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Abstract

Recently, it has been demonstrated that many large complex networks display a scale-free fea-
ture, that is, their connectivity distributions have the power-law form. In the present work, control
of a scale-free dynamical network by applying local feedback injections to a fraction of network
nodes is investigated. The specifically and randomly pinning schemes are considered. The specif-
ically pinning of the most highly connected nodes is shown to require a significantly smaller
number of local controllers as compared to the randomly pinning scheme. The method is applied
to an array of Chua’s oscillators as an example. (©) 2002 Published by Elsevier Science B.V.
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1. Introduction

Over the past decades, analysis and control of complex behaviors in dynamical net-
works consisting of a large number of dynamical nodes has become a topic of great
interest. However, most of these works have been concentrated on networks with com-
pletely regular topological structures, such as chains, grids, lattices, and fully-connected
graphs. Two typical cases are the discrete-time coupled map lattice (CML) [1] and the
continuous-time cellular neural network (CNN) [2]. The main benefit of these sim-
ple architectures is that it allows to focus on the complexity caused by the nonlinear
dynamics of the nodes, without considering additional complexity in the network struc-
ture itself [3].

Recently, there is increasing interest in trying to understand the generic features that
characterize the formation and topology of various complex networks. Typical examples
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include the Internet [4], the World Wide Web (WWW) [5], food web [6], metabolic
networks [7], scientific-collaboration networks [8], social networks [9], etc. The appar-
ent ubiquity of such complex networks leads to a fascinating set of common problems
concerning how the network structure facilitates and constraints network behaviors.
However, due to the large size and the complexity of interactions of such networks, it
has become possible only very recently to gather and to analyze the huge amount of
data from such intricate systems due to the availability of high computing power.

Traditionally, a network of complex topology is described by a completely ran-
dom graph, which is at the opposite end of the spectrum from a completely regular
network—the so-called ER model [10]. However, many real-world complex networks
are neither completely regular nor completely random. In order to describe the transi-
tion from a regular network to a random network, Watts and Strogatz (WS) recently
introduced the so-called small-world network [11]. A common feature of the ER model
and the WS model is that the connectivity distribution of the network peaks at an
average value and decays exponentially. Such an exponential network is homogeneous
in nature: each node has roughly the same number of connections.

Another significant recent discovery in the field of complex networks is the obser-
vation that a number of large-scale and complex networks are scale-free, that is, their
connectivity distributions have the power-law form [12,13]. A scale-free network is
inhomogeneous in nature: most nodes have very few connections and a few nodes
have many connections. It has been argued that the inhomogeneous feature makes the
connectivity of a scale-free network error-tolerant but vulnerable to attacks [14-16].
More precisely, the connectivity of such networks is highly robust against random
failures (such as random removal of nodes, e.g., random failures of routers in the In-
ternet) but it is also extremely fragile to attacks (e.g., specific removal of the most
highly connected nodes).

Recently, we have shown that the synchronizability of a scale-free dynamical network
is robust against random removal of nodes, and yet is fragile to specific removal of
the most highly connected nodes [17]. In the present work, we investigate the control
problem for a scale-free dynamical network by applying local linear feedback injections
to a small fraction of network nodes. Feedback pinning has been a common technique
for the control of spatiotemporal chaos in regular dynamical networks [18-20]. We
investigate the effects of two pinning schemes here. In the specifically pinning scheme,
a fraction of the most highly connected nodes are pinned; while in the randomly pinning
scheme, a fraction of randomly selected nodes are pinned. We show that, due to the
extremely inhomogeneous connectivity distribution of a scale-free network, it is much
more effective to pin some most highly connected nodes than pinning the same number
of randomly selected nodes.

2. The scale-free dynamical network model
2.1. The scale-free network model

It has been suggested that two ingredients of self-organization of a network in a
scale-free structure are “growth” and “preferential attachment™ [12,13]. These refer
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to that networks continuously grow by the addition of new nodes and new nodes
are preferentially attached to existing nodes with high numbers of connections (the
so-called “rich get richer” phenomenon).

