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Abstract 

Mutations in the PTEN-induced kinase 1 (PINK1) and Parkin RBR E3 ubiquitin-protein ligase (PARKIN) genes are associ-

ated with familial forms of Parkinson’s disease (PD). PINK1, a protein kinase, and PARKIN, an E3 ubiquitin ligase, control 

the specific elimination of dysfunctional or superfluous mitochondria, thus fine-tuning mitochondrial network and 

preserving energy metabolism. PINK1 regulates PARKIN translocation in impaired mitochondria and drives their 

removal via selective autophagy, a process known as mitophagy. As knowledge obtained using different PINK1 and 

PARKIN transgenic animal models is being gathered, growing evidence supports the contribution of mitophagy 

impairment to several human pathologies, including PD and Alzheimer’s diseases (AD). Therefore, therapeutic inter-

ventions aiming to modulate PINK1/PARKIN signalling might have the potential to treat these diseases. In this review, 

we will start by discussing how the interplay of PINK1 and PARKIN signalling helps mediate mitochondrial physiology. 

We will continue by debating the role of mitochondrial dysfunction in disorders such as amyotrophic lateral sclerosis, 

Alzheimer’s, Huntington’s and Parkinson’s diseases, as well as eye diseases such as age-related macular degeneration 

and glaucoma, and the causative factors leading to PINK1/PARKIN-mediated neurodegeneration and neuroinflam-

mation. Finally, we will discuss PINK1/PARKIN gene augmentation possibilities with a particular focus on AD, PD and 

glaucoma.
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Background
Mitochondria, first discovered in the late  19th century, 

are considered key for cellular bioenergetics [1, 2]. �ey 

consist of a double membrane with an intermembrane 

space. �e inner membrane forms folds called cristae 

which provide an increased surface area for chemical 

and redox reactions to take place [3–5]. Mitochondria 

produce the majority of cellular adenosine triphosphate 

(ATP) through oxidative phosphorylation (OXPHOS). 

�e protein complexes (cI-IV) of the respiratory chain 

transfer electrons from NADH and  FADH2 (provided by 

the Krebs cycle) to molecular  O2, a process also known 

as the electron transport chain (ETC). �e ETC creates 

a membrane potential (ΔΨm) across the mitochondrial 

inner membrane by pumping protons from the mito-

chondrial matrix to the intermembrane space, thus creat-

ing a high concentration of protons in the intermembrane 

space and a low concentration in the mitochondrial 

matrix. Subsequently, along this chemiosmotic gradient, 

the protons move back into the mitochondrial matrix, 

via ATP synthase (cV). ATP synthase uses this process to 

create ATP from adenosine diphosphate (ADP) and inor-

ganic phosphate  (Pi) [6–9].

Previously thought to be only the “powerhouse” of the 

cell it is now clear that mitochondria are multifaceted. 

In addition to their role in cellular bioenergetics, mito-

chondria control reactive oxygen species (ROS) levels 

and calcium homeostasis, and biosynthesize macromol-

ecules including lipids, amino acids and nucleotides [10]. 

Furthermore, mitochondria are involved in many cellular 
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physiological processes, including cell fate, differentia-

tion, proliferation and apoptosis [11, 12]. Alongside its 

more established roles, mitochondria are key regulators 

of the innate and adaptive immune system. Immune cells 

undergo significant cell-type specific metabolic changes 

during an immune response, moving from a quiescent to 

an active state that requires significant metabolites from 

mitochondria [13, 14]. Mitochondria can regulate immu-

nity via metabolic pathways, inducing transcriptional 

changes, activating inflammation, mitochondrial dynam-

ics (fission and fusion) and endoplasmic reticulum sig-

nalling [14, 15].

Mitochondrial stress, either driven by the environ-

ment, pathogenesis or ageing, leads to a myriad of dys-

regulation that can cause both neurodegeneration and 

neuroinflammation. Mitochondria are vital in regulating 

cellular adaption to stressors, including impaired bio-

genesis, mitochondrial DNA (mtDNA) damage, ageing, 

nutrient restriction and aberrant imbalances between fis-

sion and fusion events. If left unchecked, these processes 

can cause damage to nucleic acids, lipids and proteins 

through ROS, resulting in sustained oxidative stress [16, 

17]. Oxidative stress modulates mitochondrial dynam-

ics through posttranscriptional modifications, including 

ubiquitination [18]. �is, in turn, leads to a build-up of 

damaged mitochondria and ultimately causes cell death 

and broader tissue dysfunction. In particular, tissues with 

high energy demands such as the heart, muscles, brain 

and retina are susceptible to mitochondrial dysfunction 

[19]. To mitigate the effects of stressors, several control 

mechanisms can be activated contributing to mitochon-

drial homeostasis [17].

Mitochondria first-line defence mechanisms includ-

ing enzymatic (such as superoxide dismutase, the per-

oxiredoxin/thioredoxin system and the glutathione 

peroxidase/reductase system) and non-enzymatic (such 

as GSH, vitamins E, A and C) antioxidants contribute 

to the maintenance of redox homeostasis [20]. However, 

beyond the utilization of antioxidants there exists several 

mitochondrial quality control mechanisms. �ese include 

regulation of mitochondrial fission and fusion events, 

which facilitate segregation of damaged mitochondria 

and axonal transport of mitochondria (fission) and the 

exchange of materials needed for their repair, such as 

mtDNA (fusion) [16, 21]. �e mitochondrial unfolded 

protein response system, a mitochondria-to-nucleus 

transduction pathway, which promotes mitochondrial 

and cellular function if mitochondrial damage is sensed 

[22]. �e ubiquitin–proteasome system leads to degrada-

tion of damaged outer mitochondrial membrane (OMM) 

proteins, and proteases lead to the removal of inner mito-

chondrial membrane (IMM) and mitochondrial matrix 

proteins [23]. Lastly, the export of damaged proteins 

via mitochondrial-derived vesicles (MDVs) or selective 

removal of damaged mitochondria via mitophagy end 

with their degradation in lysosomes [24].

PTEN-induced kinase 1 (PINK1) and Parkin RBR E3 

ubiquitin-protein ligase (PARKIN) signalling play a key 

role in mitophagy and mitochondrial motility and size. 

PINK1 accumulates at the OMM in response to a reduc-

tion in mitochondrial ΔΨm caused by damage/dysfunc-

tion. In turn, this recruits PARKIN from the cytosol to 

the OMM were its E3 activity promotes mitophagy, 

through ubiquitination of mitochondrial proteins, lead-

ing to mitochondrial degradation. Defective mitophagy 

and PINK1/PARKIN signalling are present in neurode-

generative diseases including Alzheimer’s disease (AD), 

Parkinson’s disease (PD) and glaucoma [25–30].

Mutations in the PINK1/PARKIN signalling path-

way disrupts the sensitive homeostatic and quality con-

trol processes conducted by mitochondria. Mutations 

in PINK1 and PARKIN are localised throughout their 

genes affecting all their protein domains (Fig. 1). PINK1 

and PARKIN mutations are responsible for more than 

50% of the autosomal recessive juvenile parkinsonism 

(ARJP) cases [31]. However, there are several other caus-

ative genes for PD linked to mitochondrial dysregulation, 

including LRRK2, DJ1, ATP13A2 and SCNA, in addition 

to other PD risk genes [32–45]. Furthermore, dysregula-

tion of PINK1/PARKIN signalling has been associated 

with amyotrophic lateral sclerosis (ALS) and Hunting-

ton’s disease (HD), as well as eye diseases, such as age-

related macular degeneration (AMD), and is associated 

with retinal degeneration [46–51]. Efforts for the ame-

lioration of mitochondrial dysfunction through lentiviral 

and adeno-associated viral (AAV) mediated PINK1 and 

PARKIN gene augmentation therapeutics show promise 

(Table 1).

