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Abstract. The existence and uniqueness of vortex solutions is proved for Ginzburg–
Landau equations with external potentials in R2. These equations describe the equi-
librium states of superconductors and the stationary states of the U(1)-Higgs model
of particle physics. In the former case, the external potentials are due to impurities
and defects. Without the external potentials, the equations are translationally (as
well as gauge) invariant, and they have gauge equivalent families of vortex (equivari-
ant) solutions called magnetic or Abrikosov vortices, centered at arbitrary points of
R2. For smooth and sufficiently small external potentials, it is shown that for each

critical point z0 of the potential there exists a perturbed vortex solution centered
near z0, and that there are no other single vortex solutions. This result confirms the
“pinning” phenomena observed and described in physics, whereby magnetic vortices
are pinned down to impurities or defects in the superconductor.

§1. Introduction and statement of the problem

For a superconductor of type II, if the external magnetic field satisfies hc < h < hc2 ,
then the magnetic field penetrates the material in tubular flux lines called magnetic
vortices. To date, superconductors have been very useful in making steady magnetic
fields of over 100, 000 Gauss. One major problem encountered when trying to produce
large magnetic fields is the dissipation of energy due to creeping or flow of vortices [T].
The phenomenon of creeping of vortices can be explained by the Lorentz force between
the superconducting current and the magnetic flux lines. It can be shown that the force
acting on a single vortex is proportional to the superconducting current. This force
moves the flux lines transversely to the current, which, in turn, induces an electric field
parallel to the current. The electric field generated by the moving vortex acts to resist
the current flow, and hence energy is dissipated.

A way to resolve the problem of creeping of vortices is to pin vortices down. It
is well known that spatial inhomogeneities, impurities or point defects in the sample,
or variable thickness [DG] in the superconducting material can immobilize a flux line.
Showing that this indeed happens, say in the framework of the macroscopic model of a
superconductor, leads to an interesting mathematical problem. Namely, the problem is
to prove that out of a continuum of vortex states only a few survive when an impurity
potential is introduced, and that the surviving states are localized near critical points of
the potential in question. Moreover, one would like to determine which of these states are
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212 I. M. SIGAL AND F. TING

stable. The first of these problems is addressed in this paper, while the second (stability
of vortex states) will be addressed elsewhere [ST].

In this paper we work within the standard macroscopic (or mean field) theory of
superconductivity. In this theory, due to Ginzburg and Landau, the stationary states of
superconductors are described by pairs (ψ,A), where ψ : R2 → C is the order parameter
and A : R

2 → R
2 is the magnetic potential. These states satisfy the system of equations

−∆Aψ +
λ

2
(|ψ|2 − 1)ψ = 0,(1.1)

∇×∇×A+ Im(ψ̄∇Aψ) = 0,(1.2)

called the Ginzburg–Landau (GL) equations. Here λ > 0 is a constant depending on the
material in question, ∇A = ∇− iA is the covariant gradient, and ∆A = ∇2

A. For a vector
A, ∇× A is the scalar ∂1A2 − ∂2A1, and for a scalar ξ, ∇× ξ is the vector (−∂2ξ, ∂1ξ).
Equation (1.2) is the Maxwell equation involving the magnetic field B = curlA and the
supercurrent Im(ψ̄∇Aψ). Equations (1.1) and (1.2) are supplemented with the boundary
condition

(1.3) |ψ(x)| → 1 as |x| → ∞.

Equations (1.1) and (1.2) are the Euler–Lagrange equations for the Ginzburg–Landau
energy functional

E(ψ,A) =
1
2

∫
R2

(
|∇Aψ|2 + (∇×A)2 +

λ

4
(|ψ|2 − 1)2

)
dx,

i.e., the solutions of (1.1) and (1.2) are critical points of E : E ′(ψ,A) = 0.
We define the vorticity or the winding number of a vector field ψ : R2 → C at infinity

as degψ := deg
(
ψ
|ψ| ||x|=R

)
= 1

2π

∫
|x|=R d(argψ) for R sufficiently large. Assume that a

pair (ψ,A) has finite energy; then the degree of the vector field ψ is related to the flux
of the magnetic field B = curlA as follows:∫

R2
B dx = 2π(degψ).

Besides the trivial solutions ψ = 1, A = 0 and ψ = 0,∇ × A = B0 (B0 is a con-
stant vector field), which correspond to purely superconducting and normal states of the
material, respectively, equations (1.1)–(1.2) also have remarkable solutions of the form

(1.4) ψn(x) = fn(r)einθ and An(x) = an(r)∇(nθ)

called (magnetic or Abrikosov) n-vortices. Here (r, θ) are the polar coordinates of the
vector x ∈ R2 and n is an integer. Note that degψn = n. The existence of such solutions
was predicted by A. Abrikosov, who together with V. L. Ginzburg shared the 2003 Nobel
prize in Physics for this discovery (see www.nobel.se). The existence was proved by
Pholr [P] and by Berger and Chen [BC] by using methods of the calculus of variations.
Stability of n-vortices was proved by Gustafson and Sigal [GS1].

The following information on the vortex profiles fn and an is available (see [BC]):
0 < fn < 1, 0 < an < 1 on (0,∞); f ′n, a′n > 0; 1 − fn, 1 − an → 0 as r → ∞ with an
exponential rate of decay; fn ≈ crn, an ≈ dr2 (c > 0, d > 0 are constants) as r → 0.

Equations (1.1) and (1.2) have translational and gauge symmetries

ψ(x) �→ ψ(x− z), A(x) �→ A(x − z)

and
ψ �→ eiγψ, A �→ A+ ∇γ
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PINNING OF MAGNETIC VORTICES BY AN EXTERNAL POTENTIAL 213

for any z ∈ R2 and any twice differentiable γ : R2 → R, respectively. Consequently,
solutions (1.4) lead to the following families of solutions:

(1.5) ψnzγ(x) = eiγψn(x− z), Anzγ(x) = An(x− z) + ∇γ(x− z),

where n is an integer, z ∈ R
2 and γ : R

2 → R.
Equations (1.1)–(1.2) also have rotational symmetry:

ψ(x) → ψ(gx), A(x) → g−1A(gx)

for any g ∈ O(2), but this symmetry plays no role in our analysis.
If a superconductor has impurities, then the GL equations are modified to

−∆Aψ +
λ

2
(|ψ|2 − 1)ψ +Wε(x)ψ = 0,(1.6)

∇×∇×A+ Im(ψ̄∇Aψ) = 0,(1.7)

where Wε : R
2 → R is a potential of impurities. We assume that W0 = 0.

The problem we address in this paper is the existence and uniqueness of vortex-type
solutions of the Ginzburg–Landau system (1.6)–(1.7) with external potential Wε, near
the vortex solutions (1.5).

Notation. Throughout this paper, we are working with Sobolev spaces but we use only
L2 inner products.

Acknowledgement. I.M.S. thanks S. Gustafson for fruitful collaboration on magnetic
vortices.

§2. Results

In this section, we state our assumptions on the potential Wε and our main theorems.
In what follows, we consider only the 1-vortex (ψ1, A1) and use the notation ψ0 ≡ ψ1

and A0 ≡ A1. Results for the −1-vortex are exactly the same. Proving similar results
for n-vortices requires some additional technical steps and the corresponding results will
be presented elsewhere.

We assume the potential Wε satisfies the following conditions:

• (A) Wε is O(ε) in L2;
• (B) |∂αxWε(x)| ≤ Cαεδ

|α| for 0 ≤ |α| ≤ m and for some ε, δ > 0.

Define the effective potential experienced by the vortex (ψ0, A0) as

Weff,ε(z) =
1
2

∫
Wε(x)(|ψ0(x− z)|2 − 1) dx.

We consider the domain

Ωεδ = {x ∈ R
2 : if |W ′ε(x)| 	 εδ, then W ′′ε (x) is invertible and ‖W ′′ε (x)−1‖ ≤ c(εδ2)−1}.

Theorem 2.1 (Existence). Let Wε(x) satisfy conditions (A) and (B) with m = 3, δ 	 1,
and ε	 δ2. Suppose Weff,ε has a critical point at z0 ∈ Ωεδ. Then for ε sufficiently small,
there exist solutions of (1.6) and (1.7) of the form

ψε(x) = eiγ(x)ψ0(x− zε) + ξε(x), Aε(x) = A0(x− zε) + βε(x) + ∇γ(x),

where zε = z0 + O(ε), the functions ξε, βε are O(ε) in H2(R2; C) and H2(R2; R2), re-
spectively, and γ is an arbitrary H1(R2; R)-function.
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214 I. M. SIGAL AND F. TING

Let v =
(
ψ
A

)
and vzγ =

( ψzγ

Azγ

)
, where

(2.1) ψzγ = ei(γ+z·Az)ψz Azγ = Az + ∇(z ·Az) + ∇γ
for γ ∈ H1(R2; R) and z ∈ R2. Here ψz(x) = ψ0(x − z) and Az = A0(x− z).

We introduce the spaces H2 = H2(R2; C) ⊕H2(R2; R2) and L2 = L2(R2; C) ⊕
L2(R2; R2) equipped with the inner product

〈(ξ, B), (η, C)〉L2 =
∫

R2
{Re(ξ̄η) +B · C} dx.

Theorem 2.2 (Uniqueness). Let Wε(x) satisfy conditions (A) and (B) with m = 3,
δ 	 1, and ε 	 δ2. Assume for simplicity that Wε is of the form Wε(x) = εW (x). We
have the following results:

(1) Suppose z0 ∈ Ωεδ is a bifurcation point, i.e., there exists a family of solutions vε
of (1.6) and (1.7) with vε → vz0γ in H2 for some γ ∈ H1(R2; R). Then z0 is a
critical point of Weff,ε for ε sufficiently small.

