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In this paper, a new impulsive control strategy, namely pinning impulsive control, is proposed
for the stabilization problem of nonlinear dynamical networks with time-varying delay. In this
strategy, only a small fraction of nodes is impulsively controlled to globally exponentially sta-
bilize the whole dynamical network. By employing the Lyapunov method combined with the
mathematical analysis approach as well as the comparison principle for impulsive systems, some
criteria are obtained to guarantee the success of the global exponential stabilization process.
The obtained criteria are closely related to the proportion of the controlled nodes, the impulsive
strength, the impulsive interval and the time-delay. Numerical examples are given to demonstrate
the effectiveness of the designed pinning impulsive controllers.
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1. Introduction

Recently, increasing interest has been devoted to
the study of collective behaviors in complex dynam-
ical networks due to its frequently occurrence in
natural systems and widely potential applications
[Strogatz, 2001; Zhou et al., 2006; Gao et al., 2006;
Wang et al., 2010; Motter et al., 2005; Wang &
Chen, 2002]. Some recent advances on network syn-
chronization have been reported in [Arenas et al.,
2008].

A complex dynamical network is a large set of
interconnected nodes, and each node can be a non-
linear dynamical system with chaotic, periodic or
stable behavior. Synchronization, which means that
the state variables of the individual nodes converge
towards each other, can be realized by node infor-
mation being exchanged via inter-connections [Wu,
2007; Chen et al., 2004]. However, the final syn-
chronous state of the network, which is achieved
by the interconnecting coupling of the nodes, is
very difficult to estimate and predict due to the
individuals’ active dynamics. There is a common
need to regulate the behavior of large ensembles of
interacting individuals by external forces for many
biological, physical and social dynamical networks
[Mazenc et al., 2008; Lu et al., 2008]. For example,
many regulatory mechanisms have been uncovered
in the context of physiological, biological and cellu-
lar processes to control the dynamical processes so
as to evolve towards a desired structure, which are
fundamental to guarantee the correct functioning
of the whole network [Mazenc et al., 2008]. Con-
trol methods have also been regarded as one of the
four key features to deeply understand biological
systems at a system level [Kitano, 2002]. The issue
of consensus of multiagent systems [Olfati-Saber &
Murray, 2004; Lu et al., 2009a] is closely related
to the synchronization problem on dynamical net-
works. This is also another very interesting collec-
tive behavior that is of great interest to researchers
in computer science, biological systems, ecosystems
and several other areas [Solé & Bascompte, 2006].

Various control strategies including adaptive
control [Lu et al., 2008; Zhang et al., 2008; Wang
et al., 2008; Gleiser & Zanette, 2006], impulsive
control [Liu et al., 2005; Guan et al., 2010; Zhang
et al., 2010; Tang et al., 2010] and pinning state-
feedback control [Li et al., 2004; Chen et al., 2007;
Lu et al., 2009b; Yu et al., 2009; Sorrentino et al.,
2007; Lu & Ho, 2011] have been proposed to regu-
late different kinds of complex dynamical networks

with time-delay or noise. Pinning state-feedback
control here means that only a small fraction of
nodes is selected to be controlled to stabilize the
whole dynamical network. A great number of results
have been published in the recent literature on the
general topic of pinning state-feedback control for
network synchronization, most of which are essen-
tially obtained based on the fact that the largest
eigenvalue of the coupling matrix can be changed
from zero to be negative via state-feedback pin-
ning [Chen et al., 2007; Lu et al., 2009c]. Adaptive
controllers and impulsive controllers are simultane-
ously used to synchronize a stochastic coupled net-
work in [Tang et al., 2011]. Pinning control makes
the network control more convenient to implement
since only a small fraction of nodes is directly con-
trolled. On the other hand, it is well-known that the
impulsive control allows the stabilization of dynam-
ical networks and chaotic systems using only small
control impulses, it has been widely used to stabi-
lize dynamical networks and chaotic systems [Yang,
2001; Liu & Zhao, 2011]. However, impulsive control
is not easy to implement in a complex network envi-
ronment if all nodes have to be controlled as in [Liu
et al., 2005; Guan et al., 2010; Zhang et al., 2010;
Tang et al., 2010]. Unfortunately, to the best of our
knowledge, pinning impulsive control for network
stabilization, though vitally important for under-
standing network stabilization processes and impul-
sive feature, has not yet been studied primarily due
to the mathematical difficulties.

