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PINN DEEP LEARNING FOR THE CHEN-LEE-LIU EQUATION: ROGUE WAVE ON THE

PERIODIC BACKGROUND

WEIQI PENG, JUNCAI PU, AND YONG CHEN∗

Abstract. We consider the exact rogue periodic wave (rogue wave on the periodic background) and periodic wave
solutions for the Chen-Lee-Liu equation via the odd-th order Darboux transformation. Then, the multi-layer physics-
informed neural networks (PINNs) deep learning method is applied to research the data-driven rogue periodic wave,
breather wave, soliton wave and periodic wave solutions of well-known Chen-Lee-Liu equation. Especially, the data-
driven rogue periodic wave is learned for the first time to solve the partial differential equation. In addition, using
image simulation, the relevant dynamical behaviors and error analysis for there solutions are presented. The numerical
results indicate that the rogue periodic wave, breather wave, soliton wave and periodic wave solutions for Chen-Lee-Liu
equation can be generated well by PINNs deep learning method.

Key words: The Chen-Lee-Liu equation; Rogue periodic wave; Breather wave; Soliton wave; Periodic wave; Physics-
informed neural networks; Deep learning.

1. Introduction

The derivative-type nonlinear Schrödinger equation can be considered as a appropriate model to describe some
nonlinear phenomena in plasma astrophysics [1], fluid dynamics [2], and nonlinear optics [3, 4]. The second type
derivative nonlinear Schrödinger(DNLSII) equation is [5]

iqt + qxx + iqq∗qx = 0, (1.1)

where the asterisk ∗ means the complex conjugation. Eq.(1.1) is usually named Chen-Lee-Liu(CLL) equation, which
was first introduced by Chen et al. [5]. The CLL equation is known as a model to simulate the propagation of the
self-steepening optical pulses without self-phase modulation [6]. Using the Hirota method, the exact N -soliton solution
of the CLL equation was constructed [7, 8]. The breather solution, rogue wave solution and rational soliton solution
have been obtained based on the Darboux transformation(DT) [9, 10]. The initial-boundary value problem for the
CLL equation was analysed on the half line via the Fokas unified method [11]. There are other two type of derivative
nonlinear Schrödinger equations, including first type derivative nonlinear Schrödinger(DNLSI) equation and third type
derivative nonlinear Schrödinger(DNLSIII) equation. The DNLSI equation is [12]

qt + iqxx + (|q|2q)x = 0. (1.2)

The DNLSIII takes the form [13]

iqt + qxx − iq2q∗x +
1

2
q3(q∗)2 = 0, (1.3)

Through the gauge transformations, the three kinds of DNLS equations can be related to each other [14,15]. Eq.(1.2),
also called the Kaup-Newell (KN) equation, can be used to describe the behaviors of small-amplitude Alfvén waves
in a low-β plasma [16–18] and large-amplitude magnetohydrodynamic (MHD) waves in a high-β plasma [19, 20]. In
addition, the transmission of sub-picosecond pulses in single-mode fiber is described by Eq.(1.2) [21, 22]. Eq.(1.3),
known as Gerdjikov-Ivanov (GI) equation, was pioneered by Gerdjikov and Ivanov in Ref. [13]. As well as, since the
Eq.(1.3) has certain higher-order nonlinear effects, it can be viewed as an extension of the nonlinear Schrödinger(NLS)
equation.