Main text
PINK1/PARKIN signalling

�e mitochondrial serine/threonine-protein kinase 

PINK1, also known as BRPK and PARK6, protects cells 

from mitochondrial stress-induced dysfunction. Local-

ized to chromosome 1 in position 1p36.12, the PINK1 

gene has 8 exons encoding a 581 amino acid pro-

tein. It contains an N-terminal mitochondrial target-

ing sequence (MTS), a transmembrane domain (TM), a 

N-terminal regulatory domain (NT), a conserved protein 

kinase domain comprising of a N-lobe and C-lobe, and 

lastly a C-terminal domain (CTD) (Fig. 1a). PARKIN, also 

known as PDJ, AR-JP, LPRS2 and PARK2 is localized to 

chromosome 6 in position 6q26 [61, 62]. PARKIN gene 

has 14 exons encoding a 465 amino acid protein which is 

comprised of an N-terminal ubiquitin-like (Ubl) domain 

and a C-terminal RING1-IBR-RING2 (RBR) domain. 
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A RING0 domain sits N-terminally adjacent to RING1 

and residing between the in-between-RING (IBR), and 

RING2 domains is a Repressor Element of Parkin (REP) 

motif (Fig. 1b) [63–66]. Under healthy conditions, mito-

chondria have an optimal, relatively high ΔΨm and will 

import, process and lead to the degradation of PINK1 

(Fig.  2). However, under unhealthy conditions like oxi-

dative stress, low ΔΨm causes PINK1 mitochondrial 

accumulation leading to PARKIN recruitment from the 

cytoplasm and initiation of autophagic degradation of the 

damaged mitochondria, the mitophagy pathway (Fig.  3) 

[67–70]. �is pathway is governed by phosphorylation 

and ubiquitination, posttranscriptional modifications 

mediated by PINK1 and PARKIN, respectively.

�e tightly regulated import to and subsequent prote-

olysis of PINK1 in the mitochondria leads to its process-

ing from the full length 63 kDa protein precursor to the 

mitochondrial processing peptidase (MPP)-processed 

60  kDa intermediated, to its final presenilins-associ-

ated rhomboid-like protein (PARL)-processed 52  kDa 

“mature” form (Fig.  2a, b) [71–73]. �e translocase of 

the outer membrane (TOM) and of the inner membrane 

Fig. 1 Schematic representations of PINK1 and PARKIN domains and disease-related mutations. a PINK1 is composed by 581 amino acids, 

encompassing the mitochondrial targeting sequence (MTS), transmembrane region (TM), N-terminal regulatory region (NT), N-lobe of the kinase 

domain, C-lobe of the kinase domain and the C-terminal domain (CTD). Mitochondrial processing peptidase (MPP) and presenilin-associated 

rhomboid-like (PARL) cleavage sites and PINK1 auto-phosphorylation sites are depicted in the figure (S228, T257, S402). b PARKIN is formed 

by 465 amino acids with a ubiquitin-like domain (UBL), linker, really-interesting-new-gene (RING)/unique Parkin domain (R0/UPD), RING1 (R1), 

in-between-RING (IBR), repressor element of Parkin (REP), and a RING2 (R2) domain. E2 co-enzyme and p-Ser65-Ub binding sites, as well as Ser65 

phosphorylation and Cys431 catalytic sites, are displayed. Disease-associated mutations collected from the movement disorder society genetic 

mutation (www.mdsge ne.org/) and ClinVAR (www.ncbi.nlm.nih.gov/clinv ar/) databases are displayed on top of schematic representation. In red are 

depicted the mutations considered pathogenic

http://www.mdsgene.org/
http://www.ncbi.nlm.nih.gov/clinvar/
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(TIM)23 complexes facilitate the importation of the 

PINK1 precursor via interaction with its MTS to the 

IMM. At the IMM, PINK1 undergoes cleavage at Ala103 

by the protease PARL in a ΔΨm dependent manner. 

Under normal, healthy conditions PINK1 is imported 

and processed for degradation. In contrast, if ΔΨm dis-

sipates, PINK1 remains localized to the OMM and is 

unable to be processed by PARL [72, 74]. Upon cleavage, 

PINK1 returns to the cytosol to be degraded by the ubiq-

uitin–proteasome system by UBR1, UBR2 and UBR4 

through the N-end rule pathway, leading to low levels of 

PINK1 (Fig. 2a, b) [75]. Recently Sekine et al. [76] found 

some PD related PINK1 mutations, I111S, C125G and 

Q126P, affecting an evolutionary conserved negatively 

charged amino acid cluster motif that constitutes the 

C-terminal of the PINK1 TM, can still be imported even 

Table 1 Summary of the PARKIN and PINK1 gene augmentation viral vectors

AAV Adeno-associated virus, CBA hybrid cytomegalovirus immediate/early enhancer-chicken β-actin, CMV cytomegalovirus, PGK phosphoglycerate kinase, S.N. 

substantia nigra, TU transducing units, Vg viral genomes, VSVG vesicular stomatitis virus

Viruses Capsid 
serotype

Promoter Sequence Injection 
place

Volume 
injected

Dose Disease 
model

Animal References

Lentivirus HIV-1 based 
vector 
with VSVG 
envelops

PGK Rat Parkin S.N. 2.5 µl 3.6 × 108 pg 
of p24 per 
ml

α-synuclein 
rat model 
for PD

Wistar rats [52]

Lentivirus HIV-1 based 
vector 
with VSVG 
envelops

CMV Human 
PARKIN

S.N. 2 µl 108 pg of p24 
per ml

6-Hydroxy-
dopamine 
rat model 
for PD

Rats [53]

AAV 2/2 CBA HA-tagged-
PARKIN

S.N. 2 µl 3.6 × 1012 vg/
ml

MPTP-treated 
mice, a 
model for 
sporadic PD

C57BL/6 mice [54]

AAV 2/2 and 2/5 CMV/CBA Human 
PARKIN

S.N. 2 × 2 µl 2.6 × 1012 vg/
ml

6-Hydroxy-
dopamine 
rat model 
for PD

Rats [55]

AAV 2/2 CMV/CBA Human 
PARKIN

S.N. 4 µl 5 × 1012 vg/ml Tau-induced 
dopamin-
ergic degen-
eration rat 
model for 
PD

Sprague–
Dawley rats

[56]

AAV 2/6 PGK Rat Parkin S.N. 2 µl 4.7 × 1010 
TUs/ml

Metham-
phetamine 
induced 
neurotoxic-
ity rat model 
for PD

Sprague–
Dawley rats

[57]

AAV 2/8 CMV Human 
PARKIN

S.N. 2 µl in mice 
3 µl in rats

2.0 × 1011 vg/
ml

T240R-PARKIN 
induced 
dopa-
minergic 
degenera-
tion model 
for PD

C57BL/6 J 
mice Wistar 
rats

[58]

AAV 2/2 CMV Rat Parkin Vitreous 5 µl 1.0 × 1013 vg/
ml

Chronic 
hyper-
tensive 
glaucoma 
model

Sprague–
Dawley rats

[30]

AAV 2/1 CMV Human 
PARKIN

Striatum 3 µl in rats 
5 × 10 µl in 
monkeys

7.0 × 1012 vg/
ml

α-synuclein 
rat model 
for PD

Sprague–
Dawley rats 
Macaque 
monkeys

[59]

AAV 2/2 CMV Human PINK1 Hippocampus 2 µl 5.0 × 1012 vg/
ml

mAPP mouse 
model for 
AD

mice [60]
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if ΔΨm dissipates. �ese mutants were found not to be 

cleaved by PARL but by the protease OMA1 at the IMM, 

suggesting that PINK1 did not accumulate on the dam-

aged mitochondria’s OMM for initiation of mitophagy. 

However, these PINK1 mutants could lead to PARKIN 

recruitment under OMA1 suppression.

In contradiction to the degradation of the 52  kDa 

PINK1 by the N-end rule pathway is the finding by the 

Przedborski Lab that ubiquitinated PINK1 is mostly 

anchored to the OMM and not in the cytosol. Impor-

tantly, they identified that the N-terminal phenylalanine 

forming a proposed N-degron motif of PINK1 was not 

facing the cytosol but rather located inside the OMM, 

suggesting PINK1’s low mitochondrial levels are due to 

continuous ubiquitination and proteasomal degradation 

under healthy conditions [73]. Recently, the same team 

identified the mechanism by which PINK1 content is 

kept at low levels. �ey found that upon PARL-process-

ing the 52  kDa PINK1 localizes at the mitochondrial-

endoplasmic reticulum interface and can interact with 

ER-associated degradation pathway E3 ligases Gp78 and 

HRD1 (Fig.  2c). �ese facilitate PINK1’s ubiquitination 

allowing valosin containing proteins, UFD1 and UFD2A, 

to target PINK1 for proteasomal degradation [77]. Other 

proteases such as matrix-AAA and caseinolytic mito-

chondrial matrix peptidase (ClpXP) can cleave PINK1. 