It is noted that time delays are often encoun-
tered in real world [Cao et al., 2008; Ponce et al.,
2009], and the delays are usually time-varying in
electronic implementation of analog networks due
to the finite switching speed of amplifiers. In many
cases, only partial information about the time-
varying delay is known such as the upper bound,
and the time-varying delay can be even nonsmooth.
Design flaws and incorrect analytical conclusions
can be obtained if time-varying delays are not con-
sidered or not well described in system modeling.
Therefore, it is of great importance to consider the
effects of time-varying delay for the pinning impul-
sive stabilization of dynamical networks.

Motivated by the above discussions, we aim to
study the pinning stabilization problem of nonlin-
ear complex dynamical networks with time-varying
delay. Instead of state-feedback controllers, impul-
sive controllers will be used to pin a small fraction
of nodes for successful control, and the states of
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Impulsive Stabilization of Nonlinear Dynamical Networks with Time-Varying Delay

the whole dynamical network can be globally expo-
nentially forced to the objective state. The nodes
to be impulsively controlled should be different at
distinct control instants. Some easily-verified crite-
ria will be presented by employing some analytical
methods, Lyapunov method and comparison princi-
ple for impulsive systems. The relationship among
the proportion of the controlled nodes, an upper
bound of time-varying delay, impulsive strengths,
and impulsive interval of the dynamical networks is
well explained in the obtained criteria. Simulation
examples are given to demonstrate the effectiveness
of the proposed pinning impulsive method.

The rest of this paper is organized as follows. In
Sec. 2, some preliminaries are presented. In Sec. 3,
pinning impulsive control strategy is given and some
stabilization criteria are derived. In Sec. 4, numeri-
cal examples are given to demonstrate the effective-
ness of the results obtained. Concluding remarks are
drawn in Sec. 5.

Notations. The standard notations will be used
in this paper. In is the identity matrix of order n.
We use λmax(·) to denote the maximum eigen-
value of a real symmetric matrix. R

n denotes
the n-dimensional Euclidean space. 0 denotes
n-dimensional zero vector. R

n×n are n × n real
matrices. The superscript “T” represents the
transpose. diag{· · ·} stands for a block-diagonal
matrix. Matrices, if not explicitly stated, are
assumed to have compatible dimensions. Let ‖x‖
be the Euclid vector norm of x ∈ R

n, and PC(m)
denote the class of piecewise right continuous func-
tion ϕ : [t0 − τ,+∞) → R

m(m ∈ N) with the norm
defined by ‖ϕ(t)‖τ = sup−τ≤s≤0 ‖ϕ(t + s)‖. For
ϕ : R → R, denote ϕ(t+) = lims→0+ ϕ(t + s) and
ϕ(t−) = lims→0− ϕ(t + s). #G denotes the number
of elements of a finite set G. The Dini derivative of
ϕ(t) is defined as D+ϕ(t) = lim sups→0+

ϕ(t+s)−ϕ(t)
s

.

2. Some Preliminaries

In this section, some preliminaries including model
formulation and some lemmas are presented. The
basic nonlinear dynamical network model will be
introduced in various stages starting with a triv-
ial network of decoupled nodes governed by delayed
differential equations.

A neural network is a mathematical model con-
sisting of an interconnected group of artificial neu-
rons, which has potential applications in secure
communication and pattern recognition [Fischer

et al., 2000]. In this paper, the following neural net-
work with time-varying delay [Cao & Ho, 2005] is
taken as a single node of the nonlinear dynamical
network:

ẏ(t) = −Cy(t) + Bf̃1(y(t))

+ Df̃2(y(t − τ(t))) (1)

where y(t) = (y1(t), y2(t), . . . , yn(t))T ∈ R
n is the

state vector associated with the neurons; C =
diag(c1, c2, . . . , cn) > 0 (a positive-definite diago-
nal matrix), B = (bij)n×n and D = (dij)n×n are
the connection weight matrix and the delayed con-
nection matrix, respectively; τ(t) is the transmis-
sion time-varying delay satisfying 0 < τ(t) ≤ τ∗;
f̃1(y(t)) = (f̃11(y1(t)), . . . , f̃1n(yn(t)))T ∈ R

n and
f̃2(y(t − τ(t))) = (f̃21(y1(t − τ(t)), . . . , f̃2n(yn(t −
τ(t))))T ∈ R

n denote the activation functions of
the neurons satisfying f̃1(0) = 0 and f̃2(0) = 0.