(2) Suppose vε, v′ε are two families of solutions of (1.6) and (1.7) with vε, v′ε → vz0γ
in H2 and z0 ∈ Ωεδ. Then vε = v′ε for ε sufficiently small.

Denote v0 := vz=0,γ=0. We will also need the affine space

H2
0 = v0 + H2 = {v0 + w | w ∈ H2}.

Theorem 2.3 (Reduced Energy). Under the assumptions of Theorem 2.1, for ε > 0
sufficiently small, there exists a constant δ0 > 0 and a C3 function Φε : R2 → R such
that there is a one-to-one correspondence between the critical points of Eε in the tube
{v ∈ H2

0 | ‖v − vzγ‖H2 ≤ δ0 for some z ∈ R2 and γ ∈ H1(R2; R)} and the critical points
of Φε in R2.

The following proposition discusses the relationship between the critical points of Wε

and Weff,ε.

Proposition 2.1. Suppose our potential Wε satisfies conditions (A) and (B) with m = 3,
δ 	 1. Then Wε has a critical point (local minimum/maximum/saddle point) at z′ ∈
Ωεδ if and only if Weff,ε has a critical point (local maximum/minimum/saddle point) at
z0 ∈ Ωεδ with |z′ − z0| ≤ cδ.

The proof of the following theorem will be given elsewhere [ST].

Theorem 2.4 (Type of a critical point). Suppose the assumptions of Theorem 2.1 are
satisfied, and Wε has a maximum/minimum or saddle point at z′ ∈ Ωεδ. Then the
corresponding solution (ψε, Aε) (as guaranteed by Theorem 2.1 and Proposition 2.1 ) is
a strict (modulo gauge symmetry) local minimizer/saddle point of Eε(ψ,A).

Theorems 2.1, 2.2, and 2.3 are proved in §3. Proposition 2.1 will be proved in Sub-
section 6.4.

Theorem 2.4 makes it possible to show that only vortices corresponding to maxima of
the potential Wε are orbitally stable (see [ST]).

Theorems 2.1, 2.2, and 2.4 give mathematical content to the physical picture of trapped
vortices: out of a continuum of vortex solutions localized around arbitrary points of
the physical space in the absence of an external potential, only few (modulo the gauge
symmetry) solutions survive when such a potential is turned on; the latter solutions are
localized near critical points of the potential, with only those localized near maxima
being stable.

Theorem 2.3 introduces a reduced energy on R
2 that gives a complete description of

the vortex location and stability.
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Aftalion, Sandier, and Serfaty [ASaSe] proved a similar pinning result as in Theorem
2.1 in the λ→ ∞ regime, for applied external magnetic fields, bounded domains, and for
maxima/minima of the potential. The result of [ASaSe] was extended to critical points
of the external potential by Andre, Bauman, and Phillips [ABP]. Chapman, Du, and
Gunzburger [CDG] have done numerical work on pinning.

For reviews of the results on Ginzburg–Landau theory of superconductors, see [BFGLV,
Gu1, JT, R, Riv1, Rub2]. Some recent results on magnetic vortices can be found in [JMS].
Some of the issues touched upon in this paper were also addressed in [GS2]. Earlier results
related to trapping of solitons can be found in [FW, Oh1, Oh2, ABC].

Remarks. (i) The restrictions on the parameters ε and δ in the statements above are not
uniform in the parameter λ. Presumably, the restrictions imposed weaken as λ increases;
however, to prove this would require an additional estimate on the vortex profile (namely,
a lower bound on

∫
(1 − f2

n) needed in Lemma 6.2), which is not done in this paper.
(ii) We could have formulated the conditions on the potential Wε entirely in terms of

the effective potential Weff,ε so that no differentiability of Wε would be required.
(iii) One can weaken our assumptions onWε considerably if one is interested in maxima

and minima only.

§3. Main steps yielding proof of Theorems 2.1–2.3

In this section, we describe the main steps yielding the proofs of Theorems 2.1, 2.2,
and 2.3.

Equations (1.6) and (1.7) are Euler–Lagrange equations for the Ginzburg–Landau
energy functional with potential

(3.1) Eε(ψ,A) :=
1
2

∫
R2

(
|∇Aψ|2 + (∇×A)2 +

λ

4
(|ψ|2 − 1)2 +Wε(x)(|ψ|2 − 1)

)
dx

defined on the space H2
0, i.e., the solutions of (1.6) and (1.7) are critical points of Eε:

E ′ε(ψ,A) = 0. Here we note that Eε is C∞ if Wε ∈ L2.
Let v = (ψ,A) ∈ H2

0; we introduce Fε(v) = E ′ε(v), defined as a map from H2 to L2.
Explicitly,

Fε(v) :=
(−∆Aψ + λ

2 (|ψ|2 − 1)ψ +Wε(x)ψ
∇×∇×A+ Im(ψ̄∇Aψ)

)
.

Thus, equations (1.6) and (1.7) can be written as Fε(v) = 0.

Let πzγ denote the orthogonal projection onto the kernel Kzγ of F ′0(vzγ), and let
π⊥zγ := 1 − πzγ . The operator π⊥zγ projects onto the L2-orthogonal complement K⊥zγ of
Kzγ , i.e., π⊥zγ : L2 → K⊥zγ .

The proof of the existence of a solution of (1.6) and (1.7) relies on the following two
steps.

Step 1. Liapunov–Schmidt reduction and solution in the orthogonal direc-
tion. We use Liapunov–Schmidt reduction to break the problem up into its tangential
and orthogonal components to the infinite-dimensional manifold of approximate solu-
tions:

M :=
{
vzγ | z ∈ R

2, γ ∈ H1(R2; R)
}
.

First, we show that there exists a solution in the orthogonal direction. More precisely,
we show that for all z ∈ R

2, γ ∈ H1(R2; R) and ε sufficiently small, there exists a unique
wzγε ∈ K⊥zγ such that

(3.2) π⊥zγFε(vzγ + wzγε) = 0.
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216 I. M. SIGAL AND F. TING

To do this, we show that the linearization of Fε around a point vzγ ∈M is invertible in the
orthogonal direction. After deriving some estimates on the nonlinear term Nε(vzγ , w), we
shall employ a fixed point argument to show the existence of a solution in the orthogonal
direction.

Step 2. reduced problem and solution in the tangential direction. We solve
the corresponding problem in the tangential direction. More precisely, we show that
there exist zε such that

(3.3) πzεγFε(vzεγ + wzεγε) = 0.

To do this, we substitute the solution, wzγε, of (3.2) into the Ginzburg–Landau energy
functional to get the reduced energy functional

Φε(z) := Eε(vzγ + wzγε).

We show that (a) Φε(z) has a critical point at zε if and only if (3.3) has zε as a solution,
and (b) if Weff,ε(x) has a critical point at z0 ∈ Ωεδ, then Φε(z) has a unique critical point
at some zε = z0 +O(ε) provided our potential Wε satisfies (A) and (B) (with m = 3) of
Theorem 2.1, δ 	 1, ε	 δ2.

Steps 1 and 2 imply Fε(vzεγ + wzεγε) = 0 and hence Theorem 2.1 follows. Step 1 will
be carried out in §4, and Steps 2(a) and 2(b) will be carried out in §§5 and 6, respectively.
We give some essential details below.

Let TvzγM denote the tangent space to M at vzγ . Then

(3.4) TvzγM = {a · ∇zvzγ + 〈σ, ∂γ〉vzγ | a ∈ R
2, σ ∈ H3(R2; R)}.

Explicit expressions for the vectors ∂zjvzγ and ∂γ(x)vzγ at z = 0 and γ = 0 (which suffice
for our analysis; see the remark below) are given in equations (5.12) and (5.14). Here we
only mention that due to our peculiar definition of the family vzγ (see equation (2.1)) the
ψ-component of the zj-derivative of vzγ can be expressed through the covariant derivative
(∂j − iAj(x))ψ0(x). The latter fact implies that ∂zjvzγ ∈ Hs for any s ≥ 0. Moreover,
examining equations (5.12) and (5.14), we see that TvzγM ⊂ H2(R2; C) ⊕H2(R2; R2).

Now, we state the critical fact we need in our analysis. To identify Theorem 3.1 with
a result from [GS1], we use the relation F ′0(vzγ) = gzγF

′
0(v0)g

−1
zγ , where gzγ is defined by

(3.5) gzγ

(
ψ
A

)
:=
(

ei(γ+z·A(·−z))ψ(· − z)
A(· − z) + ∇(z · A(· − z)) + ∇γ

)
for γ ∈ H1(R2; R) and z ∈ R2 (see (2.1)).

Theorem 3.1 ([GS1]). (i) TvzγM = Ker[F ′0(vzγ)].
(ii) σc(F ′0(vzγ)) = [Σ,∞), where Σ = min(1, λ).

Corollary 3.1. F ′0(vzγ)|TvzγM
⊥ is invertible.

Using Corollary 3.1, we shall prove the following main statement in Step 1. We denote
by BX(z, r) the open ball of radius r centered at z in a Banach space X .

Theorem 3.2. Suppose Wε(x) is O(ε) in L2. Then there exist positive constants ε0 and
δ0 such that for every z ∈ R2, γ ∈ H1(R2; R), and 0 < ε ≤ ε0, there is a unique element
wzγε in BH2(0, δ0) ∩K⊥zγ such that equation (3.2) is satisfied.

In addition, we have the following:

a) ‖wzγε‖H2 ≤ Dε with a constant D = D(‖ψ‖∞, κ, β) > 0, κ := supε>0
‖Wε‖L2

ε ,
and β is defined as in Lemma 4.1.

b) wzγε is C3 in z, and ‖∂nzi
wzγε‖L2 ≤ cε for n = 1, 2, 3.
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Now, we shall state precisely part (a) of Step 2 in Theorem 3.3 below, but first we
need some definitions.