Rogue waves have been gradually reported in diverse fields, such as the deep ocean [23], the nonlinear optics [24]
and Bose-Einstein condensation [25] and so on. Over the last few decades, rogue waves emerging on a plane wave
background have been studied a lot and great progress has been made [26–31]. However, there are a great deal of work
remains to be carried out for the rogue waves on the periodic background, which we call here as rogue periodic waves,
and rogue periodic waves are more general and practical than ones on a plane wave background [32]. Therefore, more
and more researchers have paid attention to rogue periodic waves for various integrable equations including the NLS
equation, modified Korteweg-de Vries equation, Hirota equation, and sine-Gordon equation etc. [33–37]. However, to
our knowledge, the rogue periodic waves for CLL equation (1.1) have not been studied. Thus, it is necessary and
meaningful to study the rogue periodic waves for CLL equation. Without loss of generality, the construction of rogue
periodic waves is usually associated with cumbersome Jacobian elliptic functions [33, 38], but in this paper, we will
apply a direct way to construct rogue periodic waves according to the odd-th order DT of the CLL equation.
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Mechanics learning with the neural network method [41–43] has been widely applied in a variety of fields [39, 40].
Especially, it plays a huge role in solving differential equations [44]. Recently, the physics-informed neural network
(PINN) [45] and its improvement [46] has been proposed to solve many linear and nonlinear differential equations. In
general, based on PINN deep learning method, accurate solutions can be obtained with very small amounts of data.
At the same time, since the underlying physical constraints are usually explicitly depicted by differential equations,
the method also gives a better physical explanation for the predicted solution. More recently, using PINN deep
learning method, Chen group constructed data-driven soliton solution for some nonlinear evolution equations [47–49]
and data-driven high-order breather wave, rogue waves for the NLS equation and KN equation [50, 51] with different
initial and boundary conditions. Also, the data-driven rogue waves were studied for the defocusing NLS equation
with a potential [52] and high-order NLS equation [53]. However, as far as we know, PINN deep learning for solving
rogue periodic waves involving the partial differential equations has not been reported so far. Therefore, it will be
very interesting and meaningful to research the data-driven rogue periodic wave via PINN deep learning method. As
well as, the soliton wave, breather wave, periodic wave solutions of the CLL equation have not been investigated by
the PINN deep learning method. For all of these reasons, we will aim at solving the data-driven rogue periodic wave,
periodic wave, soliton wave and breather wave solutions for the CLL equation via deep learning.

The outline of this paper is organized as follows: In Sec. 2, the PINN deep leaning method is introduced for the
general (1+1)-dimensional nonlinear integrable systems. In Sec. 3, we derive the exact periodic wave solution and
rogue periodic wave solution for the CLL equation (1.1) in terms of the odd-th order Darboux transformation (DT).
In Sec. 4, by applying the PINN deep learning approach, the data-driven periodic wave, rogue periodic wave, soliton
wave and breather wave solutions of the CLL equation (1.1) are investigated. In Sec. 5, we give some conclusions and
discussions.

2. The PINN deep learning method

The (1+1)-dimensional complex nonlinear dispersive equations in its general form can be written as

qt +Nq(q, qx, qxx, qxxx, · · · ) = 0, (2.1)

where q is a complex valued function with variables x and t. and Nq is some nonlinear function of the q and its
derivatives of arbitrary orders with respect to x. Taking q = u + iv, we decompose the above complex equation (2.1)
into following two real nonlinear dispersive equations, given by

ut +Nu(u, ux, uxx, uxxx, · · · ) = 0, (2.2)

vt +Nv(v, vx, vxx, vxxx, · · · ) = 0. (2.3)

Then the physics-informed neural networks fu(x, t) and fv(x, t) can be defined as

fu := ut +Nu(u, ux, uxx, uxxx, · · · ), (2.4)

fv := vt +Nv(v, vx, vxx, vxxx, · · · ), (2.5)

whereNu(u, ux, uxx, uxxx, · · · ),Nv(v, vx, vxx, vxxx, · · · ) are the physical models given in Eq.(2.2), (2.3), and u(x, t;w, b),
v(x, t;w, b) are the latent function of the deep neural network with the weight parameter w and bias parameter b,
which can be used to approximate the exact complex-valued solution q(x, t) of objective equations. Then the networks
fu(x, t), fv(x, t) can also be found with the help of automatic differentiation mechanism in deep learning [54]. By using
the multi-hidden-layer deep neural network, the network parameters of the latent functions u, v and networks fu(x, t)
and fv(x, t) can be constantly trained.

Throughout the training process, in order to obtain the optimum training results, we use L-BFGS optimization
method [55] to minimize the whole mean squared error, that is, the loss function

LossΘ = Lossu + Lossv + Lossfu + Lossfv , (2.6)

where

Lossu =
1

Nq

Nq
∑

i=1

|u(xiq, tiq)− ui|2, Lossv =
1

Nq

Nq
∑

i=1

|v(xiq, tiq)− vi|2, (2.7)

and

Lossfu =
1

Nf

Nf
∑

j=1

|fu(xjf , t
j
f )|2, Lossfv =

1

Nf

Nf
∑

j=1

|fv(xjf , t
j
f )|2, (2.8)

where {xiq, tiq, ui}
Nq

i=1 and {xiq, tiq, vi}
Nq

i=1 are the sampled initial and boundary value training data of q(x, t). Similarly,

the collocation points for fu(x, t) and fv(x, t) are marked by {xjf , t
j
f}

Nf

j=1 and {xjf , t
j
f}

Nf

j=1. The loss function (2.6)

contains the losses of initial-boundary value data and the losses of networks (2.4) and (2.5) at a finite set of collocation
points. Of which, the first two items on the right hand side of Eq.(2.6) attempt to let the learning solution approaches
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the exact one for the the initial and boundary value data, and the latter two on the right hand side make the hidden
u, v satisfy the target nonlinear dispersive equation (2.2), (2.3).

