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Pinning Effect due to Periodic Variation 

of Impurity Concentration in Type II Superconductors 

Seiju AMI and Kazumi MAKI*> 

Department of Ph')'sics, Tohoku University, Sendai 

(Received May 18, 1974) 

By the use of Ginzburg-Landau equations, which include the effect ansmg from the 
sinusoidal variation of the impurity concentration in one direction, the stability of variety 
of the vortex lattice configuration in the type II superconductors is studied. 

In the vicinity of the upper critical field Hea, the critical current is determined as a 
function of the external field, which is compared with a recent experiment by Raffy et al. 
The present theory describes semi-quantitatively the observed field dependence of the critical 
current. 

§ 1. Introduction 

1 

In spite of its practical importance, the pinning effect in the type II super

conductors has been .considered only within phenomenological model or in a 

statistical model until very' recently. For example in a series of papers 

Yamafuji and his collaborators1>-s> have discussed the pinning effect within a 

model, which includes a phenomenological elastic coupling energy in addition to 
the ordinary Ginzburg-Landau free energy. More recently this type of model is 

taken up by Schmid and Hauger4> in order to consider the pinning effect on the 

moving vortex lines. On the other hand Larkin6> introduced a model with the 

spatial dependent Ginzburg-Landau (GL) coefficients in order to describe the 

pinning effect. The spatial inhomogeneities of the GL coefficients are characterized 

by the correlation function, which . describes the spatial correlation of the 

inhomogeneity of the GL coefficients. Within this model Larkin studied the 

. distortion of the vortex lattice from its equilibrium configuration in the pinning 

free sample. This model is further extended by Larkin and Ovchinikov6> to study 

the broadening of the structure in the density of states, the smearing of the 
transition temperature and so on due to the pinning centers. . 

The purpose of this work is twofold; we propose a very simple microscopic 

model which describes the pinning effect and we will study the stability of the 

vortex structure under uniform current within this model. The present model 

is motivated by a beautiful experimental work by Raffy et al,7> They prepared 

specimens of Pb-Bi alloys, where the Bi, concentration is varied sinusoidally in 

· *> Now at Department of Physics, University of Southern California, Los Angeles, California 
90007. ' 
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2 S. Ami and K. Maki 

one direction. They studied the :field dependence of the critical current which 
flows along the equiconcentration plane of the impurities and observed a remarkable 
structure in the critical current as a function of the external :field. In accordance 
with their experimental situation, we adopt a model where the impurity concentra
tion varies sinusoidally in one direction (say the y direction). The appropriate 
Ginzburg-Landau equations for this system are readily found for the dirty 
superconductors, when the spatial variation of the impurity concentration is suffi
ciently slow (i.e., the period of the variation a is longer than the electron mean 
free path l of the system). This is because nonmagnetic impurities affect hardly 
the transition temperature or other thermodynamical properties but the diffusion 
constant.8> A somewhat related but different model from ours has been considered 
previously by Kulik and Itskovich,9> who assumed that the pinning effect arises 
from the inhomogeneity in the concentration of magnetic impurities. 

In the vicinity of the upper critical :field, the most stable configuration is 
determined among the Abrikosov solutions10> with doubly periodic structure. In 
general, the stable solution admits nonvanishing current along the equiconcentra
tion plane of impurities in sharp contrast to the ideal case with no inhomogeneity 
where the transport current vanishes identically in the vortex state. The critical 
current is determined as the largest current the vortex state carries in the given 
configuration, The critical current takes the maximum values for the :field B"', 
for which the period of the equilateral vortex lattice matches with the period 
of the impurity concentration. 

The results are compared with the experiment by Raffy et aV> The present 
theory appears to describe semi-quantitatively the :field dependence of the observed 
critical current at least in the high :field region. 