By nonlinear coupling of N nodes in a com-
plex network, we can obtain the following nonlinear
dynamical network model:

ẋi(t) = −Cxi(t) + Bf̃1(xi(t)) + Df̃2(xi(t − τ(t)))

+ c
N∑

j=1

aijΓH̃(xj(t)), i = 1, 2, . . . , N,

(2)

where xi(t) ∈ R
n is the state vector of the ith

node; Γ = diag{γ1, γ2, . . . , γn} > 0 is the inner
coupling matrix between two connected nodes;
c > 0 is the coupling strength of the dynam-
ical network; the nonlinear function is defined
as H̃(xj(t)) = (h̃(xj1(t)), h̃(xj2(t)), . . . , h̃(xjn(t)))T

and h̃(·) is a monotonically increasing function sat-
isfying [(h̃(u)−h̃(v))/(u−v)] ≥ ϑ > 0 for any u, v ∈
R; A = (aij)N×N is the Laplacian coupling matrix
representing the coupling topology of the dynami-
cal network [Chung, 1997]. The elements aij of the
matrix A are defined as follows: if there is a connec-
tion between nodes i and j (i �= j), aij = aji > 0;
otherwise aij = aji = 0 (i �= j), and the diffusivity

coupling condition aii = −∑N
j=1,j �=i aij is satisfied

for the diagonal elements aii (i = 1, 2, . . . , N). The
Laplacian matrix A is assumed to be irreducible
throughout this paper. This diffusivity condition
implies that the nonlinearly coupled dynamical net-
work would be decoupled when the array of nodes
is synchronized.

In this paper, the objective trajectory that the
nonlinear dynamical network (2) will be forced to,
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J. Lu et al.

is selected as any solution s(t) of the system (1) sat-
isfying ṡ(t) = −Cs(t)+Bf̃1(s(t))+Df̃2(s(t−τ(t))).
Let ei(t) = xi(t) − s(t) be the error state of node
i between the current state xi(t) and the objective
state s(t). Then, the following error dynamical net-
work can be obtained by considering the fact that
c
∑N

j=1 aijΓH̃(s(t)) = 0:

ėi(t) = −Cei(t) + Bf1(ei(t)) + Df2(ei(t − τ(t)))

+ c

N∑

j=1

aijΓH(ej(t)), i = 1, 2, . . . , N,

(3)

where f1(ei(t)) = f̃1(xi(t)) − f̃1(s(t)), f2(ei(t)) =

f̃2(xi(t)) − f̃2(s(t)), and H(ej(t)) = H̃(xi(t)) −
H̃(s(t)) := (h(ej1(t)), h(ej2(t)), . . . , h(ejn(t)))T ).

By referring to the property of the function H̃(·),
we have [(h(u) − h(v))/(u − v)] ≥ ϑ > 0.

The following assumption is needed for the
proof of the main results in the next section.

Assumption 1. The neuron activation functions
f̃1(·) and f̃2(·) of the neural network satisfy the
following Lipschitz condition:

‖f̃1(x) − f̃1(y)‖ ≤ l1‖x − y‖,
‖f̃2(x) − f̃2(y)‖ ≤ l2‖x − y‖,

∀x, y ∈ R
n, (4)

where l1 and l2 are positive constants.

3. Main Results

In this section, pinning impulsive controllers will
be designed to globally and exponentially stabilize
the dynamical network with nonlinear coupling. In
order to drive the nonlinear dynamical network into
the objective state s(t), the following impulsive con-
trollers are constructed for l nodes (l ≪ N):

ui(t) =

+∞∑

k=1

µei(t)δ(t − tk), i ∈ D(t), (5)

where µ ∈ (−2,−1) ∪ (−1, 0) is a constant, which
means that the impulsive effects can be used to sta-
bilize the nonlinear dynamical network; the time
series {t1, t2, t3, . . .} is a sequence of strictly increas-
ing impulsive instants satisfying limk→∞ tk = ∞,
and the index set of l nodes D(t) which should be
impulsively controlled is defined as follows: At time
instant t, for the error states e1(t), e2(t), . . . , eN (t),

one can reorder the vectors such that ‖ep1(t)‖ ≥
‖ep2(t)‖ ≥ · · · ≥ ‖epl(t)‖ ≥ · · · ≥ ‖epN (t)‖. Then,
the index set of l controlled nodes D(t) is defined
as D(t) = {p1, p2, . . . , pl}.