In this paper, the simple multilayer perceptrons (i.e., feedforward neural networks) with the Xavier initialization
are chosen as the neural network model, and we select the hyperbolic tangent (tanh) as activation function. All codes
are based on Python 3.7 and Tensorflow 1.15, and all numerical experiments shown here are run on a DELL Precision
7920 Tower computer with 2.10 GHz 8-core Xeon Silver 4110 processor and 64-GB memory.

3. The exact periodic wave and rogue periodic waves

In this section, we are committed to given the exact periodic wave and rogue periodic waves solutions for the CLL
equation (1.1) via DT. The CLL equation(1.1) is associated with the following spectral problem

Φx = UΦ = (−iλ2 − i

4
qr)σ3Φ+ λQΦ,

Φt = V Φ = (−2iλ4 − iqrλ2 − 1

4
(qrx − rqx)−

i

8
q2r2)σ3Φ+ 2λ3QΦ+ λPΦ, (3.1)

with

Φ(x, t, λ) =

(

φ(x, t, λ)
ϕ(x, t, λ)

)

, σ3 =

(

1 0
0 −1

)

, Q =

(

0 q

r 0

)

,

P =

(

0 iqx + 1
2q

2r

−irx + 1
2r

2q 0

)

. (3.2)

Under the reduction condition r = −q∗, the CLL equation (1.1) can be raised by the compatibility condition (3.1).
Moreover, to keep the above reduction condition invariant after each step DT, the Lax pair equations should meet
following symmetry conditions as
(1). λk = −λ∗k, φ∗k(x, t, λk) = ϕk(x, t, λk);
(2). λ2k = −λ∗2k−1, φ

∗
2k−1(x, t, λ2k−1) = ϕ2k(x, t, λ2k), ϕ

∗
2k−1(x, t, λ2k−1) = φ2k(x, t, λ2k).

Let Φk(x, t, λk) = [φk(x, t, λk), ϕk(x, t, λk)]
T with T being the matrix transpose are the distinct solutions of Lax

Pair (3.1) related to λk, and the seed solution is q[0] = Aeiθ, θ = ax− (aA2+a2)t, of which a and A being the complex
parameters, then the N -th order analytic solutions for CLL equation (1.1) are written into the following determinant
expression [9, 10]

q[N ] = eiη(
1+(−1)N+1

2 )

(

q[0] det(S) + 2i det(W )

det(S∗)

)

, eiη = e
iA2x

2 −(iaA2+ iA4

4 )t, (3.3)

with W = (W1,W2, · · · ,WN ), S = (S1, S2, · · · , SN ), and
(i) N = 2n+ 1,

Wk = (ϕk, λkφk, · · · , λ2n−2
k ϕk, λ

2n−1
k φk,−λ2n+1

k φk)
T ,

Sk = (ϕk, λkφk, · · · , λ2n−2
k ϕk, λ

2n−1
k φk, λ

2n
k ϕk)

T . (3.4)

(ii) N = 2n,

Wk = (φk, λkϕk, · · · , λ2n−3
k ϕk, λ

2n−2
k φk,−λ2nk φk)

T ,

Sk = (φk, λkϕk, · · · , λ2n−3
k ϕk, λ

2n−2
k φk, λ

2n−1
k ϕk)

T . (3.5)

Let q[0] = Aeiθ, θ = ax − (aA2 + a2)t become the seed solution, and solving the Lax pair equation (3.1), we can
obtain the corresponding vector eigenfunctions Φk associated with λk, given by

Φk(λk) =

(

φk(x, t, λk)
ϕk(x, t, λk)

)

=

(

ψ1(λk) + ψ∗
2(−λ∗k)

ψ2(λk) + ψ∗
1(−λ∗k)

)

, (3.6)

with

(

ψ1(λk)
ψ2(λk)

)

=

(

−i(A2−4λ2
k−2a+s)