�ese may coordinate with PARL to govern the stability 

and localization of PINK1 [71, 75]. In damaged mito-

chondria, TOM does not import PINK1, and it remains 

uncleaved at the OMM, where it undergoes dimerization 

and autophosphorylation (Fig.  3) [78, 79]. Interestingly, 

Sekine et al. [76] found that without the TOM complex 

Fig. 2 The canonical PINK1/PARKIN pathway. a and b In healthy mitochondria, PINK1 is constitutively imported via translocase of the outer 

membrane (TOM)/translocase of the inner membrane (TIM)23 complexes to the inner mitochondrial membrane (IMM), cleaved by two proteases 

(mitochondrial processing peptidase (MPP) and presenilin-associated rhomboid-like (PARL)) and retro-translocated to the cytosol. Cleaved 

PINK1 is then degraded by the ubiquitin/proteasome system. While Parkin remains inactive in the cytosol. (a and c) PINK1 is also present at 

the mitochondria-endoplasmic reticulum (ER) interface, where it interacts with the endoplasmic-reticulum-associated protein degradation 

(ERAD) machinery. At the ER, PINK1 degradation by the proteasome is controlled by the ERAD E3 ubiquitin ligases HRD1 and gp78 and by the 

ERAD-associated proteins VCP, UFD1, andUFD2A
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accessory member Tom7 PINK1 was imported to depo-

larised mitochondria. Tom7 appears crucial in PINK1 

OMM accumulation and also plays a role in PINK1 

kinase activation for PARKIN recruitment. Phospho-

glycerate mutase family member 5 (PGAM5) also binds 

PINK1 and is required for mitochondrial stabilisation 

of full-length PINK1 on the OMM upon mitochondrial 

depolarisation, preventing its cleavage by PARL at the 

IMM [80].

Under basal conditions, three factors have been iden-

tified which show that PARKIN’s protein-folding main-

tains PARKIN in an autoinhibited state: (1) inaccessibility 

of the E2-binding site on RING1 due to its occlusion by 

the REP domain [65]; (2) a conserved cysteine residue on 

RING2 (Cys431) is made inaccessible by RING0 [64, 65, 

81]; (3) the Ubl domain inhibits parkin activity through 

the interface with RING1 and IBR domains [82–85]. �e 

protein folding of PARKIN thus prevents the binding of 

Ub containing E2s to RING1 and the subsequent thiol-

based transfer of Ub to the RING2 cysteine residue. �e 

Cys431 residue is catalytic, being required for the ligase 

activity of PARKIN. �e catalytic residue allows for the 

formation of an isopeptide bond between Ub and the 

lysine residue of the protein [64, 65, 86].

PINK1 is upstream of PARKIN and through the Ub/

Ubl switch leads to activation of PARKIN by their phos-

phorylation at residue Ser65 (Fig. 3) [83, 84, 87–93]. Phos-

phorylation of Ubl increases PARKIN’s affinity for pUb. 

�e binding of pUb to PARKIN enhances the rate at which 

PARKIN itself is phosphorylated by PINK1 [94, 95]. Spe-

cific phosphorylation of either Ub or Ubl leads to PARKIN 

activation; concomitant phosphorylation, however, leads 

to enhanced PARKIN activation [91, 92, 94]. Binding of 

pUb to PARKIN’s Ubl domain is essential for remodel-

ling of and exposure of RING1 to the binding of the Ub 

containing E2s and is in line with previous computational 

analysis [83, 96, 97]. Ubl phosphorylation or binding 

of pUb to Ubl has also been shown to lead to local rear-

rangement of the IBR and its decreased affinity for the Ubl 

domain, revealing cryptic binding sites in a region called 

the Ubiquitin Binding Region (UBR) [85]. �ree surface 

areas, UBR1, 2 and 3, that could interact with Ub were 

explored. Both UBR2 and UBR3 were needed for PARKIN 

activity. �e IBR rearrangement in active PARKIN allows 

binding of Ub containing E2s to the binding site on RING1 

while its Ub creates a bridge to the IBR of a neighbouring 

PARKIN molecule [85]. �is association allows for the uti-

lization of the RING2 catalytic domain of neighbouring 

PARKIN molecules [85]. In summary, pUb is important 

for dissociation and phosphorylation of PARKIN’s Ubl 

domain allowing its recruitment to the mitochondria. Sub-

sequent PINK1 activation of PARKIN through Ser65 phos-

phorylation in the Ubl facilitates binding of E2 enzymes 

leading to PARKIN’s ligase activity. Several mutations exist 

throughout PARKIN, affecting its activity and stability 

(Fig. 1b) [98–100].

If there is severe mitochondrial dysfunction the ampli-

fied phospho-ubiquitin chains on the OMM signal the 

recruitment of autophagy adaptors such as nuclear dot 

Fig. 3 PINK1/PARKIN-directed quality control in damaged 

mitochondria. After damage, PINK1 is no longer imported into 

the inner mitochondrial membrane (IMM) and accumulates on 

the outer mitochondrial membrane (OMM). Here, a supercomplex 

composed by TOM complex subunits and PINK1 homodimers is 

formed, facilitating PINK1 autophosphorylation and activation. 

Once activated, PINK1 phosphorylates ubiquitinated substrates on 

the OMM and PARKIN enable its E3 ubiquitin ligase functions in 

concert with E2 ubiquitin-conjugating enzymes. PINK1-mediated 

phosphorylation of ubiquitin phospho-Ser65- ubiquitin on OMM 

substrates acts as the PARKIN receptor for its recruitment from the 

cytosol. PINK1 and PARKIN initiate a positive feedback loop, resulting 

in the coating of damaged mitochondria with phospho-ubiquitin 

chains. Individual OMM proteins decorated with poly-ubiquitin 

can be extracted from the membrane and degraded by the 26 S 

proteasome. Phospho-ubiquitin chains are bound by two mitophagy 

adaptors, nuclear domain 10 protein 52 (NDP52) and optineurin. 

Phosphorylation of optineurin by TANK Binding Kinase 1 (TBK1) 

enhances its binding to ubiquitin chains and promotes selective 

autophagy of damaged mitochondria. The two adaptors recruit 

autophagosomes via microtubule-associated protein 1A/1B-light 

chain 3 (LC3) binding, allowing the engulfment of dysfunctional 

mitochondria resulting in their direct degradation in lysosome
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protein 52 (NDP52) and Optineurin (OPTN). In turn, 

NDP52 and OPTN lead to the recruitment and activa-

tion of tank binding kinase 1 (TBK1), activated TBK1 

phosphorylates OPTN stabilizing its binding at the 

phospho-ubiquitin chains [101]. Interestingly, PINK1/

PARKIN-dependent mitophagy-induced sequestra-

tion of TBK1 leads to its removal from its physiological 

role at the centrosome causing G2/M cell cycle arrest. 

�is highlights a possible role of PINK1/PARKINs in 

mitochondrial quality control before cell division takes 

place, preventing “unfit” mitochondria being passed on 

to daughter cells [102]. OPTN and NDP52 along with 

other autophagy adaptors lead to the recruitment of 

microtubule-associated proteins 1A/1B light chain 3 

(LC3), which engage with the autophagosome. Migra-

tion and subsequent fusion of the autophagosome with 

the lysosome, which is modulated by the RAS-related 

GTP-binding (Rab) proteins, creates the autolysosome 

where the mitochondrial proteins are degraded and 

processed for recycling (Fig.  3). Initiation of autophagy 

has been found in the absence of LC3 via the Unc-51 

like kinase 1 (ULK1) complex, which is comprised of 

ULK1, FAK family kinase-interacting protein of 200 kDa 

(FIP200), autophagy related gene (ATG)12 and ATG101 

[103]. �e ULK1 complex, which mediates autophagy 

in a nutrient-dependent manner, is recruited to ubiqui-

nated cargo independently of AMPK by the cooperation 

of NDP52, and TBK1 [103]. Recently, Nozawa et al. [104] 

found that TBC1 domain family member 9 (TBC1D9), 

which is recruited to mitochondria via  Ca2+-dependent 

Ub-binding, is essential for the activation and recruit-

ment of TBK1 and therefore the subsequent recruit-

ment of NDP52 and the ULK1 complex to damaged 

mitochondria.