§ 2. Presentation of model 

We will construct the Ginzburg-Landau free energy, which applies to the 
system with a periodic variation of the impurity concentration. We will limit 
ourselves to dirty superconductors for simplicity. For a dirty superconductor 
the free energy in the vicinity of the transition temperature Tc is given by8> 

·,gsN= Jdr[N(O) {- Tc-Tid(r)l 2 + 7<:'(3) ld(r)l4 
Tc 16(nTcY 

+___£DI (r-2ieA)d(rW} +h2 (r)], 
8Tc Sn 

(1) 

where N(O) is the state density at the Fermi level, d (r) is. the spatially dependent 
superconducting order parameter, D is the diffusion constant, h (r) is the local 
magnetic :field and C: (z) is Riemann's zeta function. Three parameters N(O), 
Tc and D characterize the system completely. Since the diffusion constant D 
IS proportional to the transport life time rtro8> only D can have a signi:fi.c~~:nt 
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Pinning Effect due to Periodic Variation of Impurity Concentration 3 

spatial dependence due to the inhomogeneity in the impurity concentration, while 
Tc and N(O) are almost unchanged, if the impurity atom is nonmagnetic and 
chemically similar to the host atom. Furthermore, when the spatial variation in 
the impurity concentration is much slow (i.e., the period of the variation is 
longer than the electron mean free path l)' the transport. ilfe time is essentially 
inversely proportional to the impurity concentration Cimp (r) 

with r>o. (2) 

Here we have assumed that the impurity concentration varies in the y direction. 
Therefore we will take the spatially dependent diffusion constant D(r) to be 

= ./ Do 2 {1 + 2 f; (-g)" cos (v (~Y- .!!_))} 
1-r •=1 a 2 

and 

Then the third term m the integrand in Eq. (1) is replaced by 

N(o)__!!_D(r) I (r-2ieA)A(rW. 
8Tc 

(3) 

(4) 

(5) 

- Since the coherence length ~. the penetration depth (} and the Ginzburg

Landau parameter "= (} / ~ are expressed in terms of D (r) as 

= [ 7CD(r) ] 1fl! 

~ S(Tc-T) ' 

1 [ 7( (3) ] 1jl! 

tJ= 4e7C2 2N(O) (Tc-T)D(r) 

and 

"= 1 [7((3)] 1
/
2 

2e7C2D(r) · 7CN(O) · ' (6) 

respectively, ~. (} and " vary .spatially in the present model. 
Following Ginzburg and Landau11> we will introduce a system of reduced 

units in order to simplify the subsequent analysis: 

h' = h/ •./'2Hc , 

A'=A/[ 8 (7CTcY(l-_I_)J 
7((3) Tc ' 
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4 S. Ami and K. Maki 

where 

- 1 [ 7,(3) ] 1
/
2 

(]o- 4en-2 2N(O) (Tc.'-T)Do. . 

The free energy .!JsN is now rewritten as 

where 

qsH/ H; (=F'V) 
4n-

= S dr[! -14'1 2+ ! l.d'l'+h'2 

+ 1 i·(~-A').d'l2] 
1 + r sin (2n-y' I a') iJCo ' 

" = (2en-2D )-1 ( 7t;, (3) .) 1f2 

o o n-N(O) 

and V is the volume of the specimen. 

(7) 

(8) 

(9) 

(10) 

Ginzburg-Landau equations follow from the above free energy by taking a 

functional derivative by (]J~' or tJAI 

{(L-A) 1 (-L-A) -1+ l.di 2}J=O (11) 
iJCo 1 + r sin (2n-y 1 a) iJCo 

and 

j=! 1+Tsi~(2n-yla) {.d*C~o -A).d+c.c.}, (12) 

where we have taken off prime signs on .d, A, ,, a and y. The above set of 

equations reduce to the ordinary GL equations when T=O. 

§ 3. Variational solutions 

We will look for solutions of Eqs. (11) and (12) in the . presence of 

magnetic field H along the z axis. However, since the exact solution is known 

only in th_e vicinity of the upper critical field Hc2 even in the homogeneous 

case (i.e:, r = 0), we will limit our consideration in the vicinity .of Hc2, where 

the order paratp.eter is small. For the homogeneous system (or the ideal system), 

it is well known that the vortex array with the equilateral triangular lattice 

yields the lowest free energy.12> However, in the presence of inhomogeneity the 

vortex lattice is likely to be deformed from the equilateral triangular structure. 