Based on the two ingredients, Barabasi and Albert proposed a simple scale-free
model. The model starts with my nodes. At every time step, a new node is introduced
and is connected to m already-existing nodes. The probability II; that the new node
is connected to node i depends on the degree k; of node i, such that IT; = k;/ ; k;j.
For a large time constant, the probability P(k) that a node in the network is connected
to k other nodes decays in a power-law of the form P(k) = 2m?/k3. More recently,
Albert and Barabasi proposed an extended model of network evolution that gives a
more realistic description of local processing, taking into account the additions of new
nodes and new links, and the rewiring of links [21].

2.2. The scale-free dynamical network model

Now, suppose that, at some time, the scale-free network consists of N identical lin-
early and diffusively coupled nodes, with each node being an n-dimensional dynamical
system. The state equations of the network are

N
)'(i:f(xi)—l—cZa,»jFXj, i=12,....,.N, (1)
=1

where x; = (xi1,Xi2,...,Xin) € R" are the state variables of node 7, the constant ¢ > 0
represents the coupling strength, and I" € R"*” is a constant 0—1 matrix linking coupled
variables. For simplicity, we assume that I' = diag(ry,r3,...,r,) is a diagonal matrix
with 7, =1 for a particular i and »; =0 for j #i with respect to this particular i. This
means that two coupled nodes are linked through their ith state variables. The coupling
matrix A=(a;;) € RV* represents the scale-free coupling configuration of the network.
If there is a connection between node i and node j (i # /), then a;; =a;; = 1; otherwise,
a;j=a; =0 (i #j). If the degree k; of node i is defined to be the number of connection
incidents at node i, then

N N
S ar= Yk =12 @
J=1 J=1
Jj#i J#

The diagonal elements of the coupling matrix are
aii:_ki’ i:l,z,...,N. (3)

Suppose that the network is connected in the sense that there are no isolate clusters.
Then, the coupling matrix A =(a;;)yxn is a symmetric irreducible matrix. In this case,
it can be shown that zero is an eigenvalue of A with multiplicity 1 and all the other
eigenvalues of A are strictly negative. The ith row a(i,:) and ith column a(:,i) of
matrix A will be called the ith row-column pair of A below.
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3. Pinning control of scale-free dynamical networks
3.1. Stability analysis

Suppose that we want to stabilize network (1) on a homogeneous stationary state
defined by

X1:X2:'-~:XN:)_( (4)
and that
J(x)=0. (5)

We want to achieve the goal of control by applying local linear feedback injections to
a small fraction 6 (0 < 6 < 1) of the nodes. Suppose that the ij,iy,...,i; nodes were
selected, where / = [0N] stands for the smaller but nearest integer to the real number
ON. The equations of the controlled network are

N

i, = f(x)+ e alx;—cdl(x;, — %), k=12,..1, (6a)
Jj=1
N

X, =f(xi)+ e aylx, k=I1+114+2...N, (6b)
j=1

where d > 0 is the feedback gain.
To investigate the stability of the stationary state X, we linearize Eq. (6) about X.
This leads to

n=n[Df(X)] + cBnl", (7)
where D f(X) € R"*" is the Jacobian of f on X, n=(§1,12,...,05 )" € RV*", with
n(t)y=x;(t)—x, i=12,....,N
and
B=A—D, D=diag(d,d,....dy) (8)

in which d;, =d for 1 <k </land d;, =0 for /+1 <k <N.
Let

MZh=2k= 2y

be the eigenvalues of matrix B and ® = [¢1, ¢s,..., py] € RV*Y be the corresponding
(generalized) eigenvector basis satisfying

Bor =iy, k=1,2,...,N. )
By expanding each column # on the basis @, we obtain

n=2aov, (10)
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where the matrix v € RV *" satisfies the following equations:

O =v[Df(X)] + cAvl, (11)
where A = diag(1, 2, ..,Ay). Let vy be the kth row of v. We then arrive at

of =[Df(X)+cillof, k=12,....N. (12)