4λk
e

i
2 (

s
2x+bt+θ)

Ae
i
2 (

s
2x+bt−θ)

)

, (3.7)

where

s =
√

A4 + 8λ2kA
2 + 16λ4k − 4A2a+ 16aλ2k + 4a2,

b =
A2

4
− 2A2λ2k + 4λ4k −

A2

4
(A2 − 4λ2k − 2a+ s)

+λ2k(A
2 − 4λ2k − 2a+ s)− a

2
(A2 − 4λ2k − 2a+ s)− a2. (3.8)
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For CLL equation (1.1), as presented in Ref. [9, 10], the rational solution, breather wave and rogue wave on the
constant background have been constructed via expression (3.3) when N = 2n. However, we hereby try to construct
the periodic wave and rogue periodic wave for CLL equation by taking N = 2n+ 1 in expression (3.3).

Taking N = 1, and A = 1, a = −1 in Eq.(3.3), the exact one periodic wave solution is derived as

q(x, t) = e
i
2x+

3i
4 t

(

q[0]ϕ1(λ1)− 2iλ1φ1(λ1)

ϕ∗
1(λ1)

)

=
M1

N1
(3.9)

with

M1 = (8β3 + 2cβ + 2β)e−
1
8 ic(4tβ

2−t−2x)+ 3it
4 + (−4β2 + c+ 3)e

1
8 ic(4tβ

2−t−2x)+ 3it
4 ,

N1 = (3 + 4β2 + c)e−
1
8 ic(4tβ

2−t−2x)− ix
2 − 4βe

1
8 ic(4tβ

2−t−2x)− ix
2 , (3.10)

where c =
√

16β4 + 8β2 + 9, and β is the arbitrary constant. The dynamic behaviors of exact one periodic wave
solution are shown in Fig. 1, and it is obvious that the solution (3.9) is a periodic solution in the x direction.

(a) (b) (c)
Figure 1. (Color online) The one periodic solution for Eq.(1.1) with parameter β = 0.5. (a) Three dimensional plot; (b) The

density plot; (c) The wave propagation along the x-axis at t = 0.

Let N = 2n + 1, λ1 =
√
−2a
2 + i

2A, λ2 = −λ∗1 and λN = iβ. By taking Taylor expansion as [56, 57] in (3.3) for
N = 2n+ 1, the exact n-th rogue periodic wave solution can be given by

q[n] = eiη

(

q[0] det(S̃) + 2i det(W̃ )

det(S̃∗)

)

, (3.11)

with

W̃ =



















ϕ[1, 0, 1] ϕ[2, 0, 1] ϕ[1, 0, 2] ϕ[2, 0, 2]
φ[1, 1, 1] φ[2, 1, 1] φ[1, 1, 2] φ[2, 1, 2]

...
...

...
...

ϕ[1, N − 3, 1] ϕ[2, N − 3, 1] ϕ[1, N − 3, 2] ϕ[2, N − 3, 2]
φ[1, N − 2, 1] φ[2, N − 2, 1] φ[1, N − 2, 2] φ[2, N − 2, 2]
−φ[1, N, 1] −φ[2, N, 1] −φ[1, N, 2] −φ[2, N, 2]

,

· · · ϕ[1, 0, n] ϕ[2, 0, n] ϕN

· · · φ[1, 1, n] φ[2, 1, n] λNφN

· · ·
...

...
...

· · · ϕ[1, N − 3, n] ϕ[2, N − 3, n] λN−3
N ϕN

· · · φ[1, N − 2, n] φ[2, N − 2, n] λN−2
N φN

· · · −φ[1, N, n] −φ[2, N, n] −λNNφN



















, (3.12)



PINN DEEP LEARNING FOR SOLVING ROGUE WAVE ON THE PERIODIC BACKGROUND 5

S̃ =



















ϕ[1, 0, 1] ϕ[2, 0, 1] ϕ[1, 0, 2] ϕ[2, 0, 2]
φ[1, 1, 1] φ[2, 1, 1] φ[1, 1, 2] φ[2, 1, 2]

...
...

...
...

ϕ[1, N − 3, 1] ϕ[2, N − 3, 1] ϕ[1, N − 3, 2] ϕ[2, N − 3, 2]
φ[1, N − 2, 1] φ[2, N − 2, 1] φ[1, N − 2, 2] φ[2, N − 2, 2]
ϕ[1, N − 1, 1] ϕ[2, N − 1, 1] ϕ[1, N − 1, 2] ϕ[2, N − 1, 2]

,

· · · ϕ[1, 0, n] ϕ[2, 0, n] ϕN

· · · φ[1, 1, n] φ[2, 1, n] λNφN

· · ·
...