Remark 3.1. If there are more than l states with
the same norm (i.e. ‖epl(t)‖ = ‖ep,l+1(t)‖ = · · · =
‖ep,l+̟(t)‖), any node with the same norm can be
selected into the set D(t) for satisfying #D(t) = l.

After adding the pinning impulsive con-
trollers (5) to the nodes D(t), the controlled dynam-
ical network can be rewritten as follows:






ėi(t) = −Cei(t) + Bf 1(ei(t))

+ Df 2(ei(t − τ(t))) + c

N∑

j=1

aijΓH(ej(t)),

t ≥ 0, t �= tk, k ∈ N,

ei(t
+
k ) = ei(t

−
k ) + µei(t

−
k ), i ∈ D(tk).

(6)

Remark 3.2. From the second equation of (6), we
can see that only l (l ≪ N) nodes are impulsively
controlled. This means that we do not need to add
controllers to each node, and hence the control cost
can be substantially lower and our strategy can be
easier to implement. It is noted that the controlled
nodes can be distinct at different instants.

The initial conditions of dynamical network (6)
are given by

ei(t) = φi(t), −τ∗ ≤ t ≤ 0, i = 1, 2, . . . , N,

(7)

where φi(t) ∈ C([−τ∗, 0], Rn) is the set of continu-
ous functions from [−τ∗, 0] to R

n.
Throughout this paper, we always assume that

ei(t) is right continuous at t = tk, i.e. e(tk) = e(t+k ).
Therefore, the solutions of (6) are piecewise right-
hand continuous functions with discontinuities at
t = tk for k ∈ N.

Definition 3.1. The nonlinear dynamical net-
work (2) is said to be globally exponentially stabi-
lized to the objective state s(t) if there exist λ > 0,
T0 > 0 and θ > 0 such that for any initial values
φi(·) (i = 1, 2, . . . , N),

‖ei(t)‖ = ‖xi(t) − s(t)‖ ≤ θe−λt

hold for all t > T0, and for any i = 1, 2, . . . , N .
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Impulsive Stabilization of Nonlinear Dynamical Networks with Time-Varying Delay

Lemma 1 [Yang & Xu, 2007]. Let 0 ≤ τi(t) ≤ τ,

F (t, u, u1, . . . , um) : R
+ ×

m+1
︷ ︸︸ ︷

R × · · · × R → R

be nondecreasing in ui for each fixed

(t, u, u1, . . . , ui−1, ui+1, . . . , um), i = 1, 2, . . . ,m,
and Ik(u) : R → R be nondecreasing in u. Sup-

pose that u(t), v(t) ∈ PC(1) satisfy







D+u(t) ≤ F (t, u(t), u(t − τ1(t)), . . . ,

u(t − τm(t))), t �= tk, t ≥ 0

u(tk) ≤ Ik(u(t−k )), k ∈ N

and







D+v(t) > F (t, v(t), v(t − τ1(t)), . . . ,

v(t − τm(t))), t �= tk, t ≥ 0

v(tk) ≥ Ik(v(t−k )), k ∈ N.

Then u(t) ≤ v(t), for −τ ≤ t ≤ 0 implies u(t) ≤
v(t), for t ≥ 0.

Remark 3.3. Lemma 1 is an extended compari-
son theorem for the impulsive system with time-
delay. By using the comparison principle and the
Lyapunov stability method [Lu et al., 2011; Lu
et al., 2010; Yang & Xu, 2007], the main result on
pinning impulsive stabilization of nonlinear dynam-
ical networks will be derived.

Theorem 1. Let ρ = N+lµ(µ+2)
N

∈ (0, 1) and T =
maxk∈N{tk+1 − tk} < ∞. Suppose that

λmax(−C − CT ) + 2l1

√

λmax(BT B)

+ 2l2

√

λmax(DT D)

ρ
+

ln ρ

T
< 0, (8)

then the complex dynamical network (6) with pin-

ning impulsive controllers is globally exponentially

stable in the following sense:

‖ei(t)‖ ≤ ρ−1 sup
−τ∗≤s≤0

{
N∑

i=1

‖φi(s)‖2

}

e−λt (9)

where λ > 0 is a unique solution of

λ − β + ρ−
1
2 d · eλτ∗

= 0, t > 0 (10)

in which

β = −
(

λmax(−C − CT )

+ 2l1

√

λmax(BT B) +
d√
ρ

+
ln ρ

T

)

and d = l2
√

λmax(DT D). This means that the non-

linear dynamical network (2) can be exponentially

stabilized to the objective state s(t) by the pinning

impulsive controllers (5) if the inequality (8) is

satisfied.