We define a manifold diffeomorphic to the manifold M of approximate solutions.
By Theorem 3.2, for every 0 < ε ≤ ε0, z ∈ R2, and γ ∈ H1(R2; R) we have a unique
vzγε = vzγ+wzγε ∈ H2

0 with π⊥zγFε(vzγ+wzγε) = 0 and wzγε ∈ Ran(π⊥zγ). For 0 < ε ≤ ε0,
we define the manifold Mε by

Mε = {vzγε ∈ H2
0 | vzγε = vzγ + wzγε, γ ∈ H1(R2,R), z ∈ R

2}.
Note that Mε = M for ε = 0.

The effective energy Φε : R2 → R is the energy functional Eε restricted to the manifold
Mε. We have the following result.

Theorem 3.3. Assume the conditions of Theorem 3.2, and let wzγε be a unique solution
of (3.2) for given z ∈ R2, γ ∈ H1(R2; R), so that Φε(z) is well defined. Then for
0 < ε ≤ ε0, the reduced energy function Φε(z) has a critical point at z = zε if and only if
equation (3.3) is satisfied.

Finally, in order to complete Step 2, we use part 1) of the following theorem.

Theorem 3.4. Suppose our potential Wε satisfies conditions (A) and (B) in §2 with
m = 3, δ 	 1, and ε	 δ2. Then:

1) If Weff,ε has a critical point z0 ∈ Ωεδ, then Φε has a unique critical point zε ∈
BR2(z0, c 1

δ ) ∩ Ωεδ, and moreover |zε − z0| ≤ C ε
δ2 .

2) If Φε has a critical point zε ∈ Ωεδ, then Weff,ε has a unique critical point z0 ∈
BR2(zε, c 1

δ ) ∩ Ωεδ, and moreover |z0 − zε| ≤ C ε
δ2 .

3) Weff,ε has a local minimum/maximum/saddle point at z0 if and only if Φε has a
local minimum/maximum/saddle point at zε.

Theorems 3.2, 3.3, and 3.4 are proved in §§4, 5, and 6, respectively.

Now, we are ready to prove Theorems 2.1, 2.2, and 2.3.

Proof of Theorem 2.1. By Theorem 3.2, for all z ∈ R2 and γ ∈ H1(R2; R), there exists
a unique wzγε ∈ BH2(0, δ0) ∩K⊥zγ such that π⊥zγFε(vzγ + wzγε) = 0. Therefore, Φε(z) =
Eε(vzγ + wzγε) is well defined. By Theorem 3.4 (part 1)), Φε has a critical point zε ∈
BR2(z0, cε) for ε sufficiently small. Therefore, by Theorem 3.3, πzεγFε(vzεγ + wzεγε) = 0
and hence Fε(vzεγ + wzεγε) = 0. Moreover, wzεγε :=

( ξε

βε

)
= O(ε) in H2 (by Theorem

3.2(a)). Denoting
(
ψε

Aε

)
:= vzεγ + wzεγε, we arrive at the statement of Theorem 2.1. �

Proof of Theorem 2.2. For part (1), let z0 ∈ Ωεδ be such that there exist solutions vεk of
E ′εk(v) = 0 satisfying vεk → vz0 in H2. By Proposition 2 in [Gu2] (“Splitting theorem”),
there exists k0 such that for all k ≥ k0, vεk can be uniquely (modulo gauge) decomposed
as vεk = vzkγ+wk, where zk → z0 and wk ⊥ TvzkγM . Since vεk is a solution of E ′εk(v) = 0,
we have

(3.6) π⊥zk
Fεk(vzkγ + wk) = 0.

Since ‖wk‖H2 → 0 as k → ∞, we can assume that k0 is such that ‖wk‖H2 ≤ δ0 for
k ≥ k0, where δ0 is the same as in Theorem 3.2. Then, by Theorem 3.2, wk is a unique
solution of (3.6) in BH2(0, δ0), and this solution satisfies ‖wk‖H2 ≤ Dεk.

By Theorem 3.3 and (3.6), for all k ≥ k0 we have

(3.7) ∇Φεk(zk) = 0.
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Since z0 ∈ Ωεδ and zk → z0, it follows that zk ∈ Ωεδ for k sufficiently large. Hence, by
(3.7) and Theorem 3.4 (part 2)), for all k ≥ k0 we have

(3.8) ∇Weff,εk(z′k) = 0 for some z′k ∈ BR2

(
zk,

cεk
δ2

)
.

Since Wε = εW , we have Weff,ε = εWeff , where Weff(z) = 1
2

∫
W (x)(|ψ(x−z)|2−1) dx.

Since Weff is independent of ε, the z′k are independent of k for all k ≥ k1 for some
sufficiently large k1 > k0. Since z′k → z0, we conclude that z′k = z0 and, in particular,
∇Weff(z0) = 0. This implies that Weff,ε has a critical point at z0 (Weff,ε has the same
critical points for all ε).

For part (2), suppose vε, v′ε are solutions of E ′ε(v) = 0 with vε, v
′
ε → vz0 in H2 and

z0 ∈ Ωεδ (here and in the rest of the proof we omit the subscripts γ). Using [Gu2,
Proposition 2] once again, write v#

ε = vz#ε +wz#ε ε, where v#
ε is either vε or v′ε, z#

ε is either
zε or z′ε, and wz#ε ε ⊥ Tv

z
#
ε

M . As in the above argument in part (1), we have wεz#ε = O(ε),

z#
ε → z0 as ε → 0, and ∇Φε(z#

ε ) = 0. By the previous result, ∇Weff,ε(z0) = 0. Since
z0 ∈ Ωεδ, Theorem 3.4 (part 1)) implies that Φε has a unique critical point in BR2(z0, c 1

δ ).
Since z#

ε → z0 as ε→ 0, for ε sufficiently small both zε and z′ε are in BR2(z0, c 1
δ ). Hence,

zε = z′ε for ε sufficiently small, i.e., vε = v′ε for ε sufficiently small. �

Proof of Theorem 2.3. Let a constant δ0 > 0 and a C3 function Φε : R2 → R be as in
Theorems 3.2 and 3.3, respectively. By Theorem 3.2, for any z, γ there exists a unique
wzγε ∈ BH2(0, δ0) ∩K⊥zγ with π⊥zγFε(vzγ + wzγε) = 0. By Theorem 3.3, Φε has a critical
point at zε if and only if πzεγFε(vzεγ + wzεγε) = 0. Hence, Φε has a critical point at
z = zε if and only if Fε(vzεγ +wzεγε) = 0. Thus, Φε has a critical point in R

2 if and only
if Eε has a critical point in the tubular set specified in the theorem. �

Remark. Some of the computations simplify if we transform the map Fε “back” to a
neighborhood of v0 := v00. This is done with the help of the transformation (3.5).
Using this transformation, we write vzγ = gzγv0 and F0(gzγv) = gzγF0(v), so that
F ′0(gzγv) = gzγF

′
0(v)g

−1
zγ . Next, we introduce the new map

(3.9) Fεz(v) = g−1
zγ Fε(gzγv).

Observe the relations F ′εz(v) = g−1
zγ F

′
ε(gzγv)gzγ and

(3.10) Fεz(v) = F0(v) +
(
Wε(· + z)ψ

0

)
.

Now, instead of considering the equation Fε(v) = 0 in a neighborhood of vzγ , we consider
the equation

(3.11) Fεz(v) = 0

in a neighborhood of the point v0. In particular, instead of the equation

(3.12) π⊥zγFε(vzγ + w) = 0

for w ∈ (TvzγM)⊥, we can consider the equation

(3.13) π⊥0 Fεz(v0 + w) = 0,

where π⊥0 = 1 − π0 with π0 = π00, for w ∈ (Tv0M)⊥. Similarly, instead of solving for z
the equation

(3.14) πzγFε(vzγ + wzγε) = 0,

where wzγε ∈ (TvzγM)⊥ is the solution of (3.12), we can solve for z the equation

(3.15) π0Fεz(v0 + wzε) = 0,
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where wzε ∈ (Tv0M)⊥ is the solution of (3.13). Observe that here

wzγε = gzγwzε.

These are two equivalent approaches, and we use one or the other depending on its
convenience in computations.

§4. Solution in the orthogonal direction (proof of Theorem 3.2)

In this section we prove that for ε sufficiently small, the equation π⊥zγFε(vzγ +w) = 0
for w ∈ K⊥zγ has a unique solution. To this end we use an implicit function type argument.
We begin with the following definitions. Let v = vzγ +w, where vzγ =

( ψzγ

Azγ

) ∈M , and
w =

(
ξ
B

) ∈ H2 with w ⊥ TvzγM . We have the following Taylor expansion:

(4.1) Fε(vzγ + w) = Fε(vzγ) + F ′ε(vzγ)w +Nε(vzγ , w),

where Nε(vzγ , w) is defined by this relation (the explicit form of Nε(vzγ , w) can be found
in §7). Define Lzγε = π⊥zγF ′ε(vzγ) |K⊥

zγ∩H2 .
To proceed, we need the following two lemmas the proofs of which are given in §7.

Lemma 4.1. There exist positive real numbers β and C1 independent of ε, z, and γ (see
§7 for the value of C1) so that for |ε| 	 C1 and w ∈ K⊥xy ∩H2 we have

(4.2) ‖Lzγεw‖L2 ≥ β ‖w‖H2 .

Lemma 4.2. There exist positive constants C2, C3, C4 independent of z, γ, ε such that
for all w ∈ H2 with ‖w‖H2 ≤ C2,

(4.3) ‖Nε(vzγ , w)‖L2 ≤ C3 ‖w‖2
H2 ,

and

(4.4) ‖∂wNε(vzγ , w)‖H2→L2 ≤ C4‖w‖H2 .