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/p
tp

/a
rtic

le
/5

3
/1

/1
/1

8
6
0
4
0
6
 b

y
 U

.S
. D

e
p
a
rtm

e
n
t o

f J
u
s
tic

e
 u

s
e
r o

n
 1

6
 A

u
g
u
s
t 2

0
2
2



Pinning Effect due to Periodic Variation of Impurity Concentration 5 

In order to find out the most stable solution in the presence of the periodic 

variation of the impurity concentration, we resort to a variational approach. As 

a trial function we choos~ the Eilenberger vortex lattice (EVL) function/8> 

which is a generalization of the Abrikosov solution for the homogeneous system 

at H=Hc2· 

The EVL functions are defined by 

~oCr) =(~~t'e-cwJq)Y'~a(n; 1;2). (13) 

·[( 4tr )" ] -lj2 
~n(r) :;= ---:;} n! F~~o(r), (14) 

where 

. 2tr 
r = (x, y), 1J = "oB , (i.e., unit cell area) 

z=x+iy, t"=/;;' +i1}, 

F+ =i-1_1___+ 2tr y=t=_1_ 
. - ax 1J ay ' 

co 

~a (z J.-) = :E exp (2pzi + trt"P2i), (15) 
P=-oo 

(Riemann's theta function) 

and B is magnetic induction. Furthermore EVL functions satisfy the following 

eigenvalue equation and the orthogonality condition 

( , )
2 1 ( 2tr) -.--Ao !/)n=-2 F+F-+- !fJn=cn!/)n 

z~ ~ 1J . 

and 

where 

Ao= -xBy, 

2tr 
cn=--(2n+1), n=0,1,2,··· 

/(,o21j 
(16) 

and x is a unit vector in the x direction: The EVL function g;0 describes a 

two-dimensional vortex. lattice in the x-y plane with unit flux quantum per 

primitive cell. It is periodic with the periods given by 

Since we are going. to calculate the transport current in the static vortex 

lattice, we will look for the solution of the linearized equation for J (r) within 
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6 S. Ami and K. Maki 

(17) 

In fact we will see later that the mixing term ( ocw) contributes to the super
current of the order of r, while the mixing terms between !Po and !fn with n>l 
contribute to the supercurrent only higher order terms in r. When the induction 

y 

B changes, the vortex lattice will·· be 
not only displaced and distorted but also 
rotated around the z axis to find the 

Fig. 1. The configuration of the unit cell of 
the vortex lattice to the equiconcentration 
line of impurities is shown. The lattice 
vectors of the unit cell are denoted by r 1 

and r,. The position of the center of 
vortex line is shown by the full circle. 

most stable solution. However, the base 
of a parallelogram of an elementary 
vortex lattice cell described by a function 
!Po is always along the x axis. There
fore in order to consider the vortex 
lattice ·configuration in full generality, 
we will rotate instead the configuration 
related to the spatial variation of the 
impurity concentration as shown in Fig. 
1; we assume' that the impurity concent

ration varies along the direction designa
ted by q0, where 

and 

qo=~(-sin(},cos(}), O<O<n, 
a 

D(r) .j Do [l-2g sin qo· (r -ro)] 
l-T2 

(18) 

(19) 

Here we have neglected the higher order terms in g for simplicity. We will 
now solve the linearized equation for A variationally: 

(-!--Ao) .j 1 
2 [1-2g sin q0 • (r-r0)] (-!--Ao)A=EoA (20) 

Z!Co 1 - T Z/Co 

with the smallest E 0, where Ao is taken to be 

Ao= -xBy. (21) 

We can convert Eq. (20) into a variational equation 

E _ fd 2r{ (1/.Jf=r) (1-2g sin qo· (r-ro)) I (y /itco-Ao) Al 2} (22) 
o- Jd2riAI 2 

Substituting A=C!f in Eq. (22), where !f is defined by Eq. (17), we have 
(see the Appendix for details); 
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Pinning Effect due to Periodic Variation of Impurity Concentration 7 

with 

w=g(4'17nraqo{(l- 4: qoa)e'o+e-io}exp(- s: qoa) 

X cos (q0 • r 0) ( -l)m"~( ~ sin f), m )~{~ cos f)-};__ sin f), n ), (24) 
, , a a a 

where 

and 

~(x, m) = {~ 
for x=m, (m: integer) 

otherwise 

~ 1 (x n)=-'1]- L"I: 2 ~l cos(2nPx)='l]sin[(2n/b)(Lyb/27]+l/2)x] 
' bLy P=-L.b/(2n) b bLy sin((n/b)x) 

{
1 for x=bn, (x: integer) 

~ 0 otherwise 

(25) 

(26) 

(27) 

when Lyb/7] tends to infinity. The above eigenvalue E 0 is exact to first order 

in g. We note also that Eo gives the upper critical field of the system under 

consideration. 

