
each other using two bits from each register to select
from 1, 2, 3 or 4 clock cycles for the other register to
obtain the next state. This is the general model for the
PingPong structure.

1897

Let La be clocked stepa cycles by the bits Lb[c1] and
Lb[c2] and similarly Lb is clocked stepb cycles by
La[c3] and Lb[c4]. The clocking positions ci are fixed
by the algorithm specification, and also

Clearly stepa and stepb are in the set {1,2,3,4}.
Now define the cumulative clocking values

And similarly

Then the state of the system at time t is given by

Now consider how

Evolves into

Any state could have up to four precursor states,

corresponding to stepa in {1,2,3,4}. Consider the
precursor state associated with setpa = i, then we have

Clearly there must also be some value for stepb = j.

Noting that the values for i and j are specified by the
bits in the registers at time t − 1.
Clearly, in order to obtain state

from the previous state with clocking of (i,j), we

must have both

And

Where both

And

Given any state, there are 16 bits (4 bits after each

of the 4 clocking taps) that could have influenced the
progression to that state. Four checks of the above
expressions gives the means to determine how many
precursor states exist. Note that there will be states that

are unreachable (the have no precursor states), and
these are the states that exist as the starts of trails
leading to cycles. The next-state diagram is more
comparable to that of random functions, rather than
random bijections.

Although more precise work needs to be done in the
analysis and security comparison of the PingPong style
structure, it seems clear that it does not produce the
same quality state sequences as an LFSR of the same
size.

5. Conclusion

In this paper, we have proposed PingPong, a
generator based on the summation generator with a
mutual clock control structure. It defeats known attacks
against the summation generator and other clock
controlled keystream generators.

6. Acknowledgement

This research was supported by University IT
Research Center Project, and by the Program for
Training of Graduate Students in Regional Innovation.

7. References

[1] A.J. Menezes, P.C. Oorschot and S.A. Vanstone,
Handbook of Applied Cryptography, CRC Press, 1997.
[2] Wedbush Morgan Securities - Industrial Report, ”Access
Management/Internet Security Industry,” on
http://www.vikasqupta.com, Feb. 28, 2002.
[3] R. A. Rueppel, ”Correlation Immunity and the
Summation Generator,” Advances in Cryptology,
Proceedings of CRYPTO’85, pp. 260-272, 1985.
 [4] W. Meier and O. Staffelbach, ”Correlation Properties of
Combiners with Memory in Stream Ciphers,” Advances in
Cryptology, Proceedings of EUROCRYPT90, pp. 204-213,
1991.
[5] E. Dawson, ”Cryptanalysis of Summation Generator,”
Advances in Cryptology - AUSCRYPT’92, Lecture Notes in
Computer Science, Springer-Verlag, pp. 209-215, 1993.
[6] J. Golic, and M. Salmasizadeh and E. Dawson, Fast
Correlation Attacks on the Summation Generator,” Journal of
Cryptology, Vol. 13, No. 2, pp.245-262, 2000.
[7] Hoonjae Lee, Sangjae Moon, ”On An Improved
Summation Generator with 2-Bit Memory,” Signal
Processing, 80(1), pp. 211217, Jan. 2000.
[8] T. Siegenthaler, ”Design of Combiners to Prevent Divide
and Conquer Attacks,”Advances in Cryptology, Proceedings
of CRYPTO’85, pp. 273-279, 1985.
[9] R. A. Rueppel, Analysis and Design of Stream Ciphers,
Springer-Verlag, 1986.

1]4[]3[2
1]2[]1[2

++×=
++×=

cLcLstep
cLcLstep

aab

bba

∑
=

=
t

i
aa isteptSUM

0
][][

∑
=

=
t

i
aa isteptSUM

0
][][

]]][[]],[[[tSUMLtSUML bbaa

]]]1[[]],1[[[−− tSUMLtSUML bbaa

]]][[]],[[[tSUMLtSUML bbaa

][]1[tSUMitSUM aa =+−

]]][[]],[[[tSUMLtSUML bbaa

1]2]][1[[
]1]][1[[2

+−
+−×==

ctSUML
ctSUMLstepi

bb

bba

1]4]][1[[
]3]][1[[2

+−
+−×==

ctSUML
ctSUMLsetpj

aa

aab

][]1[tSUMitSUM aa =+−

][]1[tSUMjtSUM bb =+−

1898

[10] W. Meier and O. Staffelbach, ”Correlation Properties of
Combiners with Memory in Stream Ciphers,” Journal of
Cryptology, Vol. 5, pp. 67-86, 1992.
[11] A. Clark, E. Dawson, J. Fuller, J. Golic, Hoon-Jae Lee,
W. Millan, Sang-Jae Moon, L. Simpson, ”The LILI-II
Keystream Generator,” LNCS 2384, pp.25-39, Jul. 2002
(ACISP’2002).
[12] J. L. Massey, ”Shift-Register Synthesis and BCH
Decoding,” IEEE Trans. on Infor. Theo., Vol. IT-15, No. 1,
pp. 122-127, Jan. 1969.
[13] R. A. Rueppel and O. J. Stafflebach, ”Products of Linear
Recurring Sequences with Maximum Complexity,” IEEE
Trans. on Infor. Theo., Vol. IT-33, No. 1, pp. 124-131, Jan.
1987.
[14] Kevin Chen, Ed.Dawson, etc. ”Security Analysis of the
LM Generator,” Report, Aug. 2004.
[15] S. Babbage, ”Improved exhaustive search attacks on
stream ciphers,” European Convention on Security and
Detection, Vol. 408, pp. 161-166, May 1995.
[16] A. Biryikov and A. Shamir, ”Cryptanalytic
Time/Memory/Data Tradeoffs for Stream Ciphers”,
Advances in Cryptology, Proceedings of ASIACRYPT00,
LNCS 1976, pp.1-13, 2000.

1899