Using the expansion (4.1) and abbreviating π⊥zγFε (vzγ) to F⊥zγε and π⊥zγNε(vzγ , w) to
N⊥zγε(w), we rewrite equation (3.2) as a fixed point equation w = Szγε(w) for the map
Szγε defined on H2 by

Szγε(w) = −L−1
zγε

[
N⊥zγε(w) + F⊥zγε

]
.

Let β,C1, C2, C3 and C4 be the constants occurring in Lemmas 4.1 and 4.2 and let
κ := supε>0

1
ε‖Wε‖L2 . Set δ0 = min(C2,

β
2C3

, β
2C4

) and ε0 = min(C1,
δ0
2κβ). We shall show

that, for 0 < ε ≤ ε0, the map Szγε takes the ball B⊥δ0 = BH2(0, δ0)∩K⊥zγ continuously into
itself. Let w ∈ B⊥δ0 . Then by Lemmas 4.1 and 4.2, for ε < ε0 ≤ C1 and ‖w‖ ≤ δ0 ≤ C2,
we have

‖Szγε(w)‖H2 ≤ 1
β

∥∥N⊥zγε(w) + F⊥zγε
∥∥
L2 ≤ 1

β

(
C3 ‖w‖2

H2 +
∥∥F⊥zγε∥∥L2

)
.

Since Fε(v) = F0(v) +
(
Wε 0
0 0

)
v and F0(vzγ) = 0, we have Fε(vzγ) =

(
Wεψzγ

0

)
; therefore

(since |ψzγ | ≤ 1),

(4.5)
∥∥F⊥zγε∥∥L2 ≤ ‖Fε(vzγ)‖L2 ≤ ‖Wε‖L2 ≤ κε.

Combined with the preceding inequality, this gives

‖Szγε(w)‖H2 ≤ 1
β

(
C3δ

2
0 + κε

) ≤ δ0.

Therefore, Szγε(w) is in B⊥δ0 too.
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In addition, for w and w′ in B⊥δ0 , from (4.4) and the mean value theorem it follows
that

(4.6) ‖Nε(vzγ , w) −Nε(vzγ , w′)‖L2 ≤ C4δ0 ‖w − w′‖H2 .

Hence, (4.6) and our choice of δ0 imply

‖Szγε(w) − Szγε(w′)‖H2 =
∥∥L−1

zγε(N
⊥
zγε(w) −N⊥zγε(w

′))
∥∥
L2

≤ C4δ0
β

‖w − w′‖H2 ≤ 1
2
‖w − w′‖H2 .

Therefore, Szγε is a contraction map, and so Szγε has a unique fixed point wzγε in B⊥δ0 .
By the definition of the map Szγε, this fixed point solves (3.2), which proves the first
part of Theorem 3.2.

For part a) of the second part of Theorem 3.2, we note that

‖Szγε(0)‖H2 =
∥∥L−1

zγεF
⊥
zγε

∥∥
H2 ≤ β−1 ‖Fε(vzγ)‖L2 .

But for the fixed point wzγε we have

wzγε = Szγε(wzγε) = Szγε(0) + Szγε(wzγε) − Szγε(0).

Consequently,

‖wzγε‖H2 ≤ ‖Szγε(0)‖H2 + ‖Szγε(wzγε) − Szγε(0)‖H2

≤ β−1 ‖Fε(vzγ)‖L2 +
1
2
‖wzγε‖H2 .

Since ‖Fε(vzγ)‖L2 ≤ κε (see (4.5)) and β is independent of ε, the last inequality implies
part a) with D = 2β−1κ:

(4.7) ‖wzγε‖H2 ≤ 2β−1κε.

To prove part b), we proceed in a standard way. Define F⊥ : R2×(Ran(πzγ)⊥∩H2) →
(Ran(πzγ)⊥ ∩ L2) by

(4.8) F⊥(z, w) = π⊥zγFε(vzγ + w),

where we have suppressed the dependence of F⊥ on ε and γ for brevity. By part a), for
0 < ε ≤ ε0 and γ ∈ H1 there exists w = w(z) ∈ Ran(πzγ)⊥ ∩ H2 such that

(4.9) F⊥(z, w(z)) = 0, z ∈ R
2.

We shall show that w(z) in (4.9) is C1 in z (the C2 and C3 cases are similar). Fix
0 < ε ≤ ε0 and γ ∈ H1. For any z ∈ R2 and sufficiently small h ∈ R2, we have by (4.9)

(4.10) F⊥(z + h,w(z) + t) = 0 where t = w(z + h) − w(z).

Expanding the left-hand side of this equation around (z, w(z)) and using (4.9), we obtain

(4.11) ‖∂zF⊥(z, w(z))h+ ∂wF
⊥(z, w(z))t‖L2 = o(‖h‖R2 + ‖t‖H2).

Since ∂wF⊥(z, w(z)) is invertible, (4.11) implies

(4.12)
‖t+ (∂wF⊥(z, w(z)))−1∂zF

⊥(z, w(z))h‖H2

≤ ‖(∂wF⊥(z, w(z)))−1‖ · o(‖h‖R2 + ‖t‖H2).

Now, suppose that ‖h‖R2 + ‖t‖H2 is chosen so small that

o(‖h‖R2 + ‖t‖H2)‖∂wF⊥(z, w(z))−1‖ < 1/2(‖h‖R2 + ‖t‖H2).

In addition, if a := 2‖∂wF⊥(z, w(z))−1 · ∂zF⊥(z, w(z))‖ + 1, then, using the triangle
inequality on the left-hand side of (4.12), we deduce the estimate

(4.13) ‖t‖H2 < a‖h‖R2.
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Equations (4.12) and (4.13) imply that

‖t+ ∂wF
⊥(z, w(z))−1 · ∂zF⊥(z, w(z))h‖H2 ≤ (a+ 1)o(‖h‖R2),

and by the definition of t in (4.10), the above argument shows that w(z) is C1 in z, with
∂zw(z) given by

(4.14) ∂zw(z) = −∂wF⊥(z, w(z))−1∂zF
⊥(z, w(z)).

Now we prove that ‖∂zw(z)‖H2 ≤ cε. Fix z ∈ R2 and write w = w(z) for conve-
nience. We estimate the right-hand side of (4.14). We have already shown before that
‖∂wF⊥(z, w)−1‖ ≤ C. Hence, it suffices to check that ‖∂zF⊥(z, w)‖ = O(ε) as ε → 0.
By (4.8), we have

(4.15) ∂zF
⊥(z, w) = (∂zπ⊥zγ)Fε(vzγ + w) + π⊥zγ∂zFε(vzγ + w).

By (5.8) and Lemmas 5.3 and 5.5, ‖π⊥zγ‖ ≤ C. Similarly it can be shown that
‖∂zπ⊥zγ‖ ≤ C. By (4.1), we have

(4.16) ‖Fε(vzγ + w)‖L2 ≤ ‖Wε‖L2 + C‖w‖H2 + C‖w‖2
H2 = O(ε),

because ‖w‖H2 = O(ε) by (4.7). In the above, we have used equation (4.5) and the
relation Wε = O(ε) in L2 for the first term, the fact that Fε is C1 for the second term,
and Lemma 4.2 for the last term. Now, recall that

(4.17) F ′ε(vzγ)w = F ′0(vzγ)w +
(
Wε(x) 0

0 0

)
w.

By (4.17) and the fact that F ′0(vzγ)∂zvzγ = 0, we have

(4.18)

‖∂zFε(vzγ + w)‖L2 = ‖F ′ε(vzγ + w)∂zvzγ‖L2

≤ ‖(F ′ε(vzγ + w) − F ′ε(vzγ))∂zvzγ‖L2 +
∥∥∥∥
(
Wε 0
0 0

)
∂zvzγ

∥∥∥∥
L2

≤ C · max(‖∂zvzγ‖∞, ‖∂2
zvzγ‖∞)‖w‖H2 + ‖Wε‖L2‖∂zvzγ‖∞

= O(ε),

since Fε is C2, Wε = O(ε) in L2, and ‖∂zvzγ‖∞, ‖∂2
zvzγ‖∞ <∞ (by the explicit form of

∂zvzγ—see equation (2.1) and the line preceding it). Equations (4.15), (4.16), and (4.18)
show that ‖∂zwzγε‖L2 ≤ cε and we are done with the proof of the estimates in Theorem
3.2b) for n = 1. The cases of n = 2, 3 are done similarly. �

§5. Critical point of reduced energy is equivalent to critical point

of full energy (proof of Theorem 3.3)

In this section we show that the reduced energy Φε(z) := Eε(vzγε) (we recall that
vzγε := vzγ + wzγε) has a critical point at zε if and only if E ′ε(vzεγε) = 0.

5.1. General Argument. Equation (3.2) implies that

(5.1) E ′ε(vzγε) ∈ TvzγM

for any z ∈ R2. By the independence of the energy functional of gauge, we have

(5.2) 0 = ∂γΦε(z) = 〈∂γvzγε, E ′ε(vzγε)〉.
We claim that, given (5.1) and (5.2),

(5.3) ∂zΦε(z)|z=zε = 0 ⇐⇒ E ′ε(vzγε|z=zε) = 0.
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Note that statement (5.3) is equivalent to the statement in Theorem 3.3. The (⇐) part
of statement (5.3) is trivial: if E ′ε(vzγε|z=zε) = 0, then

∂zΦε(z)|z=zε = 〈∂zvzγε, E ′ε(vzγε)〉|z=zε = 〈∂zvzγε|z=zε , E ′ε(vzγε)|z=zε〉 = 0.

Hence, it remains to prove the (⇒) part of (5.3). First, we observe that the relation

(5.4) 〈∂zvzγε, E ′ε(vzγε)〉|z=zε = ∂zΦε(z)|z=zε = 0

together with (5.2) implies

(5.5) E ′ε(vzεγε) ⊥ TvzεγεMε.