Remark 3.4. In Theorem 1, T = maxk∈N{tk+1 −
tk} is the maximum impulsive interval which
means the maximum time difference between two
impulses. Normally, this concept is used, when
the impulses are synchronizing (or stabilizing), in
order to characterize the frequency of impulses
and to guarantee that the frequency of impulses
should not be too low. By revising the proof
of the main results, a newly proposed concept
of “average impulsive interval” [Lu et al., 2010]
can be used to make the obtained result less
conservative.

Remark 3.5. Although the coupling matrix A in this
paper is assumed to be irreducible, the results in
Theorem 1 can be easily extended to the case of a
reducible coupling matrix [Lu et al., 2009b] by uti-
lizing the normalized left eigenvector of the coupling
matrix with respect to the eigenvalue zero and using
the fact that the maximum value of the real part of
the eigenvalue is zero. For directed networks with
a rooted spanning tree, it would be much easier to
control the whole network by impulsively control-
ling a small fraction of nodes in the group of rooted
nodes and the nonrooted nodes can be virtually
controlled.

For linearly coupled dynamical networks with-
out delay term (i.e. h̃(xj(t)) = xj(t) and D = 0),
one can easily derive the following corollary. Con-
sider the following linearly coupled dynamical
networks:

ẋi(t) = −Cxi(t) + Bf̃1(xi(t))

+ c
N∑

j=1

aijΓxj(t), i = 1, 2, . . . , N. (11)
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Corollary 3.1. Let ρ = N+lµ(µ+2)
N

∈ (0, 1) and

T = maxk∈N{tk − tk−1} < ∞. Suppose that

λmax(−C − CT ) + 2l1

√

λmax(BT B) +
ln ρ

T
< 0,

(12)

then the linearly coupled dynamical network (11)
can be exponentially forced onto the objective tra-

jectory s(t) by pinning impulsive controllers (5)
with the convergence rate λ = −(λmax(−C −CT ) +

2l1
√

λmax(BT B) + ln ρ
T

).

Remark 3.6. It can be observed from Theorem 1 and
Corollary 3.1 that whether the pinning impulsive
control and the stabilizing convergent rate can be
successful depends on the proportion of the con-
trolled nodes, the upper bound of the time-varying
delay, the impulsive strengths and the impulsive
interval of the dynamical networks. The higher the
proportion of the controlled nodes is, the easier the
dynamical network can be efficiently controlled.

4. Numerical Examples

In this section, two examples are shown to illustrate
the results obtained in the previous section. Con-
sider the following system as the individual node in
the dynamical network:

ẏ(t) = −Cy(t) + Bf̃1(y(t))

+ Df̃2(y(t − τ(t))), (13)

with C = I2, B =
(

2.0 −0.11

−5.0 3.2

)
, D =

(
−1.6 −0.1

−0.18 −2.4

)
,

and τ(t) = et

1+et ≤ 1, where y(t) = (y1(t), y2(t))
T

is the state vector of the single neural network,
and f̃1(y(t)) = f̃2(y(t)) = (tanh(y1), tanh(y2))

T .
Then, one can easily obtain l1 = l2 = 1 for satisfy-
ing Assumption 1. The single individual (13) has a
chaotic attractor [Lu, 2002] (as shown in Fig. 1)
for the initial values y1(̺) = 0.2, y2(̺) = 0.5,
∀ ̺ ∈ [−1, 0].

As examples, two practical network models
including BA (Barabási–Albert) scale-free network
[Barabási & Albert, 1999] and NW (Newman–
Watts) small-world network [Newman & Watts,
1999] are considered. A 100 nodes’ scale-free net-
work is generated by taking m = m0 = 5. A 100
nodes’ small-world network is generated by taking
initial neighboring nodes k = 4 and the edge adding
probability p = 0.1. The weight of the coupling
matrix A is defined as follows: if there is a con-
nection between nodes i and j, then aij = aji = 1,
otherwise aij = aji = 0.