The normalization constant C of the order parameter is determined by 

following the original procedure due .to Abrikosov.10l For this purpose we have 

to first determine the local field h; 

yx (yxh) =j[Ao, J]. (28) 

Introducing h1 by 

h=B+h1, (29) 

we have 

- < {l-2g sin qo· (r-ro)} IJI 2) ]z (30) 

and 

<h)=B, 

where <A) denotes the space average of A. In the above calculation, we have 

neglected a part of j[Ao, J], which gives rise to a macroscopic transport current. 

Within the present approximation this current is not divergent free, although a 
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8 S. Ami and K. Maki 

more careful treatment14> of the back flow term will make this term divergent 
free as required from the current conservation. 

The amplitude of A is then determined from 

/ A*[(--!'--A) (1-T2)-1fi{1-2g sin q0 • (r-r0)} (--!--A) \ z~ t~ 

(31) 

where 

A=Ao+A1 and p xA1=h1. (32) 

Substituting the expression for A (;s:C g;) into Eq. (31) we obtain 

JC!2= 2/Co2(1-Eo) 
1+a+t9A(2iCo2 -1-a') ' 

(33) 

where 

a= -4g(sin[qo· (r-ro)]Jg;ol 2) 

=4g exp(- :~ 7J)sin(q0 ·r0) ( -1)''"'a(! sin(}, m) 

X a 1 ( ! cos (} - : sin (}, n) , 

a'= -4g(sin[qo• (r-ro)] Jg;oJ 4)/t9A 

=4g exp(- ql .!L)sin(q0 ·r0) ( -1r''a(!!_ sin(}, m) 
87! 2 a . 

x _!_a 1 (_!!_ cos (} - _1_ sin (}, n) 
2 2a 2a 

and -

(34) 

Putting 

'1fi 1)1fi 
X=- and Y=-

b b ' 

we have 

00 

t9A = Y ~ cos (2trX2pq) exp [- 7! Y2 (P2 + q2)]. (3'5) 
p,q=-oo 

Finally the free energy and the transport current <i> are given as 

(36) 

and 
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Pinning Effect due to Periodic Variation of Impurity Concentration 9 

<i)=g: qo(1- ql rj)exp(- q02 rj)cos(qo·ro) 
Ko 4n 8n 

x(-1)m"~(! sine,m)~ 1 (: cosO-: sine,n) 

(37) 

respectively. 

It is of interest to note that the current equation (37) satisfies the force 

balance equation :15l 

r.,F+2<j) xB=O, (38) 

if we neglect the higher order terms i~ (1- Eo). Since the second term is the 

Lorentz force term, we can identif)T the first term as the pinning force term. 

Therefore the present model gives rise to a pinning force in the direction 

parallel to the concentration variation of impurities. We also point out that the 

pinning force arises only when the period of the vortex lattice is commensurate 

with the period of the concentration variation; 

{
qo·rt= -2nm, 

qo·r2= -2nn, 
(39) 

and n, m are integers. On the other hand, when the vortex lattice does not 

fullfil the above condition, the term proportional to g in the free energy has no 

effect on the vortex lattice within the present approximation and F and <i) 

reduce to th<;>se obtained by Abrikosov10l previously: 

(40) 

<i)=O 

with [3J,. =1.16. 

§ 4. Commensurate solution 

:6J. this section, we will summarize the properties of the co.QJ.mensurate 

solution which satisfies the condition (39). In· particular, when the commensurate 

solution has an equilateral triangular vortex lattice, we will expect the largest 

critical current. Therefore we will study first this resonance condition. 

a) The resonance condition 

The resonance condition is satisfied when the induction B takes particular 

values B4 • Since we are interested in an equilateral triangular lattice, we have 
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10 S. Ami and K. Maki 

{
b = ((2/ v3) r;Y/2, 

t;,/b=b/2. 