...
...

· · · ϕ[1, N − 3, n] ϕ[2, N − 3, n] λN−3
N ϕN

· · · φ[1, N − 2, n] φ[2, N − 2, n] λN−2
N φN

· · · ϕ[1, N − 1, n] ϕ[2, N − 1, n] λN−1
N ϕN



















, (3.13)

where

φ[l, j, n] =
1

n!

∂2n

∂ǫ2n
[(λl + ǫ2)jφ(λl + ǫ2)], ϕ[l, j, n] =

1

n!

∂2n

∂ǫ2n
[(λl + ǫ2)jϕ(λl + ǫ2)]. (3.14)

Taking N = 3 and A = 1, a = −1 in Eq.(3.11) and using Maple symbolic computation, the exact one rogue periodic
wave solution can be given by

q(x, t) =
M3

D3
, (3.15)

with

M3 = −96βM+
3 e

− 1
8 ic(4tβ

2−t−2x)+ 3it
4 − 48M−

3 e
1
8 ic(4tβ

2−t−2x)+ 3it
4 ,

D3 = D+
3 e

− 1
8 ic(4tβ

2−t−2x)− ix
2 + 96βD−

3 e
1
8 ic(4tβ

2−t−2x)− ix
2 ,

M+
3 = c[(

x2

4
+ (

t

2
+
i

6
)x+

1

12
+

3t2

4
)β2 +

x2

16
+ (

t

8
+

7i

24
)x− 1

6
+

3t2

16
+
it

4
]

+(x2 + (2t+
2i

3
)x+

1

3
+ 3t2)β4 + (

x2

2
+ (t+

4i

3
)x− 1

6
+

3t2

2
+ it)β2

+
9x2

16
+ (

5i

8
+

9t

8
)x+

27t2

16
− 3it

4
− 9

16
,

M−
3 = c[(

x2

4
+ (

t

2
+
i

6
)x +

1

12
+

3t2

4
)β2 − 3x2

16
+ (−3t

8
+
i

8
)x+

3

16
− 9t2

16
+

3it

4
]

−(x2 + (2t+
2i

3
)x+

1

3
+ 3t2)β4 + (−x

2

2
− (t+

4i

3
)x+

3

2
− 3t2

2
+ it)β2

−9x2

16
+ (

3i

8
− 9t

8
)x− 27t2

16
+

9it

4
+

9

16
,

D+
3 = c[(−12x2 + (8i− 24t)x− 36t2 − 4)β2 − 9x2 − (6i+ 18t)x− 27t2 − 3]

+(−48x2 + (32i− 96t)x− 144t2 − 16)β4 + (−24x2 + (−32i− 48t)x

−96it− 72t2 − 40)β2 − 27x2 − (18i+ 54t)x− 81t2 − 9,

D−
3 = c[−x

2

8
+ (

i

12
− t

4
)x+

it

4
+

1

24
− 3t2

8
] + (it+

1

3
)β2 +

3it

4
+
ix

2
+

1

4
. (3.16)

The dynamic behaviors of exact one rogue periodic wave solution (3.15) are shown in Fig. 2. From Fig. 2, it is
easily to find that there is a rogue wave that arises in a background of periodic wave, and the rogue wave is distributed
in the region where the periodic wave reaches its amplitude.
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(a) (b) (c)
Figure 2. (Color online) The one rogue periodic wave solution (3.15) for Eq.(1.1) with parameter β = −0.2. (a) Three

dimensional plot; (b) The density plot; (c) The wave propagation along the x-axis at t = 0.

(a) (b) (c)
Figure 3. (Color online) The two rogue periodic wave solution for Eq.(1.1) with parameter β = −0.1 and A = 1, a = −1. (a)

Three dimensional plot; (b) The density plot; (c) The wave propagation along the x-axis at t = 0.

In general, it is not hard to see that the higher-order rogue periodic wave solution can be generated by Eq.(3.11).
However, due to their complex expressions showing these solutions, we just give some plots(see Fig.3) of the two-order
rogue periodic wave solution by taking N = 5 in Eq.(3.11). In what follows, we would like to use the PINN deep
learning scheme to investigate the data-driven periodic wave, one rogue periodic wave, soliton wave and breather wave
of the CLL equation (1.1).