Thus, it remains to show that (5.1) and (5.5) imply E ′ε(vzγε)|z=zε = 0. Let fε denote
E ′ε(vzεγε), and let

π = L2-orthogonal projection onto TvzεγM,

πε = L2-orthogonal projection onto TvzεγεMε.

Then equations (5.1) and (5.5) can be written as

(5.6) πfε = fε and πεfε = 0.

We want to show that fε = 0. But in view of (5.6),

(5.7) fε = πfε = (π − πε)fε.

Now, by Proposition 5.1, we have

‖fε‖ ≤ ‖π − πε‖ ‖fε‖ ≤ Cε‖fε‖.
This implies that fε = 0, which completes the proof of the (⇒) part of (5.3), modulo the
proof of Proposition 5.1.

Proposition 5.1. a) π and πε are bounded, and b) ‖π − πε‖ = O(ε).

Proof. The statement follows from (5.8), (5.9), and Lemmas 5.4 and 5.5. �
In the rest of this section, we only consider the case of z = 0 and γ = 0, to which the

case of general z and γ can be reduced (see the remark at the end of §3). We write ψ
and A for ψ0 and A0.

5.2. The projections πt, πtε, π
g, πgε . In this section, we find explicit expressions for

the orthogonal projections π and πε.
Recall that vzγε := vzγ + wzγε. We set T = (T1, T2) = ∇zvzγ |z=0,γ=0 and Gδ =

∂γvzγ |z=0,γ=0, and T ε = (T ε1 , T ε2 ) = ∇zvzγε|z=0,γ=0 and Gεδ = ∂γvzγε|z=0,γ=0. Since
TvM = {a · T + 〈σ,Gδ〉 | a ∈ R2, σ ∈ H3(R2; R)} and TvεMε = {a · T ε + 〈σ,Gεδ〉 | a ∈
R2, σ ∈ H3(R2; R)}, we have

π = πt + πg,(5.8)

πε = πtε + πgε ,(5.9)

where

(5.10)

πt = L2-orthogonal projection onto {a · T | a ∈ R
2},

πg = L2-orthogonal projection onto {〈σ,Gδ〉 | σ ∈ H3(R2; R)},
πtε = L2-orthogonal projection onto {a · T ε | a ∈ R

2},
πgε = L2-orthogonal projection onto {〈σ,Gεδ〉 | σ ∈ H3(R2; R)}.

We recall that if {φi} is a basis for a subspace V ⊂ X , then the orthogonal projection
PV onto V is given by

(5.11) PV =
∑

|φi〉(U−1)ij〈φj |,
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where (U)ij = 〈φi|φj〉 is the basis matrix, and where the labels i and j are allowed to
vary through a continuous domain, in which case the sum in (5.11) should be understood
as the corresponding integral.

Our goal is to compute the basis matrix for the basis {Tj, Gδ(x)}. First, we compute
Tj and Gδx . For the translational tangent vectors, we have explicitly

(5.12) Tj =
(

(∂j − iAj)ψ
∂jA−∇Aj

)
for j = 1, 2.

By using the formulas ψ(x) = f1(r)eiθ and A(x) = a1(r)∇θ (for x = (r, θ)), expression
(5.12) can be further rewritten as

(5.13) Tj =

(
eiθ(xj

r f
′
1 + (1 − a1)

x⊥
j

r2 f1)
a′1
r e
⊥
j

)
,

where e⊥1 = (0, 1), e⊥2 = (−1, 0), and x⊥ = (−x2, x1).
For the gauge tangent vectors, we have explicitly

(5.14) Gδx =
(
iδxψ
−∇δx

)
Gεδx

=
(
iδxψ

ε

−∇δx
)
,

where δx(y) = δ(y − x).
Now, we compute the “basis matrices”. Using (5.13) and the vanishing of the integrals

of the type
∫
x1x2ϕ(|x|) dx, we obtain

(5.15) 〈Ti, Tj〉 = βiδij where βi = π

∫
R2

[
(f ′1(r))

2 +
f2
1 (r)
r2

(1− a1)2 +
1
π

(
a′1(r)
r

)2]
dx.

Since T εj = Tj + ∂zjwzγε|z=0,γ=0, we have

(5.16) 〈T εi , T εj 〉 =: (βε)ij = βiδij + (ν)ij ,

where (ν)ij = νij = 〈Ti, ∂jw〉 + 〈∂iw, Tj〉 + 〈∂iw, ∂jw〉, with ∂jw := ∂zjwzγε|z=0,γ=0.
Note that ‖ν‖ = O(ε) (since ‖∂jw‖L2 = O(ε) by Theorem 3.2b) with n = 1). Hence,
the matrix βε is invertible (as a sum of an invertible matrix β and a small matrix). In
addition, using (5.14), we obtain
(5.17)

〈Gδx , Gδy 〉 = (−∆ + |ψ|2)(x, y), 〈Gεδx
, Gεδy

〉 = (−∆ + |ψε|2)(x, y), 〈Tj, Gδx〉 = 0.

Here we prove only the first of these relations. The other two can be proved in a similar
way. Using (5.14), we write

〈Gδx , Gδy 〉 =
∫

Re(iδx(z)ψ(z)iδy(z)ψ(z) + (−∇zδx(z)) · (−∇zδy(z))) dz

=
∫
δx(z)(−∆ + |ψ|2)δy(z) dz

= 〈δx, (−∆ + |ψ|2)δy〉.

The expression on the right-hand side is the integral kernel of the operator −∆ + |ψ|2.
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Now, the projections introduced above can be expressed in terms of the bases {Tj, Gδx}
and {T εj , Gεδx

}. Using the equations above and (5.11), we have

(5.18)

πt =
2∑
i=1

|Ti〉β−1
i 〈Ti|,

πtε =
2∑

i,j=1

|T εi 〉((βε)−1)ij〈T εj |,

πg =
∫∫

|Gδx〉(−∆ + |ψ|2)−1(x, y)〈Gδy | dxdy,

πgε =
∫∫

|Gεδx
〉(−∆ + |ψε|2)−1(x, y)〈Gεδy

| dxdy.

5.3. Boundedness of πg. In this section, we prove the boundedness of the operator πg.
As a prelude to the calculations below, we note that there is a one-to-one correspondence
between the operators J on Hs(R2) and the operators πgJ defined by

(5.19) πgJ =
∫∫

|Gδx〉J(x, y)〈Gδy | dxdy,

where J(x, y) is the integral kernel of J . Moreover, this correspondence is linear, i.e.,
πgA + πgB = πgA+B. In our case (see (5.18)),

(5.20) πg = πgJ with J = (−∆x + |ψ(x)|2)−1.

This can be seen from (5.17) and (5.18)).
In the next lemma, we find explicitly how πgJ acts on vectors.

Lemma 5.1. If f =
(
ξ
B

)
, then, in the sense of distributions, we have

(5.21) πgJf =
(
iψJ [Im(ψ̄ξ) + ∇ · B]
∇(J [Im(ψ̄ξ) + ∇ ·B])

)
.

Proof. The computation

〈Gδy |f〉L2 =
〈(

iδy(·)ψ(·)
∇δy(·)

)
,

(
ξ(·)
B(·)

)〉
L2

= Re
∫

(−iδy(z)ψ(z))ξ(z) dz −
∫

∇zδy(z) · B(z) dz

= Im(ψ(y)ξ(y)) + ∇ ·B(y)

and (5.19) give (5.21). �

We are ready to show the boundedness of πJ .

Lemma 5.2. Let J : Hs−1 → Hs+1 be a bounded operator. Then the operator πgJ :
Hs → Hs is bounded, with

(5.22) ‖πgJ‖Hs→Hs ≤ C‖J‖Hs−1→Hs+1

The constant C depends on ‖∂|α|x ψ0‖∞ for |α| ≤ s.

Proof. Estimate (5.22) follows from the explicit expression (5.21), the estimates ∂|α|x ψ0 ∈
L∞ for |α| ≤ s, and the boundedness of J as an operator from Hs−1 to Hs+1. �
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Lemma 5.3. For fixed z ∈ R2 and γ ∈ H1(R2; R), the operators A := −∆ + |ψ|2 and
Aε := −∆ + |ψε|2 : H1 → H−1 are invertible, and J = A−1 and Jε = A−1

ε satisfy all the
conditions of Lemma 5.2 for s = 0. Therefore, the operators πg = πgA−1 and πgε = πg

A−1
ε

are bounded on L2 with the bound

‖πgε ‖L2 ≤ C‖A−1
ε ‖H−1→H1

by Lemma 5.2, and (5.20) and similarly for πg. Moreover, the quantities ‖A−1
ε ‖H−1→H1 ,

ε ≥ 0, are bounded uniformly in ε.

Proof. To show that the operator A := −∆+ |ψ|2 : H2 → L2 is invertible (with bounded
inverse), we show that its spectrum is disjoint from zero. Clearly, A is selfadjoint and
positive. Hence, σ(A) ⊂ [0,∞). Now, since |ψ|2 → 1 as x → ∞, we have σcont(A) =
[1,∞) (see, e.g., [HS, RS]). Therefore, A can have only discrete eigenvalues in [0, 1).
Clearly, 0 is not an eigenvalue of A, whence 0 /∈ σ(A). Therefore, A : H2 → L2 is
invertible.

Now, to show that (−∆ + |ψ|2)−1 : H−1 → H1 is bounded, it suffices to check that
the operator

(5.23) (−∆ + |ψ|2)−1(−∆ + 1)1/2 : L2 → H1 is bounded.