The parameters corresponding to the network
coupling are taken as follows: the nonlinear cou-
pling function h̃ is taken as h̃(z) = z +tanh(z) with
ϑ = 1, coupling strength c = 2 and the inner cou-
pling matrix Γ = I2.

In both examples, according to the algorithm
described before Remark 3.1, l = 30 nodes are
selected to be pinning controlled at each time
instant, and the objective trajectory s(t) is taken
as s(t) = 0. Take µ = −0.9 and tk − tk−1 = 0.02,

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8
−5

−4

−3

−2

−1

0

1

2

3

4

5

y1

y
2

Fig. 1. Chaotic attractor of the single individual (13) in the dynamical network.
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−1 −0.5 0 0.5 1 1.5
−5

−4

−3

−2

−1

0

1

2

3

4

5

t

e
i(
t)

Fig. 2. The states of 100 nodes’ scale-free network are successfully forced to the objective state (s(t) = 0) by impulsively
controlling 30 nodes.

−1 −0.5 0 0.5 1 1.5
−3

−2

−1

0

1

2

3

t

e
i(
t)

Fig. 3. The 100 nodes’ states in small-world network are forced to the objective original state by impulsively controlling
30 nodes.

one gets that λmax(−C −CT ) + 2l1
√

λmax(BT B)+

2l2

√
λmax(DT D)

ρ
+ lnρ

T
= −1.4508 < 0. According

to Theorem 1, we can conclude that both networks
can be successfully stabilized to the objective tra-
jectory s(t). Figures 2 and 3 are plotted to present
the successful stabilization process, respectively, for
scale-free and small-world networks. In the simu-
lations, all initial conditions of the nodes are ran-
domly selected from [−5, 5].

5. Conclusion

This paper has been devoted to studying pin-
ning impulsive stabilization of complex dynamical

networks with nonlinear coupling and time-varying
delay. Different from existing results about impul-
sive control, only a small fraction of nodes has
been selected to be impulsively controlled to sta-
bilize the whole state-coupled dynamical networks.
By using an impulsive delay differential inequal-
ity and an efficient algorithm, a small fraction of
nodes has been carefully chosen to be controlled
by designed impulsive controllers. The derived sta-
bilization criterion and the convergence rate are
closely related with the proportion of the controlled
nodes, the time-delay, impulsive strengths, and
impulsive interval of the dynamical networks. There
is no more constraint on the time-varying delay
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except boundedness. Two simulation examples have
been presented to illustrate the usefulness and effec-
tiveness of the main results obtained.
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Appendix

Proof of Theorem 1

Proof. Construct a Lyapunov function in the form
of

V (t) =

N∑

i=1

eT
i (t)ei(t). (A.1)

For any t ∈ [tk−1, tk), taking derivative of V (t)
along the solution of (6) gives that

D+V (t) =
N∑

i=1

2[−eT
i (t)Cei(t) + eT

i (t)Bf1(ei(t)))

+ eT
i (t)Df2(ei(t − τ(t)))]

+
N∑

i=1

N∑

j=1

2caije
T
i (t)ΓH(ej(t)). (A.2)

Letting d = l2
√

λmax(DT D), by Assumption 1,
we obtain

2eT
i (t)Bf1(ei(t))

≤ 2‖ei(t)‖ ·
√

‖Bf1(ei(t))‖2

≤ 2‖ei(t)‖ ·
√

λmax(BT B)l21‖ei(t)‖2

≤ 2
√

λmax(BT B)l1e
T
i (t)ei(t), (A.3)

and

2eT
i (t)Df2(ei(t − τ(t)))

≤ 2 ·
√

d√
ρ
‖ei(t)‖2 ·

√√
ρ

d
‖Df2(ei(t − τ(t)))‖2

= 2 ·
√

d√
ρ
‖ei(t)‖2

·
√√

ρ

d
fT

2 (ei(t − τ(t)))DT Df2(ei(t − τ(t)))
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≤ 2 ·
√

d√
ρ
‖ei(t)‖2

·
√√

ρ

d
λmax(DT D)l22‖ei(t − τ(t))‖2

= 2 ·
√

d√
ρ
‖ei(t)‖2 ·

√

d
√

ρ‖ei(t − τ(t))‖2

≤ d√
ρ
‖ei(t)‖2 + d

√
ρ‖ei(t − τ(t))‖2. (A.4)

Let eι(t) = (e1ι(t), e2ι(t), . . . , eNι(t))
T and

H(eι(t)) = (h(e1ι(t)), h(e2ι(t)), . . . , h(eNι(t)))
T .