4. The data-driven periodic wave, rogue periodic wave, soliton wave, and breather wave

In the beginning, we focus on the CLL equation (1.1) along with Dirichlet boundary conditions







iqt + qxx + iqq∗qx = 0, x ∈ [x0, x1], t ∈ [t0, t1],
q(x, t0) = q0(x),
q(x0, t) = q(x1, t),

(4.1)

where x0, x1 denote the corresponding boundaries of x. t0, t1 are initial and final times of t. The q0(x) defines the
initial condition. The physics-informed neural networks fu(x, t) and fv(x, t) for the above equation (4.1) can be defined
as

fu := −vt + uxx − (u2 + v2)vx,

fv := ut + vxx + (u2 + v2)ux, (4.2)

In terms of the PINN scheme, we can define respectively the complex valued neural network q(x, t) = u(x, t)+ iv(x, t))
and f(x, t) = fu + ifv into follows by Python:
def net−q(self, x, t) :
q = self.neural−net(tf.concat([x, t], 1), self.weights, self.biases)
u = q[:, 0 : 1]
v = q[:, 1 : 2]
return u, v

def net−f(self, x, t) :
u, v = self.net−q(x, t)
u−t = tf.gradients(u, t)[0]
u−x = tf.gradients(u, x)[0]
u−xx = tf.gradients(u−x, x)[0]
v−t = tf.gradients(v, t)[0]
v−x = tf.gradients(v, x)[0]
v−xx = tf.gradients(v−x, x)[0]
f−u = −v−t + u−xx − (u ∗ ∗2 + v ∗ ∗2) ∗ v−x
f−v = u−t + v−xx + (u ∗ ∗2 + v ∗ ∗2) ∗ u−x
returnf−u, f−v

Next, we will apply the PINN deep learning approach to solve the data-driven periodic wave, rogue periodic wave,
soliton wave, and breather wave solutions for the CLL equation (1.1) in detail.
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4.1. The data-driven periodic wave solution. Taking β = 0.5 into Eq.(3.9) and let [x0, x1] and [t0, t1] in Eq.(4.1)
as [−6.0, 6.0] and [0.0, 2.0], respectively. We here select the periodic wave solution at t = 0 as the initial condition,
given by

q(x, 0) = q0(x) =
2(
√
3 + 1) cos(

√
3
2 x)

(2 +
√
3)e

(
√

3−1)ix
2 − e−

(
√

3+1)ix
2

. (4.3)

−5 0 5

x

0

1

2

3

|q
(x
,
t)
|

t = 0.50

Exact Prediction

−5 0 5

x

0

1

2

3
|q
(x
,
t)
|

t = 1.00

Exact Prediction

−5 0 5

x

0

1

2

3

|q
(x
,
t)
|

t = 1.50

Exact Prediction

(a)

0.0 0.5 1.0 1.5 2.0

t

−5

0

5

x
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Figure 4. (Color online) The data-driven periodic wave solution q(x, t) for CLL equation (1.1): (a) The wave propagation

plot at three different times; (b) The density plot and the error density diagram; (c) The three-dimensional plot; (d) The loss

curve figure.

To acquire the original training data, the traditional finite difference method is used to simulate Eq.(4.1) with the
initial data (4.3) by MATLAB. Of which, the spatial region [−6.0, 6.0] is divided into 513 points and time region [0, 2.0]
is divided into 401 points. Then, via using the Latin hypercube sampling (LHS) method [58], we randomly extract
Nq = 100 from the original initial boundary data and Nf = 10000 collocation points to generate a small training
data set containing a subset of the initial boundary. According to obtained training data, using a 9-hidden-layer deep
PINN with 40 neurons per layer, the periodic wave solution q(x, t) is successfully learned by regulating the network
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parameters and minimize the loss function (2.6). The L2-norm error between learning solution and exact solution is
1.141566e-02. The whole learning process takes about 1530.5031 seconds, and iterates 13070 times.

Fig. 4 (a), (b), (c), (d) display the wave propagation plot at three different times, the density plot, the three-
dimensional motion, the error density diagram, and the loss curve figure, respectively. From Fig. 4 (a) and (b), we
can find that the error between the learning solution and the exact solution is very small. As shown in Fig. 4(d), the
loss curve is quite smooth. These results demonstrate the integrable deep learning method is effective and stable.