Substituting the above relations into Eq. (39), we obtain 

B,.= v3n (nB+mB+nm)-1 
a2 /Co 

and 

Sill 8=-
. m ( 3 )1;2 

2 n2 +m2 +nm -' 
(42) 

wher~ ¢o=hcj2e is the unit flux. Since B,. is ,expressed in terms of a only (in 
the natural unit), we believe the above result holds independent of the details of 
the model employed. We note also that the resonance solutions are in general 
multiply degenerated, since there are a number of pair~ (~, m), which make up 
the same ( n2 + m 2 + n~). This degeneracy arises- partly from the non uniqueness 
in choosing unit vectors describing a regular triangular lattice ~nd partly from 
the existence of the reflected solution on the plane parallel to q 0, if the solution 
does not have the reflection symmetry. The resonance field B,. and the corres
ponding unit cell of the vortex lattice are shown in Table I. The parallel lines 
indicate the equiconcentration plane of impurities with a period a. The fieldBA 
takes the following series of numbers 

2a2 1 1 1 1 1 
-v3-B,./¢o= 1, 3' 4' 7' 

----:-:-,.: 
1.2' 9 

b) The upper critical field Hc2 

The upper critical field is defined as the magnetic field, which satisfies 

Eo=1, (43) 

where Eo has been already defined by Eq. (23). In the case of incommensurate 
solution, Eq. ( 43) yields 

~44) 

as m the Abrikosov theory. For a commensurate solution, on the other hand, 
we have 

HM Hc2 = 1+ 2gQ (Hc2) sin (qo · ro) (45) 

with 

- ( 2n2 
) ( n2 

) Q(x)= 1--2 - exp --2 -. 

a/CoX a/CoX 
(46) 
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Pinning Effect due to Periodic Variation of Impurity Concentration 11 

Table I. 

2 a• Vortex lattice 
./3 +o 8~ ( m. n ) 

cotiguration 

r.j\ ~ I ( 0·, I ) 
~ 

~ 

r1£) I 
- ( 2. -I) 
3 

I ( 0. 2 ) ft 4 
r1 

(i_l liU 
( i) ( ii) ~_Lj "'r. I / I d ~ - (1,2), (3,-2t I 

7 
~ 1 -------

z~, 
I ( 0. 3) r.j__ ' ' ' --
9 L ' _1. 

~ 

"r. 
I ( 4 .-2) ~ -- ... ... 

12 rl , , 
, , ... , 

Here we limit ourselves to the case m =0, which is of particular importance in 

the following analysis. · 

We will have Hc 2 >H~ 2 , only when the second term in the r.h.s. is negative. 

This yields for the largest Hc2, 

{
-1 

sin(qo·ro) = 1 

for a> (27r2/!CoHc2Y12, 

for a< (27r2 / /CoHc2Y12. 
(47) 

This result implies that, when a< (2rr2/!CoHcSf2, the nucleation of superconductivity 

starts at the trough in IC (i.e., in the region of dilute concentration of jmpurity), 

while, when a> (2rr2/!CoHc2Y12, it starts at the crest of /C. This is because an 

islet of the nucleated superconductivity has a spatial extension of the order of 
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4 

3 
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(i) Crest 

·®Trough 

(i) 

r • 0.111 

2...____----, /' 
,, / '-..... 18\ 

', _,/ ....._-~- r • o.se ...... ___ ......:- - -
I.SoL.-----~=;....4L.---a-,.-o---.;Je'"""'---',o 

Fig. 2. The upper critical fields associated with the commensurate solution are shown as 
function of "oa. Crest and trough on the curves indicates the branches of solutions with 
the center of superconducting islet at the crest and at the trough of the impurity 
concentration. 

(2n2/!CoHc2YI2• The upper critical field given by Eq. (45) is calculated numerically 
and shown in Fig. 2 for some values of the T's as functions of IC0a. The critical 
field Hc2 has a prominent peak around /Coa:::::::2 and becomes H~ 2 for a= (2n2/!CoHc2YI2• 

Furthermore,' Hc2 exhibits the following· asymptotic behavior 

(48) 

As the temperature decreases, a in· the reduced unit (we write it a' here) 
increases according to 

a'=4en2a "' . [ 7f' (3) J -1/2 

2N(O) (Tc-T)Do · 
(49) 

Therefore we can pass to the one region to the another by simply changing the 
temperature. The upper critical field in conventional units is given as 

8n(Tc-T} . - 0-=1+2gQ(Hc2)sin(qo·ro), 
·[2nN(0)] 1

;
2 iC 

7((3) Hc2 
(50) 

where Q IS now expressed as 

Q(x) = (1-~)exp(- n¢o ). 
a~x · 2a2x 

(51) 

The temperature dependence of Hc2(T) is shown in Fig. 3 for particular values 
of a. 

c) Free energy density 

The free energy density of a commensurate solution is given by 
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Pinning Effect due to Periodic Variation of Impurity Concentration 13 

T/Tc 

Fig. 3. The temperature dependence of the upper critical field for the commensu

rate solution is shown. The critical field Hco and the period a are scaled by 

vzH.=-vzT.(dH./dT)T-Tc and Bo=(l-T/Tc)'I'IJ,, respectively. 