To prove (5.23), we write

(−∆ + |ψ|2)−1(−∆ + 1)1/2 = (−∆ + |ψ|2)−1(−∆ + 1)−1/2(−∆ + 1)

= (−∆ + 1)−1/2︸ ︷︷ ︸
H1←L2 bounded

(−∆ + |ψ|2)−1(−∆ + 1)︸ ︷︷ ︸
L2←L2 bounded

+ [(−∆ + |ψ|2)−1, (−∆ + 1)−1/2](−∆ + 1)︸ ︷︷ ︸
B

since (−∆ + |ψ|2)−1(−∆ + 1) = 1 + (−∆ + |ψ|2)−1(1 − |ψ|2), which is bounded from L2

to L2. Hence, all we must show is that B : L2 → H1 is bounded. Write

B = − (−∆ + |ψ|2)−1︸ ︷︷ ︸
H2←L2 bounded

[−∆ + |ψ|2, (−∆ + 1)−1/2]︸ ︷︷ ︸
L2←L2 bounded

(−∆ + |ψ|2)−1(−∆ + 1).︸ ︷︷ ︸
L2←L2 bounded

But we have [−∆ + |ψ|2, (−∆ + 1)−
1
2 ] = [|ψ|2, (−∆ + 1)−

1
2 ]. Writing (−∆ + 1)−

1
2 =

c
∫∞
0

ω− 1
2

−∆+1+ω dw, we see that [|ψ|2, (−∆ + 1)−
1
2 ] is (L2 → L2)-bounded. Therefore,

B : L2 → H1 is bounded, and we have proved (5.23).
The invertibility of the operators Aε := −∆ + |ψε|2 : H2 → L2 and the boundedness

of A−1
ε : H−1 → H1 is proved similarly. Since Aε is a small perturbation of A, one can

show that the various norms of A−1
ε considered here are bounded uniformly in ε. �

5.4. Estimation of ‖πg − πgε ‖.
Lemma 5.4.

‖πg − πgε ‖ = O(ε).

Proof. By (5.18), we have

(5.24)

πgε − πg =
∫∫

{|Gεδx
〉Jε(x, y)〈Gεδy

| − |Gδx〉Jε(x, y)〈Gδy |} dxdy

=
∫∫ {|Gεδx

−Gδx〉Jε(x, y)〈Gεδy
|

+ |Gδx〉(Jε − J)(x, y)〈Gεδy
| + |Gδx〉J(x, y)〈Gεδy

−Gδy |
}
dxdy,
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where J(x, y) and Jε(x, y) are the integral kernels of the operators J := (−∆ + |ψ|2)−1

and Jε := (−∆+ |ψε|2)−1. Since Gεδx
−Gδx =

(
iδx(ψε−ψ)

0

)
and Jε−J = Jε(|ψ|2−|ψε|2)J ,

we have (by calculations in Lemma 5.1 and (5.24)) for f =
(
ξ
B

) ∈ L2

(πgε − πg)f =
(
i(ψε − ψ)Jε[Im(ψεξ) + ∇ ·B]

0

)

+
(
iψ(Jε(|ψ|2 − |ψε|2)J)[Im(ψεξ) + ∇ ·B]
∇(Jε(|ψ|2 − |ψε|2)J)[Im(ψεξ) + ∇ ·B]

)
+
(
iψJ [Im((ψε − ψ)ξ)]
∇J [Im((ψε − ψ)ξ)]

)
.

Now using the fact that |ψ| ≤ 1 and |ψε| ≤ 1, and using Theorem 3.2a), we obtain
‖|ψε|2 − |ψ|2‖∞ ≤ 2‖ψε − ψ‖∞ ≤ cε. Since J and Jε are bounded from H−1 to H1

uniformly in ε, we conclude that ‖(πgε −πg)f‖L2 ≤ cε‖f‖L2, which implies the statement
of the lemma. �

5.5. Estimation of ‖πtε − πt‖. Our goal in this section is to prove the following state-
ment.

Lemma 5.5. The operators πt and πtε are bounded and satisfy ‖πtε − πt‖ = O(ε).

Proof. The operators πt and πtε are simply (2×2)-matrices, so the boundedness is trivial.
Since T εi = Ti + ∂iw, where, we recall, ∂iw = ∂ziwzγε|z=0,γ=0, from (5.18) it follows that

πtε − πt =
∑
i,j

|Ti〉(β−1 − β−1
ε )ij〈Tj | − |∂iw〉(β−1

ε )ij〈Tj |

− |Ti〉(β−1
ε )ij〈∂jw| − |∂iw〉(β−1

ε )ij〈∂jw|.
Hence, we are reduced to showing that a) ‖∂jw‖L2 = O(ε), b) ‖β−1

ε ‖ < C for ε sufficiently
small, and c) ‖β−1

ε − β−1‖ = O(ε). Theorem 3.2b) with n = 1 takes care of a). For b),
the invertibility of βε for ε < ε0 small and the bound ‖β−1

ε ‖ < C follows from the
representation βε = β + ν, where β is independent of ε and is invertible, and ‖ν‖ = O(ε)
(see equation (5.16) and the paragraph after it).

Finally, c) follows from the relations

‖β−1
ε − β−1‖ = ‖β−1

ε (β − βε)β−1‖ ≤ ‖β−1
ε ‖ ‖β − βε‖ ‖β−1‖

and ‖β − βε‖ = O(ε) (see equation (5.16) and the paragraph after it). �

§6. Proof of Theorem 3.4

Theorems 3.3 and 3.2 imply that the full energy Eε(v) has a critical point at vε =
vzεγ +wzεγε if and only if the reduced energy Φε(z) = Eε(vzγ +wzγε) has a critical point
at z = zε. In this section we study the critical points of Φε(z).

Note that since Eε is C∞, and vzγ+wzγε is C3 in z as a vector-valued function from R2

to H2 (indeed, z → vzγ =
(

ei(γ+z·Az)ψz

Az+∇(z·Az)+∇γ
)

is C∞ as can be deduced from the explicit
representation, and z → wzγε is C3 by Theorem 3.2b), we see that Φε(z) is C3.

6.1. Explicit Form of Φε(z). In this subsection we prove the following lemma.

Lemma 6.1. Suppose Wε satisfies condition (A). Then Φε(z) can be written as

(6.1) Φε(z) = E0(ψ0, A0) +Weff,ε(z) +Rε(z),

where, we recall,

(6.2) Weff,ε(z) =
1
2

∫
R2
Wε(x)(|ψ0(x− z)|2 − 1) dx
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and

(6.3) ∂αRε(z) = O(ε2), 0 ≤ |α| ≤ 3.

Proof. Equation (6.1) with

(6.4) Rε(z) := Eε(vzγ + wzγε) − Eε(vzγ)
follows from the definition Φε(z) := Eε(vzγ + wzγε) and the relations

(6.5) Eε(vzγ) = E0(vzγ) +
1
2

∫
R2
Wε(x)(|ψ0(x − z)|2 − 1) dx

and E0(vzγ) = E0(ψ0, A0) (by the translational and gauge invariance of the energy func-
tional E0).

To prove (6.3) for |α| = 0, we notice that, since E ′0(vzγ) = 0, we have

(6.6) E ′ε(vzγ) =
(
Wε 0
0 0

)
vzγ = O(ε)

in L2, and therefore

(6.7) Rε(z) = 〈E ′ε(vzγ)︸ ︷︷ ︸
O(ε)

, wzγε︸︷︷︸
O(ε)

〉 +O(‖w‖2)︸ ︷︷ ︸
O(ε2)

.

For the proof of (6.3) with |α| = 1, we use the fact that 〈E ′′ε (vzγ)wzγε, ∂zvzγ〉 =
〈wzγε, E ′′ε (vzγ)∂zvzγ〉 = O(ε2), because wzγε = O(ε) by Theorem 3.2a), and E ′′ε (vzγ)∂zvzγ
= O(ε) by (4.17) and the identity E ′′0 (vzγ)∂zvzγ = 0. Also, we use the relations E ′ε(vzγ +
wzγε) = O(ε) (by (4.16)) and ∂zwzγε = O(ε) (by Theorem 3.2b) with n = 1) in L2. Then,
by (6.4) and an expansion of E ′ε about vzγ , we have

∂zRε(z) = 〈E ′ε(vzγ + wzγε), ∂zvzγ + ∂zwzγε〉 − 〈E ′ε(vzγ), ∂zvzγ〉
= 〈E ′′ε (vzγ)wzγε, ∂zvzγ〉︸ ︷︷ ︸

O(ε2)

+〈O(‖w‖2)︸ ︷︷ ︸
O(ε2)

, ∂zvzγ〉 + 〈E ′ε(vzγ + wzγε)︸ ︷︷ ︸
O(ε)

, ∂zwzγε︸ ︷︷ ︸
O(ε)

〉.(6.8)

Using similar arguments as above and Theorem 3.2b) with n = 2, 3, we can prove (6.3)
with |α| = 2, 3. �

6.2. The effective potential Weff,ε. Here we prove estimates on Weff,ε(z). For future
considerations, estimates in this subsection are more precise than needed. Namely, we
track out the λ-dependence of the constants involved. Let mλ := min(

√
λ, 2) and nλ =∫

(1 − |ψ0(x)|2) dx. For a function f : R2 → R we denote by f ′(z), f ′′(z) and f ′′′(z), or
f (n)(z), n = 1, 2, 3, the gradient, Hessian and third differential, respectively.

Lemma 6.2. Suppose δ 	 m3
λnλ and z ∈ Ωεδ. Then for n = 1, 2, 3,

(6.9) W
(n)
eff,ε(z) = O

(
ε
δn

m2
λ

)
.

Moreover, if |W ′eff,ε(z)| 	 εδnλ, then W ′′eff,ε(z) is invertible, with

(6.10) ‖W ′′eff,ε(z)−1‖ ≤ c(εδ2nλ)−1.