4.2. The data-driven rogue periodic wave solution. In this part, we devote to research the data-driven rogue
periodic wave solution for CLL equation(1.1). Taking β = −0.02 into Eq.(3.15) and let [x0, x1] and [t0, t1] in Eq.(4.1)
as [−12.0, 12.0] and [−1.5, 1.5], respectively. We select the rogue periodic wave solution at t = −1.5 as the initial
condition

q(x,−1.5) = q0(x) =
−11250K+

1 e
3
√

97691i
1562500 (1250x−936)− 9i

8 +K−
1 e

− 3
√

97691i
1562500 (1250x−936)− 9i

8

K+
2 e

√
97691i

781250 (1875x−1404)− ix
2 + 11250K−

2 e
−

√
97691i

781250 (1875x−1404)− ix
2

, (4.4)

with

K+
1 =

√
97691(

313x2

1250
+ (

2188i

1875
− 939

1250
)x+

4321

3000
− 3i

2
)

+
293073x2

1250
+ (

488698i

1875
− 879219

1250
)x+

12133723

9000
+

937i

2
,

K−
1 =

√
97691(−210825x2 + (632475 + 140700i)x+

4848375

4
− 1265625i)

−65941425x2 + (197824275+ 43882800i)x− 1516465375

4
− 395578125i,

K+
2 =

√
97691(211050x2 + (140550i− 633150)x+

2989875

2
)

+65941425x2 + (43976550i− 197824275)x+
1868465375

4
− 140625i,

K−
2 =

√
97691(−x

2

2
+ (

3

2
+
i

3
)x− 77

24
− 3i

2
) +
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9
− 469i+

625ix

3
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Figure 5. (Color online) The data-driven rogue periodic wave solution q(x, t) for CLL equation (1.1): (a) The wave propaga-

tion plot at three different times; (b) The density plot and the error density diagram; (c) The three-dimensional plot; (d) The

loss curve figure.

Here, applying the same data discretization method in section 4.1, we generate the initial and boundary value data
set with the spatial region [−12.0, 12.0] dividing into 513 points and temporal region [−1.5, 1.5] into 401 points. With
the help of LHS, a training dataset can be obtained by random sampling Nq = 400 in the original dataset and choosing
Nf = 10000 collocation points. Inputting the training dataset into a 9-hidden-layer deep PINN with the first layer is
40 neurons, and the rest is 60 neurons, we successfully generate the learning rogue periodic wave solution which has
a L2 error of 6.103918e-03 compared with the exact one. The whole learning process takes about 3551.8307 seconds,
and the iteration times is 28208. Due to the rogue periodic wave solution is more multifarious compared with the
periodic wave solution, we here choose the bigger sample points and more neurons. However, this does not mean that
more neurons are better. When we take 60 neurons per layer, the experiment results are even worse with a L2 error
of 1.560081e-02, training time of 3915.8433 and 31053 number of iterations.

The main results of our experiment are displayed in Fig. 5 including the wave propagation plot at different time,
the density plots for the learning rogue periodic wave solution and exact rogue periodic wave solution, error dynamics
diagrams, three dimensional plot and loss curve plot. Through Fig. 5(a) and (b), we present a comparison between
the exact solution and the learning solution, and it is not hard to find the error is very small. Interestingly, from Fig.
5(d), we can observe that the loss curve is like “stair”, which does not exist in that one of periodic wave solution.

4.3. The data-driven soliton wave solution. As shown in Ref [10], the expression (59) of Ref [10] will be the bright
soliton solution with taking a = c = 1, β = 0.5, and be the dark soliton solution with taking a = c = 1, β = −0.5.
Let [x0, x1] and [t0, t1] in Eq.(4.1) as [−6.0, 6.0] and [−1.0, 1.0] respectively, the corresponding initial condition for the
bright soliton solution is given by

q(x,−1) = q0(x) =
(1 + i)(e2+

5i
4 +(1+ i

2 )x + e
i
4 (2x+5))

iex+2 + 1
. (4.6)

For the dark soliton solution, the initial condition becomes

q(x,−1) = q0(x) =
−(1 + i)(e2+

5i
4 +(1+ i

2 )x + (1 + i)e
i
4 (2x+5))

iex+2 − 1
. (4.7)
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Figure 6. (Color online) The data-driven bright soliton wave solution q(x, t) for CLL equation (1.1): (a) The wave propagation

plot at three different times; (b) The density plot and the error density diagram; (c) The three-dimensional plot; (d) The loss

curve figure.