PINK1/PARKIN in neurodegeneration
Neurodegeneration corresponds to any pathological 

conditions, primarily affecting neurons [105]. Typically, 

neurodegenerative diseases are progressive disorders 

that lead to neuronal degeneration and cell death. �e 

umbrella term “neurodegenerative diseases” includes 

conditions such as AD, PD, amyotrophic lateral sclero-

sis (ALS), Huntington’s disease (HD) and also eye dis-

eases, such as age-related macular degeneration (AMD), 

glaucoma and a subset of inherited retinal dystrophies. 

Ageing is considered a primary risk factor in most neuro-

degenerative diseases [106]. Mitophagy increases in mus-

cles and neurons during ageing but disruption of PINK1/

PARKIN signalling abolishes this increase, hindering 

this crucial quality control mechanism and thus allow-

ing the accumulation of harmful mitochondria [107–

111]. Imbalances in mitochondrial fission and fusion 

are important for neuronal dynamics and are affected 

in neurodegeneration being linked to programmed cell 

death pathways [112]. PINK1 and PARKIN are essential 

in these processes interacting with fission/fusion machin-

ery molecules such as fission protein Drp1 (dynamin-

related protein 1) and fusion protein OPA1 (optical 

atrophy 1). Overexpression of Pink1 or Parkin in rat hip-

pocampal neurons leads to increased fission and can sup-

press a mitochondrial elongation phenotype caused 

by Drp1 knockdown. A similar phenotype is caused by 

PINK1 inactivation, leading to increased fusion. Yu et al. 

[113] found that in dopaminergic neurons, similarly to 

hippocampal neurons, PINK1/PARKIN had a compara-

ble influence on mitochondrial dynamics with tipping the 

fission/fusion balance towards more fission.

Alzheimer’s disease, the most common cause of 

dementia in the elderly, is a progressive neurodegen-

erative disease leading to memory deficits and cognitive 

decline, which in turn lead to behavioural and speech 

impairments. Ageing is the predominant risk factor 

with a prevalence of 10% for individuals over the age of 

65 [114]. Pathologically, AD is hallmarked by the pres-

ence of amyloid plaques, mainly consisting of agglomer-

ated amyloid-β (Aβ) peptides, and neurofibrillary tangles, 

mostly consisting of hyperphosphorylated tau, which 

are associated to cellular degeneration [115]. Another 

prominent hallmark of AD is the accumulation of dys-

functional mitochondria [116]. Robust induction of PAR-

KIN-mediated mitophagy is found in human patients’ 

brains and in a human amyloid precursor protein (hAPP) 

transgenic mouse model of AD [28]. During disease pro-

gression, cytosolic PARKIN levels are reduced, leading to 

increased mitochondrial dysfunction [28]. Mitochondria 

from AD patients skin fibroblasts exhibited slower recov-

ery of ΔΨm after insult [27]. Dysregulated protein levels 

of PARKIN and PINK1 were found in AD fibroblasts and 

brain biopsies. In both AD fibroblasts and hippocampal 

brain biopsies from Braak II-III stage patients, full length 

and cleaved PINK1 were increased. However, while 

PARKIN was diminished in the AD fibroblasts, it was 

found upregulated in Braak VI stage hippocampal brain 

biopsies. In AD fibroblasts, PARKIN recruitment after 

mitochondria depolarisation was found to be reduced, 

indicating defective mitophagy due to insufficient tagging 

of damaged mitochondria. Overexpression of PARKIN 

could compensate for the defective mitophagy in the AD 

fibroblasts [27]. Familial cases of AD are linked to auto-

somal dominant mutations of presenilin 1 (PSEN1). Both 

PSEN1 and PSEN2 are involved in a molecular cascade 

that modulates mitophagy via their control of PINK1 

transcription and function. Goiran et al. found that PAR-

KIN upregulates PSEN1 promoter activation. In turn, 

control of γ-secretase activity, by PSEN1, targets APP 

leading to its fragmentation, yielding Aβ and the APP 
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intracellular domain (AICD). Interaction of forkhead box 

O3a (FOXO3a) with AICD initiates Pink1 transcription 

and AICD-mediated control of autophagic processes, 

which were found to be PINK1 dependent. As PINK1 

recruits PARKIN to damaged mitochondria this high-

lights a feedback loop between the two genes that may 

become disrupted in neurodegenerative conditions [117, 

118].

Parkinson’s disease is a movement disorder attributed 

to the loss of dopaminergic neurons in the substantia 

nigra. Motor symptoms include resting tremor, rigidity 

and bradykinesias, while non-motor symptoms include 

autonomic dysfunction, anxiety and sleeping problems. 

PINK1 and PARKIN are mutated in some forms of famil-

ial PD [119, 120]. Pink1 and Parkin null Drosophila have 

learning and memory abnormalities and weakened cir-

cadian rhythms, in addition to underlying electrophysi-

ological irregularities in clock neurons [121]. Late-stage 

PD patients can develop dementia with an accumulation 

of α-synuclein in Lewy bodies [41, 59, 122, 123]. Nitro-

sative stress is a key pathological hallmark in PD and 

aging. Nitric oxide-induced S-nitrosylation of PARKIN 

and PINK1 leads to compromised mitophagy and thus 

accumulation of damaged mitochondria [124–126]. One 

of the major causes of early-onset PD is due to loss-of-

function mutations in genes including glucocerebro-

sidase (GBA), RAB39B, DJ-1, PINK1 and PARKIN [25, 

26, 127–130]. Pink1 and Parkin KO mice show minimal 

signs of neurodegeneration but still provide valuable 

insights into possible mechanisms of action [131–135]. 

Parkin KO mice have an increase in extracellular dopa-

mine concentration in the striatum, there is reduction in 

synaptic excitability in spiny neurons and dysfunction of 

the nigrostriatal pathway [131]. Another mouse model, 

presenting inactivated PARKIN due to a exon 3 dele-

tion causing a premature stop codon, showed cognitive 

and motor deficits with inhibition of both amphetamine-

induced dopamine release and glutamate neurotrans-

mission [133]. Additionally, some mouse and rat Parkin 

KO models exhibit no neurodegeneration or any detect-

able neurochemical or pathological changes compared 

to wild type counterparts [135, 136]. �is may be due 

to developmental compensation for PARKIN in these 

models. Due to the lack of neurodegeneration found in 

mouse KO Parkin models, Stephenson et  al. [137] tried 

a novel approach by creating a double KO of Parkin and 

Parkin co-regulated gene (PACRG). Parkin and PACRG  

share a bidirectional promoter, with the transcriptional 

start sites being approximately 200 bp apart. However, no 

abnormalities of the dopaminergic system in the substan-

tia nigra and no loss of neurons were found.

Analysis of PARKIN and its substrates has yielded pos-

sible PD associated neurodegenerative mechanisms. 

PARKIN mediates the ubiquitination and proteasome-

dependent degradation of synaptotagmin-11 (Syt11) 

under normal conditions [138]. Syt11 is a novel risk gene 

involved in PD whose accumulation in dopaminergic 

neurons due to PARKIN dysfunction inhibits endocytosis 

and hence dopamine release leading to neurotoxicity [40, 

138]. Interestingly, Wang et  al. [138] found that knock-

down of Syt11 in Parkin knockdown background lead 

to the recovery of the dopamine release in the substan-

tia nigra. PARKIN also mediates the ubiquitination and 

proteasome-dependent degradation of Zinc finger pro-

tein 746 (ZNF746, also known as PARIS) under normal 

conditions [139]. Accumulation of ZNF76 occurs due to 

PARKIN inactivation and is present in PD human brain 

samples [139, 140]. ZNF746 is a transcriptional repres-

sor of peroxisome proliferator-activated receptor-gamma 

(PPARγ) coactivator-1α (PGC-1α) expression and its tar-

get gene nuclear respiratory factor 1 (NRF-1). In Parkin 

KO animals, dopaminergic neurons loss was found to 

be in a ZNF746-dependent manner with its overexpres-

sion leading to dopaminergic neuronal loss in the sub-

stantia nigra [139]. Recently, Brahmachari et  al. [140] 

found that ZNF746 is a pivotal mediator of α-synuclein 

induced neurodegeneration affecting both dopaminergic 

and non-dopaminergic neurons. In α-synuclein over-

expression mouse models c-Abl kinase phosphoryla-

tion of PARKIN led to the impairment of its activity and 

subsequent accumulation of ZNF746. Importantly, they 

found that ablation of ZNF746 leads to the rescue of the 

neurodegenerative phenotype observed in α-synuclein 

models of familial and sporadic PD [140]. PARKIN inac-

tivation also leads to the accumulation of another one 

of its substrates, aminoacyl-tRNA synthetase complex 

interacting multifunctional protein-2 (AIMP2), found to 

be increased in Parkin KO mouse models and PD brain 

samples [140–143]. AIMP2 overexpression causes a pro-

gressive and degenerative loss of dopaminergic neurons 

due to Poly(ADP-ribose) polymerase-1 (PARP1) over 

activation. PARP1 inhibition in the AIMP2 overexpressed 

mouse model was protective and prevented degeneration 

of dopaminergic neurons [141].