From the diffusivity property of matrix A and the
assumption of [(h(u) − h(v))/(u − v)] ≥ ϑ > 0, it
follows that

N∑

i=1

N∑

j=1

2caije
T
i (t)ΓH(ej(t))

=
N∑

i=1

N∑

j=1

2caij

[
n∑

ι=1

eiι(t)γιH(ejι(t))

]

=

n∑

ι=1

2cγι





N∑

i=1

N∑

j=1

eiι(t)aijH(ejι(t))





=
n∑

ι=1

2cγι(e
ι(t))T AH(eι(t))

= −
n∑

ι=1

cγι

N∑

i=1

N∑

j=1,j �=i

aij(eiι(t) − ejι(t))

× (H(eiι(t)) − H(ejι(t)))

≤ −
n∑

ι=1

N∑

i=1

N∑

j=1,j �=i

ϑcγιaij(eiι(t) − ejι(t))
2

≤ 0. (A.5)

Considering the inequalities (A.3)–(A.5), it
follows from (A.2) that

D+V (t) ≤
N∑

i=1

[
−2eT

i (t)Cei(t)

+ 2
√

λmax(BT B)l1e
T
i (t)ei(t)

]

+
N∑

i=1

d√
ρ
‖ei(t)‖2

+

N∑

i=1

d
√

ρ‖ei(t − τ(t))‖2

≤
N∑

i=1

(

α +
d√
ρ

)

eT
i (t)ei(t)

+

N∑

i=1

d
√

ρ‖ei(t − τ(t))‖2

=

(

α +
d√
ρ

)

V (t)

+ d
√

ρV (t − τ(t)), (A.6)

where α = λmax(−C − CT ) + 2
√

λmax(BT B)l1.
When t = tk, we have

V (t+k ) =

N∑

i=1

eT
i (t+k )ei(t

+
k )

=
∑

i∈D(tk)

(1 + µ)2eT
i (t−k )ei(t

−
k )

+
∑

i�∈D(tk)

eT
i (t−k )ei(t

−
k ). (A.7)

Let ϕ(t−k ) = min{‖ei(t
−
k )‖ : i ∈ D(t−k )} and

ψ(t−k ) = max{‖ei(t
−
k )‖ : i �∈ D(t−k )}, then we can

get ψ(t−k ) ≤ ϕ(t−k ).

Since ρ = N+lµ(µ+2)
N

∈ (0, 1), one has N − l =
[ρ−(1+µ)2]l

(1−ρ) ≥ 0, which further gives that

∑

i�∈D(tk)

eT
i (t−k )ei(t

−
k )

≤ (N − l)ψ2(t−k ) ≤ (N − l)ϕ2(t−k )

≤ [ρ − (1 + µ)2]l

(1 − ρ)
ϕ2(t−k )

≤ ρ − (1 + µ)2

(1 − ρ)

∑

i∈D(tk)

eT
i (t−k )ei(t

−
k ).

(A.8)
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Then by some calculations, we have

(1 + µ)2
∑

i∈D(tk)

eT
i (t−k )ei(t

−
k ) +

∑

i�∈D(tk)

eT
i (t−k )ei(t

−
k )

≤ ρ

N∑

i=1

eT
i (t−k )ei(t

−
k ) = ρV (t−k ). (A.9)

If follows from (A.7) that

V (t+k ) ≤ ρV (t−k ). (A.10)

For any ǫ > 0, let ν(t) be a unique solution of
the following impulsive delayed systems (A.11):







ν̇(t) =

(

α +
d√
ρ

)

V (t) + d
√

ρ · ν(t − τ(t))

+ ǫ, t ≥ 0, t �= tk, k ∈ N,

ν(t+k ) = ρν(t−k ), k ∈ N,

ν(t) =

N∑

i=1

‖φi(t)‖2, −τ∗ ≤ t ≤ 0.

(A.11)

According to Lemma 1, we have ν(t) ≥ V (t) ≥
0 for any t ≥ 0.