Via performing the same data acquisition and training procedures as the section 4.1, it is found, for bright soliton
solution, the L2-norm error between learning solution and exact solution is 1.455372e-04, the whole learning process
takes about 670.1257 seconds, and iterates 2849 times. For dark soliton solution, the L2-norm error between learning
solution and exact solution is 1.924529e-04, the whole learning process takes about 623.2004 seconds, and iterates 2867
times. Fig. 6 and Fig. 7 display the relevant learning outcomes for the bright soliton and dark soliton, respectively.
According to these experimental results, we find the learning effect for soliton is quite good.
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Figure 7. (Color online) The data-driven dark soliton wave solution q(x, t) for CLL equation (1.1): (a) The wave propagation

plot at three different times; (b) The density plot and the error density diagram; (c) The three-dimensional plot; (d) The loss

curve figure.

4.4. The data-driven breather wave solution. Taking c = 1, α1 = 0.5, β1 = 0.4, into expression (60) in Ref [10],
and let [x0, x1] and [t0, t1] in Eq.(4.1) as [−12.0, 12.0] and [−3.0, 3.0], respectively, and we here select t = −3 as the
initial condition for the breather wave solution, given by

q(x,−1) = q0(x) =
60i(

√
2− 3

5 ) sin(
3
√
2(25x−27)

125 )e−
17i
625 (25x+24) −H1e

− 17i
625 (25x+24)

H2
, (4.8)

where
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√
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H2 = (60
√
2− 200) cos(

3
√
2(25x− 27)

125
) + (60

√
2i− 36i) sin(

3
√
2(25x− 27)
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)

+(250− 75
√
2) cosh(
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√
2
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) + 60(
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5
)i sinh(
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√
2
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). (4.9)
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Figure 8. (Color online) The data-driven breather wave solution q(x, t) for CLL equation (1.1): (a) The wave propagation

plot at three different times; (b) The density plot and the error density diagram; (c) The three-dimensional plot; (d) The loss

curve figure.

Using the same data discretization method as in section 4.1, we obtain the initial and boundary value data set
with the spatial region [−12.0, 12.0] dividing into 513 points and temporal region [−3.0, 3.0] into 401 points. Being
different from the case of section 4.1, we take the Nq = 400 boundary sample point and Nf = 20000 collocation
points. Besides, a 9-hidden-layer deep PINN with 60 neurons per layer is choosed here. After training, the neural
network model reaches a L2 error of 1.156422e-02 compared with the exact one. The whole learning process takes
about 4212.7363 seconds, and the iteration times is 29376. Fig. 8 presents the relevant dynamical behaviors and error
analysis for the breather wave solution. Being analogous to the loss curve of rogue periodic wave solution, there is a
gentle interregion for the loss curve in Fig. 8 (d).

5. Conclusion

In this paper, we have applied the odd-th order DT to derive the exact periodic wave and rogue periodic wave for
CLL equation(1.1). Then, in terms of the obtained exact solutions, PINN deep learning method was introduced to
solve the periodic wave and rogue periodic wave involving the CLL equation(1.1). It is worth mentioning that the
deep learning for the rogue periodic wave is first realized to solve the partial differential equation. As well as, we
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applied the PINN deep learning approach to solve the data-driven soliton wave and breather wave solutions for CLL
equation(1.1). Our results indicate that the errors between the exact solutions with the ones generated by PINN deep
learning method is vary small, which verifies the integrable deep learning method is effective and stable. Compared
with the traditional numerical methods, the PINN deep learning method has no grid size limitation. In addition, due
to physical constraints, the network is trained with only a small amount of data and has better physical interpretation.
This method opens up a new way to solve the integrabel and unintegrabel systems by using deep learning and find
some novel models in the interdisciplinary field of applied mathematics and computational science. Remarkably, by
selecting a certain time domain, PINN method has a good training effect. However, with a wider range of time interval,
the training effect will not be as good as we expected. Especially for rogue periodic wave, the effect is only good in a
small time range. Therefore, in the future, we will solve the problem about how to simulate the rogue periodic wave
well in a large spatio-temporal scale, such as using a reservoir computing approach, or selecting the Lax equation as
the physical constraints rather than the equation itself.
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