Proof. In the estimates below, we use the following bound proved in §9:

(6.11)
∫

|x|n(1 − |ψ0(x)|2) dx = O(m−(n+2)
λ ).

Differentiating the equation Weff,ε = 1
2Wε ∗ (|ψ0|2 − 1) n times and using condition

(B) on Wε and the bound (6.11), we arrive at (6.9).
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Now, we prove the second statement in Lemma 6.2. Expanding Wε(x + z) in (6.2)
about z and using condition (B) on Wε and estimate (6.11), we obtain
(6.12)

W ′eff,ε(z) = W ′ε(z)︸ ︷︷ ︸
O(εδ)

∫
(|ψ0(x)|2 − 1) dx︸ ︷︷ ︸

O( 1
m2

λ
)

+
∫
{W ′′ε (z)x︸ ︷︷ ︸

0

+O(εδ3x2)} (|ψ0(x)|2 − 1
)
dx

(the integral
∫
x(|ψ0|2 − 1) dx vanishes since |ψ0(x)|2 is spherically symmetric), and

(6.13) W ′′eff,ε(z) = −W ′′ε (z)
∫ (

1 − |ψ0(x)|2
)

︸ ︷︷ ︸
O
(
ε δ2
(mλ)2

)
dx−

∫
O(εδ3x)

(
1 − |ψ0(x)|2

)︸ ︷︷ ︸
O
(
ε
(

δ
mλ

)3) dx.

If |W ′eff,ε(z)| 	 εδnλ, then (6.12) implies |W ′ε(z)| 	 εδ (since δ2

m4
λ

1
nλ

	 1). Since z ∈ Ωεδ,

W ′′ε (z) is invertible and ‖W ′′ε (z)−1‖ ≤ c(εδ2)−1. Since δ
m3

λ

1
nλ

	 1, from (6.13) it follows
that W ′′eff,ε(z) is invertible with bound (6.10). �

6.3. Critical points of Φε. Now, we are ready to prove Theorem 3.4. The estimates
below depend on λ, but this λ-guaranteed is not displayed explicitly. We start with part
1). Since W ′eff,ε(z0) = 0, we have

(6.14) Φ′ε(z0) = O(ε2)

by (6.1) and (6.3).
Since W ′eff,ε(z0) = 0 and z0 ∈ Ωεδ, Lemma 6.2 shows that W ′′eff,ε(z0) is invertible with

the bound given in (6.10). Using this bound and the relations (6.1), (6.3), (6.10), and
ε	 δ2, we see that Φ′′ε (z0) is invertible with the bound

(6.15) ‖Φ′′ε (z0)−1‖ ≤ c′(εδ2)−1.

By (6.9) with n = 3, and by (6.1) and (6.3) with |α| = 3, we obtain

(6.16) ‖Φ′′′ε (z0)‖ = O(εδ3 + ε2).

Hence, (6.14), (6.15), (6.16) and an implicit function theorem type argument (similar
to that used in the proof of Proposition 2.1; see §8) imply that Φε has a unique critical
point zε ∈ BR2(z0, C 1

δ ) and |zε − z0| = O( ε
δ2 ).

To prove that zε ∈ Ωεδ, suppose |W ′ε(zε)| 	 εδ. We want to show that W ′′ε (zε) is
invertible with the bound ‖W ′′ε (zε)−1‖ ≤ c(εδ2)−1. First, using the expansion

(6.17) W ′ε(z0) = W ′ε(zε)︸ ︷︷ ︸
o(εδ)

+O(εδ2|zε − z0|)︸ ︷︷ ︸
O(ε2)

and the relation ε	 δ, we obtain

(6.18) |W ′ε(z0)| 	 εδ.

From (6.18) it follows that W ′′ε (z0) is invertible with the bound ‖W ′′ε (z0)−1‖ ≤ c(εδ2)−1

(since z0 ∈ Ωεδ). This fact, the condition ε	 δ, and the expansion

(6.19) W ′′ε (zε) = W ′′ε (z0)︸ ︷︷ ︸
O(εδ2)

+O(εδ3|zε − z0|)︸ ︷︷ ︸
O(ε2δ)

(since |zε − z0| = O( ε
δ2 )) immediately imply that zε ∈ Ωεδ. This completes the proof of

part 1) of Theorem 3.4.
For part 2), note that the relations Φ′ε(zε) = 0, (6.1) and (6.3) imply

(6.20) W ′eff,ε(zε) = O(ε2).
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Since zε ∈ Ωεδ and ε 	 δ, Lemma 6.2 and (6.20) show that W ′′eff,ε(zε) is invertible with
the bound

(6.21) ‖W ′′eff,ε(zε)−1‖ ≤ c(εδ2)−1.

Hence, (6.20), (6.21), (6.9) with n = 3 and an implicit function theorem type argument
(similar to that used in the proof of Proposition 2.1; see §8) imply that Weff,ε has a
unique critical point z0 ∈ BR2(zε, C 1

δ ) and |z0 − zε| = O( ε
δ2 ).

To show that z0 ∈ Ωεδ, we use exactly the same arguments as those used in part 1)
for the proof of the fact that zε ∈ Ωεδ. This completes the proof of part 2).

For part 3), first we prove the “only if” assertion. To fix the ideas, we assume that
Weff,ε has a local minimum at z0, i.e., W ′eff,ε(z0) = 0 and W ′′eff,ε(z0) > 0. Therefore,
by Lemma 6.2, W ′′eff,ε(z0) ≥ cεδ2. By part 1), Φε(z) has a unique critical point zε in
BR2(z0, C 1

δ ) ∩ Ωεδ. We want to show that Φ′′ε (zε) > 0. By (6.1) and (6.3), we have

(6.22) Φ′′ε (zε) = W ′′eff,ε(zε) +O(ε2).

Hence, it suffices to check that W ′′eff,ε(zε) ≥ cεδ2 (since ε 	 δ2). The latter follows from
the expansion

W ′′eff,ε(zε) = W ′′eff,ε(z0)︸ ︷︷ ︸
≥cεδ2

+O(εδ3|zε − z0|)︸ ︷︷ ︸
O(ε2δ)

,

and the condition ε	 δ, and we are done with the “only if” statement of part 3).
For the “if” part, to fix the ideas we assume that Φε has a minimum at zε, i.e.,

Φ′ε(zε) = 0 and Φ′′ε (zε) > 0. We want to show that W ′′eff,ε(z0) > 0 for the critical point z0
found in part 2) above. By (6.1), (6.3) and the assumption, we have

(6.23) W ′′eff,ε(zε) +O(ε2) = Φ′′ε (zε) > 0.

Since ε 	 δ2 and ‖W ′′eff,ε(zε)−1‖ ≤ c(εδ2)−1, (6.23) and spectral theory (see, e.g., [HS])
imply W ′′eff,ε(zε) ≥ cεδ2. Hence, the result follows from the condition ε 	 δ and the
expansion

W ′′eff,ε(z0) = W ′′eff,ε(zε)︸ ︷︷ ︸
≥εδ2

+O(εδ3|z0 − zε|)︸ ︷︷ ︸
O(ε2δ)

. �

6.4. Proof of Proposition 2.1: relationship between Wε and Weff,ε. We first
prove the “only if” part of the statement. Since W ′ε(z

′) = 0, (6.12) implies

(6.24) W ′eff,ε(z
′) = O(εδ3).

Since z′ ∈ Ωεδ and δ 	 1, Lemma 6.2 and (6.24) show that W ′′eff,ε(z
′) is invertible with

(6.25) ‖W ′′eff,ε(z′)−1‖ ≤ c(εδ2)−1.

Hence, (6.24), (6.25), (6.9) with n = 3 and an implicit function type argument (see §8)
imply that Weff,ε has a unique critical point at z0 ∈ BR2(z′, c) and |z0 − z′| = O(δ).

The fact that z0 ∈ Ωεδ is proved in the same way as the fact that zε ∈ Ωεδ in the proof
of part 1) of Theorem 3.4 (see the paragraph containing (6.17)–(6.19)).

For the “if” part of the statement, we note that the identity W ′eff,ε(z0) = 0 and (6.12)
imply

(6.26) W ′ε(z0) = O(εδ3).

Since δ 	 1, (6.26) implies |W ′ε(z0)| 	 εδ, and since z0 ∈ Ωεδ, we have

(6.27) ‖W ′′ε (z0)−1‖ ≤ c(εδ2)−1.
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By (6.26), (6.27) and an implicit function type argument (see §8), Wε has a unique
critical point at z′ ∈ BR2(z0, c) and |z′ − z0| = O(δ). Finally, the fact that z′ ∈ Ωεδ
follows from the same argument as that mentioned above.

We note that (6.13) implies that Wε has a local minimum/maximum if and only if
Weff,ε has a local maximum/minimum. �

§7. Proof of Lemmas 4.1 and 4.2

In this section we drop the subscripts z and γ in ψ and A for brevity.

Proof of Lemma 4.1. Recall that, by [GS1, §3], for w =
(
ξ
B

)
,

Lw =
(

[−∆A + λ
2 (2|ψ|2 − 1)]ξ + λ

2ψ
2ξ̄ + i[2∇Aψ + ψ∇] ·B

Im([ ¯∇Aψ − ψ̄∇A]ξ) + (−∆ + ∇∇ + |ψ|2) ·B
)
,

where we use the notation L = F ′0(vzγ). For w ∈ K⊥zγ , Theorem 3.1 yields

(7.1) ‖Lw‖L2 ≥ τ‖w‖L2

with τ = inf(σ(L) ∩ (0,∞)). By (7.1),

(7.2) ‖Lw‖L2 ≥ (1 − α)τ‖w‖L2 + α‖Lw‖L2 .