Outside its role as an E3 ubiquitin ligase involved in 

mitophagy, PARKIN also has a role in transcriptional 

regulation (reviewed by Costa et al. [144]). As an exam-

ple, PARKIN has been found to undergo nuclear trans-

location upon DNA damage where it may play a role in 

the transcriptional control of DNA repair mechanisms 

such as base and nucleotide excision repair and double 

strand break repair [145]. �e transcription factor role of 

PARKIN therefore may act as a cellular defense mecha-

nism against genotoxicity and suggests that DNA dam-

age plays a pathogenic role in neurodegenerative disease 

such as PD [144, 145]. Recently, Shires et  al. [146] have 
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identified a role for nuclear PARKIN during hypoxia in 

activation of estrogen-related receptor α (ERRα), which 

is a transcription factor associated with mitochondrial 

metabolism and biogenesis. Interestingly, they also found 

that PARKIN mutants, ParkinR42P and ParkinG430D, 

are excluded from the nucleus and therefore unable to 

induce the transcription factor role of PARKIN. �ere-

fore, the transcriptional roles as well as the mitophagic 

roles of PARKIN should be considered in PD as well as 

other neurodegenerative conditions.A Pink1 KO mouse 

model in which the pathogenic patient mutation G309D 

was inserted into exon 5 presented mitochondrial dys-

function leading to defects in ATP generation along with 

a reduction in dopamine in the nigrostriatal projection 

with a concurrent reduction in locomotor activity, but 

again without neurodegeneration [132]. Generation of a 

further Pink1 KO mouse, where exons 4–7 were deleted 

and consequently the majority of the kinase domain 

was removed, creating a nonsense mutation, caused 

impairment of dopamine release with striatal plastic-

ity reduction. �ese impairments were rescued either 

in the presence of dopamine receptor agonists or due to 

stimulation of dopamine release, again highlighting the 

relevance of the nigrostriatal circuit [134]. In the same 

Pink1 KO mouse model, it was shown that relocation of 

PARKIN to mitochondria induced by a collapse of Δψm 

relies on PINK1 expression [147]. In another Pink1 KO 

mouse model, where exon 2 to exon 5 were replaced with 

a LacZ/Neo cassette, impaired dopamine release was also 

found. As compared to wild-type, dopamine from striatal 

slices of Pink1 KO mice decreased in an age-dependent 

manner. Additionally, it was found an age-dependent 

decrease in basal oxygen consumption rates and ATP 

levels in Pink1 KO mice, which suggests that decreased 

ATP generation may be the cause of the decreased dopa-

mine release [148]. Recently, silencing of Pink1 in cul-

tured mouse hippocampal neurons caused a decrease in 

postsynaptic density proteins PSD95 and Shank as well 

as glutamate receptor subunit NR2B and mGluR5. Inter-

estingly, the authors found changes in actin regulatory 

proteins RhoGAP29 and ROCK2 which were concurrent 

with changes in spine morphology. �e changes in den-

dritic spines, showing increased thin density spines and 

reduced head size of stubby spines, may be a sign of pre-

symptomatic changes that lead to neurodegeneration in 

PD [149]. In comparison, a Pink1 KO rat model showed 

nigral neurodegeneration with 50% dopaminergic cell 

loss, an increase in striatal dopamine and serotonin con-

tent and significant motor deficits [136].

�e inability of rodent models to recapitulate the 

severe neurodegeneration seen in PD patients may be 

due to low levels of PINK1, as has been identified in mice 

[150]. �ese studies also suggest there may be PINK1 

independent mitophagy pathways yet to be eluded too. 

Recently, CRISPR/Cas9-mediated Pink1 deletion in rhe-

sus macaques triggered severe neurodegeneration of the 

cortex, striatum and substantia nigra, with several new-

borns dying shortly after birth [151, 152]. �ese data sug-

gest that in humans full PINK1 loss may lead to lethality 

in early development. Interestingly, a KO mouse model 

of the PINK1 OMM stabilisation protein PGAM5 leads 

to a more severe PD-like animal model than in Pink1 

KO mouse models. �e Pgam5 KO mice show a signifi-

cant degeneration in dopaminergic neurons in addition 

to a PD-like movement disorder characterised by gait 

changes and bradykinesia [80].

Lastly, in light of mitochondria’s role in the immune 

system, we should look to reassess the many disor-

ders associated with defective mitochondrial genes in 

terms of potential autoimmunity. PD, as one example, 

has been recently hotly debated as also being an auto-

immune disease [153–158]. PINK1 and PARKIN have 

been found to regulate adaptive immunity, being key 

for mitochondrial antigen presentation in a mitophagy 

independent process. �is process instead relies on the 

generation of MDVs with a direct correlation between 

the extent of MDV formation and the amount of mito-

chondrial antigen presentation. PINK1 and PARKIN 

inhibit this process, the presence of PARKIN was found 

to be key in preventing Snx9 being recruited to mito-

chondria and initiating MDV formation [159]. Further 

supporting this notion, it was recently found that intes-

tinal infection of Pink1 KO mice with Gram-negative 

bacteria elicited mitochondrial antigen presentation and 

autoimmune mechanisms. �ese responses triggered 

mitochondrial-specific  CD8+ T-cells that were found to 

induce dopaminergic neuron death. �e infected Pink1 

KO mice presented acute motor symptoms [153]. �era-

peutics that influence mitochondrial immune regulation 

will be an exciting area to be developed in treating these 

diseases.

Amyotrophic lateral sclerosis is a progressive and 

debilitating neuromuscular disease marked by degenera-

tion of motor neurons in the brain and spinal cord, lead-

ing to muscle atrophy, paralysis and to death 3–5  years 

after disease onset. Mitochondrial dysfunction has been 

associated with ALS, with causative genes including 

autophagy adaptors OPTN and SQSTM1, and autophagy 

enhancer TBK1 [160–163]. Altered expression levels of 

mRNA and protein for PINK1 have been identified in 

human ALS patients muscle [164]. Mutations in superox-

ide dismutase 1 (SOD1) gene are associated with familial 

ALS [165]. A  SOD1G93A ALS mouse model exhibits dys-

regulated PINK1 and PARKIN and progressive defects in 

mitochondrial function and dynamics [47, 164]. In spi-

nal cord motor neurons of the  SOD1G93A mouse model 
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increased mitophagy, as marked by a mitochondrial accu-

mulation of OPTN and SQSTM1, was found, while there 

was a depletion of PARKIN and mitochondrial dynamic 

and biogenesis proteins. Interestingly, Parkin overexpres-

sion in NSC34 motor neuron-like cells, in which human 

G93A mutant SOD1 was expressed, was found to exac-

erbate the effects of mitochondrial damage leading to 

increased cell toxicity. However, Parkin knockout (KO) in 

 SOD1G93A mice led to delayed disease progression with 

slower motor neuron loss and muscle denervation. �us, 

chronic PARKIN expression in ALS may lead to sus-

tained activation of mitochondrial quality control leading 

to a depletion of mitochondrial dynamic-related proteins 

and inhibition of mitochondrial biogenesis, and these 

alterations ultimately lead to progressive mitochondrial 

dysfunction [47].

A hallmark of ALS is the accumulation of transac-

tive response DNA-binding protein 43 kDa (TDP-43) at 

ubiquitin-positive inclusions, and these TDP-43 protein 

inclusions have reduced PARKIN protein levels [166, 

167]. PINK1 and PARKIN are differentially misregu-

lated at the RNA and protein levels in animal models of 

TDP-43 proteinopathy. �ese models showed a decrease 

in Parkin mRNA and protein levels upon overexpres-

sion of TDP-43 but not PINK1. TDP-43 was found to 

govern Parkin mRNA levels in both an intron-mediated 

and intron-independent manner. While TDP-43 did not 

regulate Pink1 at the RNA level, its overexpression led 

to the cytosolic accumulation of cleaved PINK1 due to 

the impairment of the ubiquitin–proteasome system 

[46]. In stress conditions, such as ageing, this accumula-

tion of cleaved PINK1 leading to reduced mitochondrial 

activity may be a risk factor promoting neurodegenera-

tion. Lastly, Sun et  al. [46] found that by ameliorating 

the misregulation of PINK1 or PARKIN by their down 

or up-regulation, respectively, leads to suppression of 

the degenerative phenotypes observed in a TDP-43 pro-

teinopathy fly model.