(52) 

-where we have discarded small terms a and- a' in Eq. (36). Furthermore we 

confine ourselves to the special class of solutions with m = 0, which appears to 

be relevant to the experiments. The lowest free energy is obtained, for the 

configuration with the largest H.2 (or with the smallest H.2 when the sign of. 

Q is reversed for given B from the one at B=H.2) and with the smallest f3A
The first condition is readily satisfied if we take sin(q0 ·r0) defined by Eq. (47), 

although now H. 2 in Eq. ( 47) has to be replaced by B. In order to compute 

f3A, on the other hand, we have to specify further the vortex lattice configuration. 

Since we took already (m = 0), we look for a solution with a base of the vortex 

lattice parallelogram o·n the equiconcentration plane. In this case we have 

m=O, !L=an 
b ' 

y = 1Jlf2 = an ( tcoB ) lf2 

b 2n 
(53) 

and 

since the smallest f3A is obtained when the parallelogram consists of two isosceles. 

Then f3A is given by 

(54) 

In particul~r in the vicinity of B=B,,_, f3A can be expanded in powers of (Y 

- .j ./3/2) as 
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14 S. Ami and K. Maki 

f3A=f3J.. + 1.101(Y- j ~ 3 ) 2 
+ ···. 

In order to decide if the commensurate solution is really stable, we have to 
compare the resultant free energy (52) with P given by Eq. (40). 

d) The critical current Jcr 

The critical current Jcr is defined as the maximum supercurrent in the system. 
In the vortex state of an ideal system, there is always dissipation due to the 
flux flow whenever the transport current is applied. This implies Jcr = 0 in the 
vortex state of the ideal system. However, in real superconductors, which in 
general contain some kind of inhomogeneities, flux lines are pinned to those 
inhomogeneities. This allows a non-dissipative transport current in the vortex 
state, until the current attains the critical value. In the present model the role 
of pinning centers is played by the spatial variation of the impurity concentration. 
As we have already seen a macroscopic supercurrent flows along the equiconcentra
tion plane for tpe commensurate solutions. 

<i>= R,02
_ 2 [1- 1! {1+2gQ(B)sin(qo·ro)}J 

1 + f3A (2/Co -1) /Co 

1 . 
x2g-;:;-qoQ(B)cos(qn·ro)x. 

/Co 
(55) 

We note that <i> vanishes for the equilibrium r 0 ( = r 0,) given by Eq. ( 47). 
When the external current is applied parallel to the equiconcentration plane (i.e., 
along the x axis) the equilibrium vortex lattice moves in the Y' direction in order 
to balance the Lorentz force with the pinning _force. Therefore the critical 
current is determined by the maximum pinning force arising from .the periodic 
variation of the impurity concentration. However, at. the same time. the free 
energy of the commensurate solution with the current has to be still lower than 
the free energy of the incommensurate solution, if such a configuration is really 
stable; the commensurate solution has to satisfy 

~ [1+2gQ(B)sin(qo·ro)]<1 (56) 
/Co 

and 

.dF=- 1 _ 2 [iCo-B{1+2gQ(B)sin(qo•r0,)H 
1 + f3A (2/Co -1) 

+ Cio-BY <o 
1+(3~(2/C 0 2 -1) · 

(57) 

When both Eqs. (56) and (57) are satisfied by the commensurate solution, the 
maximum value of Eq. (55) yields the critical current 
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Pinning Effect due to Periodic Variation of Impurity Concentration 15 

X {[116 (1- ~ r +2( ~ gQ(B) rr2 + !_(1- ~ )r2 
{ [ 1 (. B ) 2 

( B ) l 1
1

2 1 ( B ) } 1f2 ~ X ·.-. 1--;::- . + 2 ---:;-9Q (B) -- 1--';:;-- x . 
16 /Co ··· /Co 4 /Co 

(58) 