We have now transformed the stability problem of the (n x N)-dimensional system
(6) to the stability problem of the N numbers of n-dimensional linear systems (12).
It follows from the linear system theory that if [Df(X) + ¢A;I'] is a Hurwitz matrix
in the sense that the real parts of its eigenvalues are all negative, then linear systems
(12) are exponentially stable, which implies that the homogeneous stationary state (4)
of the controlled network (6) is locally exponentially stable. On the other hand, since
A1(A) = 0, the homogeneous stationary state (4) of the uncontrolled network (1) is
unstable if X is not a stable equilibrium point of an isolate node. Thus, in summary,
we have the following.

Lemma 1. Consider the controlled network (6). Suppose that there exists a constant
p <0 such that [Df(X)+ pI'] is a Hurwitz matrix. Let A, be the largest eigenvalue
of matrix B=A —D. If

i <p, (13)

then the homogeneous stationary state X of the controlled network (6) is locally
exponentially stable.
Since 4y <0 and d < 0, inequality (13) is equivalent to

1
s

cz=

. (14)

A small value of 1, corresponds to a large value of ||, which implies that the
controlled network (6) can stabilize onto the stationary state (4) with a small coupling
strength ¢. Therefore, the stability of network (6) with respect to a specific pinning
scheme can be characterized by the largest eigenvalue 4; of the corresponding matrix
B. One should choose the / pinned nodes and the feedback gain d such that 1, is as
small as possible.

For a given pinning scheme, the largest eigenvalue 4; of the matrix B=A —-D is a
decreasing function of d. Suppose that the i, ,...,i; nodes are selected as the pinning
nodes, and let A € RV -D*N=D pe a minor matrix of A with respect to this pinning

scheme, which is obtained by removing the 7j,i,...,i; row—column pairs of A. We
then have
lim /,(B)=/4,(A). (15)
d—oo
In fact, in the limit d — oo, the states of the controlled i}, iy, ...,7; nodes can be pinned

to the target state X for sure. Therefore, we only need to investigate the stability of
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Fig. 1. Value of Ay as a function of the fraction § and the feedback gain d(f,/”tls(é);...,d = 10;—,
d = 50;,—,d = 100).

the following system:

x, =%, k=12,...1, (16a)
N

X, = f(x)+ e aylx;, k=I1+11+2... N. (16b)
j=1

According to Lemma 1, the homogeneous stationary state X of network (16) is locally
exponentially stable if

ch(A) <p. (17)
3.2. Control of a scale-free network with different pinning schemes

Now, we perform a simulation-based analysis on the stability of the controlled
scale-free dynamical network (6) with respect to randomly and specifically pinning
schemes. In the following simulations, we take N =3000 and my =m = 3, namely, the
original network contains 3000 nodes with about 9000 connections.

In the randomly pinning scheme, we apply local linear feedback injections to a
fraction J of the randomly selected nodes. In the specifically pinning scheme, we first
pin the node with the highest degree, and then continue to select and pin the other
nodes in monotonically decreasing order of degrees. For clarity, the feedback gain
matrices of the randomly and specifically pinning schemes are denoted as D, and D,
respectively. The largest eigenvalue of the matrices B, = A — D, and B, = A — D, are
denoted as A;, and Ay, respectively. Figs. 1 and 2 show the values of 4;, and A, as
functions of the fraction ¢ and the feedback gain d. It can be seen that

im I (8, d) = 11,(9), lim lis(8,d) = 715(5) (18)
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Fig. 2. Value of ;. as a function of the fraction 6 and the feedback gain d(f,/flr(é);...,d = 10;—,
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Fig. 3. Values of 11,(8) (—) and 4;,(0) (—) as functions of the fraction .

where 41,(8) and 1,(8) are the largest eigenvalues of the minor matrices of the
coupling matrix A with respect to the randomly and specifically pinning schemes,
respectively.