Huntington’s disease is a fatal autosomal dominant 

disorder caused by misfolding and aggregation of the 

huntingtin (HTT) protein due to expansion of a poly-

glutamine tract (CAG repeats) within its N-terminal 

domain. �e disease leads to cognitive deficits, cho-

reatic movements and psychiatric disturbances [168, 

169]. �e mutant HTT protein has been found to neg-

atively affect the initiation of autophagy/mitophagy 

through interfering with the formation and stability of 

the ULK1 and PtdIns3K complexes, which are essen-

tial for autophagosome formation [170]. Mitochondrial 

fragmentation is a hallmark of HD patients with mutant 

HTT found to abnormally interact with fission protein 

Drp1 [171–174]. Additionally, swollen/degenerated 

mitochondria have been identified in a HD knock-in 

pig model which exhibited selective degeneration of 

striatal medium spiny neurons [175]. Furthermore, HD 

patients have impairment in the mitochondrial respira-

tory chain [176, 177]. In a Drosophila model of HD, 

mutant HTT led to mitochondrial fragmentation in 

photoreceptors, being abnormally ring-shaped. How-

ever, PINK1 overexpression enhanced mitochondrial 

quality control in a PARKIN-dependent manner, alle-

viating the formation of the ring-shaped mitochondria. 

Additionally, they found that PINK1 neuroprotection in 

the Drosophila brain led to normalization of ATP levels, 

improved neuronal integrity and increased cell survival. 

Lastly, Khalil et al. [48] found that defective mitophagy 

found in striatal cells from a HD knock-in mouse could 

be partially restored upon PINK1 overexpression.

Age-related macular degeneration is a complex reti-

nal disorder and the leading cause of severe blindness 

in the elderly population, resulting from both envi-

ronmental and genetic risk factors [178–180]. AMD 

affects central vision and its pathobiology includes 

activation of the innate immune response, neovascu-

larisation, oxidative stress and a build-up of proteins 

and lipids [179, 181]. Accumulation of mtDNA dam-

age is associated with AMD progression [182]. In the 

RPE of a Nuclear factor erythroid 2-related factor 2 

(NFE2L2/NRF2) and peroxisome proliferator-activated 

receptor-gamma captivator 1-alpha (PGC-1α) double 

knockout (dKO) dry AMD-like mouse model, elevated 

levels of oxidative stress markers, damaged mitochon-

dria, accumulated lysosomal lipofuscin and extracel-

lular drusen-like deposits were found. Nrf2 is part of 

the Keap1-Nrf2 pathway which is important in oxida-

tive stress regulation, and PGC-1α is involved in mito-

chondrial biogenesis and in the antioxidant defence 

system [183]. Recently, in the same NRF2/PGC-1α 

dKO mouse model at 1  year of age, dysregulation of 

mitophagy was evaluated. Compared to wild type RPE 

a significant increase in PINK1 and PARKIN levels on 

damaged mitochondria was found in the dKO, this 

additionally corresponded to an increase in the number 

of autophagosomes with mitochondrial cargo. How-

ever, despite elevated mitophagy initiation this model 

seemed to have uncompleted degradation of mitochon-

drial cargo via an unclarified dysfunction in the autol-

ysosomes [49]. Mitophagy may be a novel therapeutic 

target for the amelioration of AMD. In a Drosophila 

model of calcium cytotoxicity in which active  TRPP365 

channels lead to retinal degeneration, abnormalities in 

mitochondrial morphology and function were found in 

photoreceptors. Interestingly, overexpression of both 

PINK1 and PARKIN prevented the  TRPP365-induced 

photoreceptor cell degeneration [51]. Moreover, in a 

PINK1/PARKIN-induced photoreceptor degeneration 
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model, the induction of cell death by PINK1/PARKIN 

was found to be independent of mitophagy [50].

Glaucoma, caused by progressive degeneration of reti-

nal ganglion cells, leads to severe and irreversible blind-

ness, with 111.8 million people predicted to be affected 

by 2040 [184, 185]. Elevated intraocular pressure (IOP) is 

considered a major risk factor for glaucoma [186]. �er-

apies directed at lowering IOP have proved to be suc-

cessful at preserving vision in some glaucoma patients, 

but this does not work for all patients [187]. Glutamate 

excitotoxicity, a pathophysiological mechanism in glau-

comatous neurodegeneration, leads to changes in mito-

chondrial dynamics, causing their dysfunction and cell 

death [188]. Overexpression of Parkin protects retinal 

ganglion cells from glutamate excitotoxicity [189]. Fur-

thermore, in a chronic hypertensive glaucoma rat model, 

overexpression of Parkin was protective, partially restor-

ing mitophagy and improving mitochondrial health [30]. 

Recently, Chernyshova et  al. [190] explored the role of 

glaucoma specific OPTN gene mutations and their effect 

on PARKIN-dependent mitophagy using mitophagy 

impaired HeLa cells. OPTN is a receptor for PARKIN-

mediated mitophagy pathway, and mutations of OPTN 

cause primary open-angle glaucoma (POAG) [29, 191]. 

Interestingly, Chernyshova et  al. [190] observed that 

while two ALS OPTN mutant proteins failed to rescue 

the impaired HeLa cells, seven glaucoma specific OPTN 

mutations did restore mitophagy and localized correctly 

to mitochondria. �is work suggests that OPTN gene 

mutation in glaucoma may be mitophagy independent.

PINK1 and PARKIN in neuroin�ammation
Neurodegeneration and neuroinflammation are con-

current processes in many disorders. Neuroinflamma-

tion is a process that involves the synthesis and release 

of pro-inflammatory mediators, such as cytokines and 

chemokines, and infiltration of immune cells that if 

uncontrolled contribute to neurodegeneration exacer-

bation. Here, we summarize the supporting pieces of 

evidence for the involvement of PINK1 and PARKIN in 

neuroinflammation.

As discussed before, mutations in PARKIN and PINK1 

cause early-onset PD [25, 192]. Primary human blood-

derived macrophages obtained from PD patients with 

PARKIN mutations display high levels of NLRP3 and 

IL-1β when stimulated with lipopolysaccharide (LPS)-

nigericin or LPS-ATP [193]. PINK1G309D, the loss-of-

function mutation associated with early-onset familial 

PD, promotes the expression of VCAM-1 and exacer-

bates the attachment of monocytes to brain endothelial 

cells [129]. Humans with monoallelic and biallelic PAR-

KIN mutations display elevated serum levels of IL-6, 

IL-1β, CCL2 and CCL4, whereas the levels of these 

molecules in serum of PINK1 heterozygotes were similar 

to those in control serum [194]. In contrast, mice lacking 

either Pink1 or Parkin have no substantial PD-relevant 

phenotypes, and their levels of cytokines in the serum is 

unaltered [131, 134, 135, 194]. However, acutely prepared 

cortical slices from Pink1 knockout mice, presented ele-

vated levels of pro-inflammatory cytokines, such as TNF-

α, IL-1β, and IL-6 [195]. In mature zebrafish systemic 

administration of LPS results in increased Pink1 gene 

expression in the brain [196].

In mice lacking Parkin or Pink1 upon both acute 

(exhaustive exercise-induced) or chronic (mtDNA muta-

tion-induced) mitochondrial stress, a robust inflamma-

tory phenotype is observed [194]. Following exhaustive 

exercise, Pink1+/− mice show increased IL-6, IFNβ1, 

IL-12(p70), CXCL1 and CCL4, whereas Parkin+/− mice 

display increased IL-6. Mice expressing a proofreading-

defective mtDNA polymerase (mutator mice) accumulate 

mutations in mtDNA but do not exhibit neurodegenera-

tion or elevated cytokines [194, 197]. However, PARKIN-

deficient mutator mice presented elevated IL-6, IFNβ1, 

TNFα, IL-1β, CCL2, IL-12(p70), IL-13, IL-17, CXCL1 and 

CCL4 [194]. Inflammation derived from either exhaustive 

exercise or mtDNA mutation results from the activation 

of the stimulator of interferon genes (STING), a central 

regulator of the type I interferon response to cytosolic 

DNA, and not due to activation of NRLP3 [194] (Fig. 4). 