By using the formula for the variation of param-
eters [Lakshmikantham et al., 1989], we can obtain
the following integral equation for ν(t):

ν(t) = W (t, 0)ν(0)

+

∫ t

0
W (t, s)[d

√
ρ · ν(s − τ(s)) + ǫ]ds,

t ≥ 0, (A.12)

where W (t, s) (t > s ≥ 0) is the Cauchy matrix of
the following linear impulsive system:






ẇ(t) =

(

α +
d√
ρ

)

w(t), t ≥ 0, t �= tk, k ∈ N

w(t+k ) = ρw(t−k ), k ∈ N.

(A.13)

Since 0 < ρ < 1 and T = maxk∈N{tk − tk−1},
we have

W (t, s) = e
(α+ d√

ρ
)(t−s)

∏

s<tk≤t

ρ

≤ e
(α+ d√

ρ
)(t−s)

ρ[ (t−s)
T

−1]

= ρ−1 · e(α+ d√
ρ
+ ln ρ

T
)(t−s)

,

t ≥ s ≥ 0. (A.14)

Letting θ = ρ−1 sup−τ∗≤s≤0{
∑N

i=1 ‖φi(s)‖2}
and β = −(α + d√

ρ
+ lnρ

T
), we have

ν(t) ≤ ρ−1
N∑

i=1

‖φi(0)‖2 · e(α+ d√
ρ
+ lnρ

T
)t

+

∫ t

0
ρ−1e

(α+ d√
ρ
+ ln ρ

T
)(t−s)

× [d
√

ρ · ν(s − τ(s)) + ǫ]ds

≤ θ · e−βt +

∫ t

0
e−β(t−s)

× [ρ−
1
2 d · ν(s − τ(s)) + ρ−1ǫ]ds,

t ≥ 0. (A.15)

Let g(λ) = λ − β + ρ−
1
2 d · eλτ∗

. Since β > 0,

d > 0, 0 < ρ < 1 and α + 2d√
ρ

+ ln ρ
T

< 0, we

have g(0) = −β + ρ−
1
2 d < 0, g(∞) > 0 and

g′(λ) = 1 + λρ−
1
2 d · eλτ∗

> 0. Consequently, we
can conclude that g(λ) = 0 has a unique solution
λ > 0.

Since 0 < ρ < 1, for −τ∗ ≤ t ≤ 0, we have

ν(t) ≤ ρ−1 ·
N∑

i=1

‖φi(t)‖2

< θe−λt +
ǫ

βρ − d
√

ρ
. (A.16)

In the following, we shall prove that, for t ≥ 0,
the following is true:

ν(t) < θe−λt +
ǫ

βρ − d
√

ρ
. (A.17)

If (A.17) is not true, then there exists a t∗ > 0
such that

ν(t∗) ≥ θe−λt∗ +
ǫ

βρ − d
√

ρ
, (A.18)

and

ν(t) < θe−λt +
ǫ

βρ − d
√

ρ
, for t < t∗. (A.19)
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J. Lu et al.

By using (10), (A.15) and (A.19), some detailed calculations give that

ν(t∗) ≤ θ · e−βt∗ +

∫ t∗

0
e−β(t∗−s)[ρ−

1
2 d · ν(s − τ(s)) + ρ−1ǫ]ds

< e−βt∗

[

θ +
ǫ

βρ − d
√

ρ
+

∫ t∗

0
eβs

[

ρ−
1
2 d · (θe−λ(s−τ(s))) + ρ−

1
2 d · ǫ

βρ − d
√

ρ
+ ρ−1ǫ

]

ds

]

≤ e−βt∗

[

θ +
ǫ

βρ − d
√

ρ
+ ρ−

1
2 dθeλτ∗

∫ t∗

0
e(β−λ)sds +

βǫ

βρ − d
√

ρ

∫ t∗

0
eβsds

]

= θe−βt∗ +
ǫ

βρ − d
√

ρ
· e−βt∗ + e−βt∗ρ−

1
2 dθeλτ∗ · e(β−λ)t∗ − 1

β − λ
+ e−βt∗ · βǫ

βρ − d
√

ρ
· eβt∗ − 1

β

= θe−λt∗ +
ǫ

βρ − d
√

ρ
, (A.20)

which leads to a contradiction with (A.18). Therefore, the inequality (A.18) holds. Letting ǫ → 0, for t ≥ 0,
we have

ν(t) ≤ θe−λt. (A.21)

which further implies that
∑N

i=1 eT
i (t)ei(t) = V (t) ≤ ν(t) ≤ θe−λt. The proof is hence completed by

referring to Definition 3.1. �
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