§ 5. Comparison with experiment 

We will now compare our result with a recent experiment by Raffy . et aF> 
They measured the. field dependence of the critical current of the vortex state in 
Pb-Bi alloys, where the Bi ·concentration is_ varied periodically in one direction. 
The specimens they used have the following parameters 

tc0=2A, ~ 0 =850A and Hc=600 Oe 

and T=0.16 . and 0.58 

depending on the duration of annealing. The number deduced for T may be 
somewhat ambiguious, since we used the values of the maximum concentration 
and the minimum concentration for their specimens together with their relation 
between the electronic mean free path and the Bi concentration for a homo

geneous specimen. Furthermore, since the specimens are not quite in the dirty 
limit (i.e., l/~o"-'0.25), we employed the Gor'kov expression for superconducting 
coherence length in alloys to obtain above r. 

For the purpose of comparison, we have chosen four sets of experimental 
data for specimens (1) with a= 1.1 (reduced unit) and r = 0.16 or 0.58 and (2) 
with a= 2.2 and T = 0.16 or 0.58. The experimental configurations are shown 
in Figs. 4(a) and (b). We are interested here in the configuration (a). In 
the configuration (b) where H is perpendicular to the equiconcentration plane, 
the :flux lines feel no pinning effect due to the periodic variation of the impurity 
concentration but may feel other pinning effect due to mainly uncontrollable 
defects. This leads to a monotonic decrease of Jcr as the magnetic field increases. 
In the following we will call other pinning effects, which are not related to the 

··z· 
IIII-I ~J 

lbl 

Fig. 4. The two experimental configurations are shown. In the configuration (a), where H 
is parallel to the equiconcentration plane, the pinning force due to the spatial variation 
of the impurity concentration is exerted on the vortex lattice, while in the configuration 
(b) the vortex lattice feels no pinning force. 

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/p
tp

/a
rtic

le
/5

3
/1

/1
/1

8
6
0
4
0
6
 b

y
 U

.S
. D

e
p
a
rtm

e
n
t o

f J
u
s
tic

e
 u

s
e
r o

n
 1

6
 A

u
g
u
s
t 2

0
2
2



16 S. Ami and K. Maki 

'2 

a • 920!11\ 
(1.11 

c •• 6.5r. 

Fig. 5. The experimental data on the critical 
currents are shown as function of H for the 
sample with a=920A. The broken curves 
are obtained from the critical currents by 
subtracting the residual one. 

2 

.lrfl• Jcr 
CAlc~) 

a • 1aao Ill 
(2;21 

C0 • 6.11~ 

0 o~L-----~----~~2~====~3 
HlkOel · 

Fig. 6. The critical currents are shown as 
function of H for the sample with a=l830A. 

periodic variation of the impurity concentration the residual one. In the 
configuration (a), where the pinning effect due to the variation of impurity 
concentration plays an important role, the ·critical field is found to have char
acteristic peaks as shown in Figs. 5 and 6. However, the observed critical 
current contains still the component due to the residual pinn!ng. Since we are 
interested only in the critical current associated with the periodic variation of 
the impurity concentration, it is necessary to subtract the critical current due 
to the residual pinning before any comparison is made. 

As we have no experiment of the critical current in homogeneous sample, 
we constructed the critical current due to the residual pinning as shown by 
chained curve. Substracting the residual critical current thus determined from 
the observed critical current, we obtained the critical currents as shown by broken 
lines in Figs. 5 and 6. 

First we will compare the peak position of the critical current with B"' the. 
resonance magnetic field. For this purpose, it is necessary to calculate the 
corresponding H"', which we determined by using the Abrikosov formula: 

(59) 

since the difference between this expression and the corresponding formula for 
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Table II. 

Theory Experiment 
a 

B (re~uced) H~>. (Oe) Hpeak (Oe) 
(re~uced) ~>. umts 

umts 
F=0.16 

I 
F=0.58 F=0.16 

I F=0.58 

1.87 1600 1600 1400 1300 

1.1 
0.68, 690 700 650 750 

0.47 520 540 

0.25 350 380 400 400 

2.2 0.47 520 540 740 760 

the commensurate solution 1s extremely small (i.e., .JF/F0rvl0-2). However, it 

has to be borne in mind that Eq. {59) is valid only in the vicinity of H"'Hc2• 

Experimental peaks ·of the critical current are determined from broken curves 

in Figs. 5 and 6 and shown in Table II. We note that there is fair correspon

dence between the theory and the experiment, although for the specimen with 

a= 2.2, the theoretical peak appears in much lower field region. Furthermore 

in the specimen with a=1.1, the field H~>.=350 Oe gives no'peak in the observed 

current but a simple shoulder. We also note that the peak corresponding B~>. = 
0.47 seems missing in the experiment. This may imply that the vortex lattice 

does not rotate much when the external field is changed, since B~>. = 0.47 corres

ponds to the third configuration in Table I. 