Interestingly, PARKIN-deficient mutator mice exhibit 

dopaminergic neuron loss and motor impairment that 

can be rescued by treatment with levodopa [109] and, 

as well, by loss of STING, by crossing PARKIN-deficient 

mutator mice with STING-null mice (goldenticket mice) 

[194]. STING is activated when double-stranded DNA 

binds cyclic guanosine monophosphate (GMP) - adeno-

sine monophosphate (AMP) synthase (cGAS), which in 

turn generates cyclic GMP-AMP (cGAMP) [198]. PAR-

KIN-deficient mice subjected to acute or chronic mito-

chondrial stress displayed both increased mtDNA copy 

number and ratio of mitochondrial to nuclear DNA in 

the serum; this increase is not rescued by loss of STING 

[194]. STING activation by binding of cGAS to cytosolic 

double-stranded DNA (dsDNA), including mtDNA, and 

STING-mediated inflammation resulting from an accu-

mulation of mtDNA mutations in mutator mice, indi-

cate that mtDNA is a crucial inflammatory signal in the 

absence of PARKIN [194]. Release of mtDNA into the 

cytosol, subsequent interaction of mtDNA with cGAS, 

and induction of IFNβ expression is also observed in 

mouse models of macular degeneration [199] and upon 

herpes virus infection [200]. Surprisingly, Whitworth and 

colleagues showed that knockdown of Sting or its down-

stream effector Relish using RNAi (in vivo), is insuffi-

cient to suppress the locomotor deficits or mitochondrial 
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disruption in Pink1 or Parkin Drosophila mutants [201]. 

Furthermore, Sting loss does not affect the behavioural 

phenotypes associated with a Drosophila mtDNA muta-

tor model, nor the combined effect of mtDNA mutations 

in a Parkin background, concluding that phenotypes 

associated with loss of Pink1/Parkin are not universally 

due to aberrant activation of the Sting pathway [201]. 

Not only dysregulation of mitochondrial function pro-

motes inflammation, but also inflammation itself leads 

to mitochondrial dysfunction suggesting the existent of 

a pro-inflammatory loop with mitochondria playing a 

central role. IFNα-mediated deregulation of mitochon-

drial metabolism, including mitochondria hyperpolari-

zation and upregulation of PINK1, and impairment of 

autophagic degradation, results in cytosolic accumu-

lation of mtDNA passible of being sensed via STING 

to promote further inflammation [202] (Fig.  4). Par-

kin knockout mice submitted to chronic LPS exposure 

Fig. 4 PINK1/PARKIN-signalling and inflammation. Mice lacking Parkin or Pink1 upon acute (exhaustive exercise-induced) or chronic (mitochondrial 

DNA (mtDNA) mutation-induced) mitochondrial stress present inflammation due to the activation of the stimulator of interferon genes 

(STING) as result from the accumulation of mtDNA mutations and release of mtDNA into the cytosol. While, in systemic lupus erythematosus 

excessive IFNα damages mitochondrial respiration, leading to oxidative stress that impairs lysosomal degradation and obstructs autophagic 

clearance. Undegraded mtDNA from mitochondria, interact with the cytosolic DNA sensor cGAS in a sequence-independent way, promoting 

a conformational change of cGAS to catalyse the formation of 2,3-cyclic GMP-AMP (cGAMP). The cGAS activation, as well as cGAMP synthase, 

activate STING, recruiting binding kinase 1 (TBK1) as well as interferon regulatory factor 3 (IRF3). The IRF3 then displaces to the nucleus and induces 

immune-stimulated genes and type I IFN expression. The nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) signalling can 

also be activated by STING. In the absence of PARKIN and PINK1, high levels of mitochondrial antigens are presented to major histocompatibility 

complex (MHC) class I molecules in macrophages and dendritic cells triggering an adaptive immune response
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develop fine-locomotor deficits and loss of nigral dopa-

minergic neurons. However, in these mice, neuroinflam-

matory responses in the midbrain are similar to the ones 

observed in wild-type mice [203].

In the absence of PARKIN and PINK1, high levels 

of mitochondrial antigens are presented by major his-

tocompatibility complex (MHC) class I molecules in 

both macrophages and dendritic cells through mito-

chondrial-derived vesicles triggering adaptive immune 

response [159]. �erefore, PINK1 and PARKIN seem to 

repress mitochondrial antigen presentation providing a 

link between mitochondrial dynamics and the potential 

engagement of autoimmune mechanisms in the aetiology 

of PD [159].

�e expression of PINK1 and PARKIN is increased in 

reactive astrocytes in the diseased human brain [204, 

205], suggesting that these proteins affect or regulate glia-

dependent immune responses. Lack of PINK1 increases 

glia-mediated primary neuron apoptosis and nitric oxide 

(NO)-dependent neuroblastoma cell death [206], sug-

gesting that PINK1 in glial cells promotes a neuronal 

protective effect. Ablation of PINK1 differentially affects 

inflammation-induced gene expression and NO produc-

tion in astrocytes, microglia and mixed astrocytes/micro-

glia [206]. PINK1-deficient astrocytes show proliferation 

defects, increased p38MAPK activation [207], elevated 

NO production, impaired mitochondrial function and 

increased cytoplasmatic and mitochondrial ROS levels 

[206]. PINK1-deficient astrocytes exposure to LPS and 

IFNγ overexpress inducible nitric oxide synthase (iNOS), 

NO and TGFβ1. However, PINK1-deficient microglia 

only show decreased IL-10 secretion [206]. In vitro, LPS-

activated murine microglia cell line (BV2) with reduced 

levels of PARKIN show increased levels of TNFα, IL-1β, 

IL-6 and iNOS mRNA via NF-κB and activating protein 

1 (AP-1). Quite similar pro-inflammatory profile, with 

an increase of TNF-α, IL-1β, IL-6, IL- 18, monocyte 

chemoattractant protein-1 (MCP-1) and NRLP3 is also 

observed in Parkin-null primary microglia cells exposed 

to LPS [193]. Mouse microglia primary cultures, with 

reduced levels of PARKIN, present a similar increase 

in TNFα, IL-6 and iNOS and a decrease in IL-1β, after 

exposure to either IFNγ, TNFα or both [208]. �ese data 

suggest that PINK1 or PARKIN loss exacerbates inflam-

mation and promotes survival of activated microglia, 

contributing to neuroinflammation. Furthermore, in 

macrophages, PARKIN suppresses LPS-induced expres-

sion of TNFα, IL-6 or MCP-1 production [209, 210].

PARKIN and PINK1 gene augmentation therapy 

for neurodegenerative disorders

In the previous sections, we summarized the importance 

of PINK1 and PARKIN in controlling critical cellular 

mechanisms. �e extensive published data pinpoint that 

disruption of PINK1/PARKIN signalling culminates in 

impaired mitochondrial function and ultimately con-

tribute to neurodegenerative and neuroinflammatory 

processes. �us, PARKIN and PINK1 gene augmentation 

therapy seems, at least in theory, a promising strategy for 

brain and retinal degenerative disorders. Table 1 summa-

rizes the viral vectors used in each study.

Pre-clinical studies show that PARKIN gene aug-

mentation ameliorates disease features in several 

disease models [30, 52–59]. Amongst the different 

gene augmentation therapy vectors, lentiviral [52, 53] 

and adeno-associated viral (AAV) vectors have been 

described [30, 54–59]. Lentiviral-mediated gene ther-

apy delivery of Parkin into substantia nigra significantly 

reduces α-synuclein-induced neuropathology, includ-

ing preservation of tyrosine hydroxylase-positive cell 

bodies in the substantia nigra and sparing of tyrosine 

hydroxylase-positive nerve terminals in the striatum 

[52]. Moreover, overexpression of human PARKIN in 

rat’s substantia nigra prevented 6-hydroxydopamine-

induced degeneration of dopaminergic terminals and 

cell bodies and ameliorated the motor behaviour [53]. 