As shown in Fig. 3, le(é) is much smaller than 11,.(5), especially for small values
of 0. This implies that, to stabilize a scale-free dynamical network, the specifically pin-
ning scheme requires much less local controllers than the randomly pinning scheme.
This feature of scale-free dynamical networks is rooted in their extremely inhomo-
geneous connectivity distribution. Since most of the nodes in a scale-free network
are “small” nodes with very low degrees, [0N] “small” nodes will be selected in a
randomly pinning scheme with much higher probability if N>1 and d<1. It is not
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surprising to see that, for the stability of the entire scale-free network, the stability of
a few “big” nodes with highest degrees is much more important than the stability of
the same number of “small” nodes. This suggests that, to stabilize a scale-free network
with a minimum number of local controllers, we should add these local controllers
with feedback injections to those “big” nodes with highest degrees.

4. An simulation example

We illustrate the above analysis using a Chua’s oscillator as a dynamical node in a
scale-free network. In the dimensionless form, a single Chua’s oscillator is described
by [22]

)-6'1 OC(XQ — X1 +f(X1))
X | = X1 —Xx2 +x3 , (19)
X3 —pxy — x3

where f(.) is a piecewise linear function of the form
—bxy —a+bx; >1,
flx)=q —axifa| <1, (20)
—bxi+a—bx; < —1
in which « >0, f >0, y >0, and a < b < 0. Suppose that two coupled Chua’s os-

cillators are linked together through the first state variable, i.e., I' = diag(1,0,0). The
state equations of the entire network are

N
i1 axip — xi1 + f(xin)) +¢ Z aiXj1
in | = = , i=12,...,N. 1)
. Xj1 — Xi2 + X33
Xi3
—PBxia — pxi3
If the system parameters are chosen to be

o =10.0000, f=15.0000, 7=0.0385, a=-12700, b= —-0.6800,
(22)

then Chua’s oscillator (19) has a chaotic attractor, as shown in Fig. 4. In this case,
the oscillator (19) has three unstable equilibrium points:

xT =[+1.8586 +0.0048 = 1.8539]", x"=[0 0 o0]".

Suppose that we want to stabilize network (21) onto the homogeneous state X =x" by
applying local linear feedback control to the first state variables of a small fraction o
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Fig. 4. The chaotic attrator of Chua’s oscillator (19).

of nodes. The equations of the controlled network are

N
Xi o(xip — X1 + f(xi1)) +c¢ Za,-jle + u;
. =1 .
Xip | = / , i=12,....,N,
. X1 — X2 + X33
Xi3
—PBxi2 — yxi3
where
cd(x{ —xn), i=1iyis....0,
u =
' 0, otherwise .
It can be checked that the smallest value of the constant p in Lemma 1 is p = —4.71.

For sufficiently large values of feedback gain d, stabilization can be achieved provided
that

ch(8) < —4.71.

For a given coupling strength ¢, let 5, and §; be the smallest value of & that can
achieve stabilization with respect to the randomly and specifically pinning schemes,
respectively. Fig. 5 shows the values of 5, and d, as functions of the coupling strength
c. It is clear that for a wide range of coupling strengths, b, is much smaller than o,,
which verifies that the specifically pinning scheme requires much less local controllers
than the randomly pinning scheme.

5. Conclusions

In this paper, we have investigated the stabilization problem for a scale-free dynam-
ical network via local feedback pinning on a small fraction of the network nodes. We
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have shown, both theoretically and numerically, that the most effective arrangement
of placing the controllers on the network nodes is to choose those “big” nodes with
highest degrees. The main reason is due to the extremely inhomogeneous connectivity
distribution of the scale-free network. This may also help explain why complex net-
works such as the Internet and metabolic networks remain stable despite the frequent
instability instances of some local nodes. On the other hand, the instability of a small
fraction of the most highly connected nodes may have a severe influence on the sta-
bility of the global scale-free network. This indicates once again the so-called “robust
yet fragile” feature of the stability of the scale-free networks.
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