The critical current (Eq. (58)) and .JF (given by Eq. (57)) are evaluated 

numerically and shown in Figs. 7 and 8 for the sample with a= 1.1 and a= 2.2, 

respectively. In the insert the field dependences of .JF are shown. The theoretical 

curves (solid curves) are compared with the experimental curves (broken curves) 

which are taken from Figs. 5 and 6, respectively. For· the specimen with a= 

1.1, the theoretical behavior of the critical current reproduces fairly well the 

experimental result in the high field region~ although we have to multiply the 

theoretical value by (22)-1 in order to get a reasonable fit. In lower field region, 

where our variational solution is a poor approximation to the order parameter, 

we cannot reproduce the large structure as observed in the experiment. For 

the specimen with a= 2.2, the c~rrespondence between the theory and the ex

periment become poorer. This is probably due to the fact that already the first 

peak in the crit~cal current appears in a field much lower than Hc2• 

Therefore we may conclude that the present model describes fairly well the 

observed critical current in the high field region (i.e., H"'Hc2). However the 

theory predicts the' critical current about a factor of 10 larger than the experi

menta( value. It may be due to several origins. First we assumed that the 

impurity concentration varies as a sinusoidal function. Second, we deduced the 

value of r from the .experimental data for the maximum concentration and the 
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2 

I B 2 

a= 1.1 

1.5 
-2.5 

-· -lrfx·lil'-

-5 
10 X Jcr 

1.0 

Fig. 7. The theoretical critical currents are 

shown for a=l.l and F=0.58 and F=0.16 

as function of the induction [3. In the insert 

we plot the free energy difference JF for 

the commensurate solution and the incom

mensurate solution. 

Fig. 8. The theoretical critical currents are 

shown for a=2.2 and F=0.58 and F=0.16. 

minimum concentration, but we do not know the electron mean free paths for 
the corresponding concentrations. Furthermore we assumed that the system is 
infinite in size, while the experiment has been done in the system with the 
thickness of several t.l's. More works on this subject are certainly desirable. 
After completion of this work, we became aware of a new work by Raffy et al./6> 

where they measured the temperature dependence of the critical current as 
function of magnetic field. A preliminary comparison seems to suggest that the 
present theory describes the observed temperature dependence of the critical 
current fairly well. The details of the analysis will be published elsewhere. 
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Appendix 

We will calculate the following integral: 

(A·l) 
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Pinning Effect due to Periodic Variation of Impurity Concentration 19 

where A 0 = -xBy and !Po is defined by Eq. (13). Substituting !Po in (A1) and 

integrating over x, we have 

(A·2) 

Furthermore we can carry out the summation over q, which yields 

1=2 -f - -. L:; - · dy y+.!Lp y+.!Lp-_!l_qosin(} ( 2 ) lfll ( 2n ) 2 1 oo 1 sL·f2 ( ) ( ) 
b !Corj 2z M= -oo L 11 -L./2 b b 2n 

X exp[- 2: {y+ ! (p-i :n' qoe-te) r + i~ 0 p(( sin(} -rj cos(}) 

- q02 7J + i!l{ sin(} (rJ cos (} -( sin(}) -iqo · ro]fJ (!!__ sin(}, m) - (qo~- qo) 
~ ~ a 

(A·3) 

2 

+ i qo p (( sin(} -n cos(}) - 3_q0
2 + i~ sin (} (rJ cos (}- ( sin (}) 

b 8n 4n 

- (qo_~- qo) · (A·4) 

In going from (A·3) to (A·4), we made use of the transformation 

(A·5) 

which is allowable thanks to the exponential factor in the integrand. Finally 

the integration over y yields 

I= _ _!}__ sin(qo·ro) (1-_!j_qo2)exp(-_!j_q0
2) 

/Co 4n 8n 

X ( -1)''"'()(! sin(}, m )81(: cos(}- : sin(}, n). (A·6) 
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