In the recent years, AAV vectors have become popu-

lar gene delivery tools due to their safety profile, low 

immunogenicity, lack of toxicity and to the fact of the 

AAV genomes do not integrate into the host genome 

[211]. Moreover, the existence of several natural AAV 

serotypes and derivatives that differ in their tropism, 

makes AAV a powerful tool for gene delivery in the 

central nervous system. Several AAV serotypes includ-

ing 2, 5, 6 and 8 have been used to transduce neurons 

and deliver Parkin under the control of the cytomeg-

alovirus (CMV), CMV enhancer/chicken β-actin or 

phosphoglycerate kinase 1 (PGK) promoter [30, 54, 55, 

57, 58]. As observed for lentiviral gene therapy vectors, 

AAV-mediated delivery of Parkin into the substantia 

nigra also demonstrated to improve disease features in 

different PD animal models. �e therapeutic potential 

of AAV-gene transfer of Parkin on the dopaminergic 

system was assessed on 1-methyl-4- phenyl-1,2,3,6-

tetrahydropyridine (MPTP)-treated mice, a model for 

PD [54]. AAV2/2-Parkin treatment resulted in a higher 

survival rate of dopamine neurons in the substantia 

nigra. Protection at the neuronal level was supported 

by increased amphetamine-induced contralateral 

turning behaviour, a test to evaluate presynaptic neu-

rotransmission, once amphetamine inhibits the dopa-

mine transporter and stimulates dopamine release from 

presynaptic axon terminals [54]. Another study tested 

the effects of AAV2/5-Parkin delivery before a 4-site 

striatal 6-hydroxydopamine lesion [55]. Parkin treated 

lesioned rats displayed 67% in amphetamine-induced 
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rotational behaviour reduction and used their affected 

paw nearly twice as often as control rats in the cylinder 

test, demonstrating a clear motor improvement after 

treatment [55]. After neuropathological analysis of the 

lesioned rats, no differences in surviving nigral dopa-

minergic neurons or striatal dopaminergic innervation 

was observed. �erefore, the authors hypothesize that 

the behavioural improvement resulted from enhanced 

levels of tyrosine hydroxylase due to Parkin overexpres-

sion. To test this, the effects of nigral human PARKIN 

overexpression in intact rats was examined. �e human 

PARKIN treated striatum contained more dopamine, 

suggesting that PARKIN enhances nigral dopaminer-

gic neurotransmission rather than exerting any protec-

tive effect on the nigrostriatal tract [55]. Increase in 

PARKIN levels attenuates methamphetamine-induced 

decreases in striatal tyrosine hydroxylase immuno-

reactivity in a dose-dependent manner, indicating 

that PARKIN exerts a neuroprotective effect on stri-

atal dopaminergic terminals upon methamphetamine 

neurotoxicity [57]. High dosage of methamphetamine 

causes selective degeneration of dopaminergic termi-

nals in the striatum, sparing other striatal terminals 

and cell bodies [57]. �e overexpression of AAV-medi-

ated α-synuclein decreases the density of dopaminergic 

axon terminals in the striatum of rats and monkeys, 

which is ameliorated by co-expression of PARKIN 

[59]. Moreover, AAV-delivery of Parkin is associated 

with either less accumulation of α-synuclein protein, 

phosphorylation at serine residue at  129th position or 

both [59]. AAV-mediated-tau overexpression induced 

dopaminergic neuron loss, and PARKIN prevented the 

loss of substantia nigra dopaminergic neurons in tau-

induced dopaminergic degeneration model [56]. Stud-

ies performed in young transgenic mice overexpressing 

Parkin, specifically in neurons, show improved MPTP-

induced mitochondrial impairment in the substantia 

nigra, while old transgenic mice present decreased stri-

atal α-synuclein [212]. Also, pharmacological strategies 

exploit PARKIN signalling activation have been tested. 

Inhibition of ROCK promotes increased recruitment 

of HK2, a positive regulator of PARKIN, to mitochon-

dria, leading to increased targeting of mitochondria to 

lysosomes and removal of damaged mitochondria from 

cells. Furthermore, ROCK inhibitors have neuropro-

tective effects in a fly PD model [213]. A sign of warn-

ing came from the study performed by van Rompuy 

et al. [58], where administration AAV2/8-CMV-human 

PARKIN, in (healthy, non-lesioned) wild-type rats sub-

stantia nigra induced progressive and dose-dependent 

dopaminergic cell death, starting from 8  weeks after 

injection. �e authors excluded non-specific cell death 

induced by an inflammatory response due to the vector 

preparations. Interestingly, administration of the same 

vector and dose in mouse substantia nigra did not 

cause toxicity [58]. �e evidence gathered seems to 

support the use of PARKIN viral delivery for the treat-

ment of PD. However, most of these studies were per-

formed in acute and induced disease models, where 

treatment is often provided before the injury. To the 

best of our knowledge, there is no direct evidence of 

functional rescue via viral-mediated delivery of Parkin 

in a Parkin-deficient animal. Moreover, although some 

of these studies show behavioural improvements and 

dopaminergic neuronal survival, very little is described 

about the mechanism underlying these observations. 

�e concerns raised by van Rompuy et al. [58] suggest 

the necessity of performing toxicity assays to study the 

potential deleterious effect of long term overexpression 

of PARKIN, especially in human-derived tissues.

Overexpression of PARKIN has been also exploited 

as a treatment for AD. In fact, overexpression of Par-

kin ameliorates impaired mitophagy and promotes the 

removal of damaged mitochondria in amyloid β-treated 

cells, indicating that upregulation of PARKIN-mediated 

mitophagy may be a potential strategy also to treat AD 

[214]. However, not only PARKIN gene therapy vectors 

have been developed and tested. In the literature, there 

is at least one study assessing the potential of PINK1 

gene augmentation as a treatment for AD. �e ration-

ale for that originates from the fact that in the brains of 

patients with AD and transgenic AD mice model PINK1 

is downregulated [60]. AAV-PINK1 transduction signifi-

cantly reduced human amyloid-β levels by 65–70% in the 

hippocampus of transgenic mAPP mice that overexpress 

a human mutant form of APPbearing both the Swed-

ish (K670N/M671L) and the Indiana (V717F) mutations 

(APPSwInd) at 11–13 months of age. PINK1 overexpres-

sion promotes the clearance of damaged mitochondria 

by augmenting autophagy signalling via activation of 

autophagy receptors (OPTN and NDP52), thereby alle-

viating amyloid-β-induced loss of synapses and cognitive 

decline in mAPP mice [60]. Transgenic mice overexpress-

ing the PARKIN in neurons were crossed with APP/PS1 

transgenic mice. Overexpression of PARKIN restored 

activity-dependent synaptic plasticity and rescued 

behavioural abnormalities. Moreover, overexpression of 

Parkin was associated with down-regulation of APP pro-

tein expression, decreased β-amyloid load and reduced 

inflammation [215].

A recent study demonstrated that overexpression of 

Parkin cDNA driven by a CMV promoter, encapsu-

lated in AAV2/2, and delivered by intravitreal injection, 

improved the outcome in a rat model of glaucoma. Deliv-

ery of Parkin into the retina protected against retinal 

ganglion cell loss, attenuated glial fibrillary acidic protein 
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(GFAP) expression, promoted optineurin expression, 

improved mitochondrial health, and partially restored 

dysfunction of mitophagy in chronic hypertensive glau-

coma rats [30].

Khalil et  al. [48] studied the impact of PINK1 overex-

pression in a Drosophila model of HD. �eir data dem-

onstrate that PINK1 overexpression rescues HD neuronal 

pathology, ameliorated ATP levels, neuronal integrity and 

adult fly survival, demonstrating that PINK1 counteracts 

the neurotoxicity of mutant Huntingtin [48]. PINK1 neu-

roprotection against mutant Huntingtin is dependent 

on PARKIN, mitofusin and the voltage-dependent anion 

channel [48].

Conclusions
�e fast-increasing list of scientific publications related 

to PINK1/PARKIN signalling demonstrates how limited 

is our knowledge about this pathway and at the same 

time how disease-relevant this seems to be. It is becom-

ing clear that PINK1 and PARKIN related processes are 

capable of modulating neurodegeneration and neuro-

inflammation, either by removing dysfunctional mito-

chondria, controlling mtDNA release or promoting 

neuroprotective and anti-inflammatory phenotypes.

Based on the studies here compiled gene augmenta-

tion of PARKIN and PINK1 seems a promising strategy 

for the treatment of brain and retinal neurodegenerative 

disorders. All the pre-clinical studies summarized in this 

review not only increase our knowledge about PINK1/

PARKIN signalling but raise hope for the development of 

new treatments for neurodegenerative disorders.
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