Now, for w =
(
ξ
B

)
we have

‖Lw‖2
L2 =

∥∥∥ [− ∆A +
λ

2
(2|ψ|2 − 1)

]
ξ +

λ

2
ψ2ξ̄ + i[2∇Aψ + ψ∇] ·B︸ ︷︷ ︸

(I)

∥∥∥2

L2(R2;C)

+ ‖ Im([ ¯∇Aψ − ψ̄∇A]ξ) + (−∆ + |ψ|2 + ∇∇·)B︸ ︷︷ ︸
(II)

‖2
L2(R2;R2).

(7.3)

Let w ∈ K⊥zγ . Then w is orthogonal to the gauge zero modes, i.e., Im(ψ̄ξ) = ∇ · B.
This and the inequalities

(7.4) ‖∇ξ‖L2 ≤ 1√
2δ1

‖ξ‖L2 +
δ1√
2
‖∆ξ‖L2

for any δ1 > 0, and

‖∇∇ · B‖L2 = ‖∇ Im(ψ̄ξ)‖L2 ≤ C

δ2
‖ξ‖L2 + Cδ2‖∆ξ‖L2

for any δ2 > 0, imply that (assuming δ1, δ2 ≤ 1)

(7.5) ‖I‖L2(R2;C) ≥ (1 − Cδ1)‖∆ξ‖L2 − C

δ1
‖ξ‖L2 − C‖B‖L2 ,

and

(7.6) ‖II‖L2(R2;R2) ≥ ‖∆B‖L2(R2;R2) − C(δ1 + δ2)‖∆ξ‖L2 − C

δ1δ2
‖ξ‖L2 − C‖B‖L2 .

Choosing δ1 and δ2 sufficiently small, from (7.5) and (7.6) we deduce that

‖Lw‖L2 ≥ 1
2
(‖∆B‖L2(R2;R2) + ‖∆ξ‖L2

)− C (‖ξ‖L2 + ‖B‖L2)

where C > 0. This and (7.2) with α = τ
τ+C imply

‖Lw‖L2 ≥ β′‖w‖H2 ,

where β′ = min{ τ2 , τ
4(τ+C)}.
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To finish the proof of this lemma, we estimate, with the help of (4.17): ‖Lzγεw‖L2 ≥
‖Lw‖L2−‖Wεξ‖L2 ≥ (β′−‖Wε‖L2)‖w‖H2 . By the assumption onWε, we have ‖Wε‖L2 ≤
Dε. So, Lemma 4.1 follows with β = β′ − εD, and C1 = β′

D . �

Proof of Lemma 4.2. Recall the notation vzγ =
( ψzγ

Azγ

)
=
(
ψ
A

)
, and let w =

(
ξ
B

) ∈ H2.
By (4.1), the remainder Nε(vzγ , w) can be computed explicitly as

Nε(vzγ , w) =
(
λ
2 (2ψξ̄ + ψ̄ξ + |ξ|2)ξ + ‖B‖2(ψ + ξ) + [i(∇ ·B +B · ∇) + 2A · B]ξ

− Im(ξ̄∇Aξ) +B(2 Re(ψ̄ξ) + |ξ|2)
)
.

Using this formula, we compute for α =
( η
C

) ∈ H2:

(∂wNε(vzγ , w)α)1 = λ[Re(ξ̄η)(1 + ξ) + (ξ + (1/2)|ξ|2)η] + 2B · C(ψ + ξ) + ‖B‖2η

+ [i(∇ · C + C · ∇) + 2A · C]ξ + [i(∇ · B +B · ∇) + 2A · B]η,

and

(∂wNε(vzγ , w)α)2 = − Im(η̄∇Aξ + ξ̄∇Aη) + C(2 Re(ψ̄ξ) + |ξ|2) + 2BRe(ψ̄ + ξ)η.

Now estimates (4.3) and (4.4) follow from the Sobolev embedding inequalities and esti-
mates on ψ and A. �

§8. An implicit function type argument

In this section we show that equations (6.24), (6.25), (6.9) with n = 3 imply that the
function Weff,ε has a unique critical point at z0 ∈ BR2(z′, α) for some α = O(1) and
|z0 − z′| = O(δ). For this, we use a standard implicit function type argument (see, e.g.,
[McO]).

We begin with expanding W ′eff,ε(z) around z′ to get

W ′eff,ε(z) = W ′eff,ε(z
′) +W ′′eff,ε(z

′)a+Rε(a),

where a = z − z′ and, by (6.9) with n = 3,

(8.1) Rε(a) = O(εδ3|a|2).
Using this expression and the fact that W ′′eff,ε(z

′) is invertible, we rewrite the equation
W ′eff,ε(z) = 0 as a = H(a), where

(8.2) H(a) := −W ′′eff,ε(z′)−1(W ′eff,ε(z
′) +Rε(a)).

Thus, W ′eff,ε(z0) = 0 if and only if H has a fixed point z0.
To show that H has a fixed point, we shall show that, for α = O(1) and δ sufficiently

small,
1) H maps BR2(0, α) → BR2(0, α);
2) H is a contraction on BR2(0, α).

We prove statement 1) first. By (6.24), (6.25), (8.1), and (8.2), we have

(8.3)
|H(a)| ≤ ‖W ′′eff,ε(z′)−1‖(|W ′eff,ε(z′)| + |Rε(a)|) ≤ C(εδ2)−1(εδ3 + εδ3|a|2)

≤ C1

2
δ + C2δ|a|2.

Now, choose α < 1
2C2

and δ < 1
C1
α (note that this is fulfilled because δ 	 1 by assump-

tion). Then for |a| ≤ α, we have |H(a)| ≤ α, and we are done with 1).
To prove 2), we use the fact that W ′eff,ε(z

′) + Rε(a) = W ′eff,ε(z) −W ′′eff,ε(z
′)a. Then

(8.2) implies that

H ′(a) = −W ′′eff,ε(z′)−1[W ′′eff,ε(z) −W ′′eff,ε(z
′)]

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



232 I. M. SIGAL AND F. TING

for any a ∈ BR2(0, α). Since Weff,ε(z) is C2 in z, we can choose a to be sufficiently
small so that ‖W ′′eff,ε(z) −W ′′eff,ε(z

′)‖ 	 1
2‖W ′′eff,ε(z′)−1‖−1 for any z ∈ BR2(z′, α). Then

‖H ′(a)‖ ≤ 1/2 for any a ∈ BR2(0, α), and since BR2(0, α) is a convex domain, it follows
that H is a contraction, and we are done with 2).

Since the map H is a contraction in BR2(0, α), it has a unique fixed point there;
therefore, there exists a unique z0 in BR2(z′, α) such that W ′eff,ε(z0) = 0.

Moreover, for this fixed point a we have

|a| = |H(a)| ≤ |H(0)| + |H(a) −H(0)| ≤ Cδ +
1
2
|a|

by (8.3) and because H is a 1/2-contraction. Thus, |z − z0| = |a| = O(δ). �

§9. Bounds on an and fn

In this section, we prove bounds on the vortex profiles an and fn defined in (1.4). The
index n is fixed in what follows, and we write f and a for fn and an, respectively. In
the proofs below, we use the following equations satisfied by ξ := 1 − f and b := 1 − a,
which follow from equations (1.1) and (1.2) and the definition (1.4):[

− ∆r +
n2b2

r2
+
λ

2
f(f + 1)

]
ξ =

n2b2

r2
,(9.1) (

− ∆r +
2
r

∂

∂r
+ f2

)
b = 0,(9.2)

where ∆r = ∂2

∂r2 + 1
r
∂
∂r .

We have the following exponential bounds on ξ and b.

Theorem 9.1. Let R = R(ε) be such that

(9.3) f2(r) ≥ 2ε for r = |x| ≥ R,

and let φ1(r) =
∫ r
R

√
f2(ρ) − ε dρ and φ2(r) = min

(
φ̃2(r), 2φ1(r)

)
, where φ̃2(r) =∫ r

R

√
λ
2 [f(ρ)(f(ρ) + 1) − ε] dρ. Then

(9.4) ‖eφ1b‖L2 ≤ Cε−1eR‖b‖H1

and

(9.5) ‖eφ2ξ‖L2 ≤ Cλ−1ε−1(emλR‖ξ‖H1 + εC(R)‖eφ1b‖2
L2),

where mλ = min(
√
λ, 2).

Proof. First, we obtain an exponential bound on b. We note that for any v ∈ H2(Rn; R)
and any φ1 ∈ C2(Rn; R) we have

(9.6) Re〈v, eφ1(−∆)e−φ1v〉 = 〈v, (−∆ − |∇φ1|2)v〉.
Observe that 〈v, 2

r
∂v
∂r 〉 = 2πv(0)2 = 0 for any radially symmetric H1-function v with

v(0) = 0. Therefore, by (9.3) and since −∆r is a positive operator, for any radially
symmetric H1-function v with support in {r ≥ R} we have

(9.7)
〈
v,
(
− ∆r +

2
r

∂

∂r
+ f2 − |∇φ1|2

)
v
〉
≥ 〈v, (f2 − |∇φ1|2)v〉 ≥ ε‖v‖2.

Let u = Jeφ1b, and let J be a C∞ function of r such that J = 0 if r ≤ R and J = 1 if
r ≥ R + 1 with |∂αJ | ≤ 2 for |α| ≤ 2. Since u is radially symmetric and u(0) = 0, we
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can write

ε‖u‖2
L2 ≤

〈
u,
(
− ∆r +

2
r

∂

∂r
+ f2 − |∇φ1|2

)
u
〉

by (9.7)

= Re
〈
u, eφ1

(
− ∆r +

2
r

∂

∂r
+ f2

)
e−φ1u

〉
by (9.6)

= Re
〈
u, eφ1

[(
− ∆r +

2
r

∂

∂r
+ f2

)
, J
]
b
〉

by e−φ1u = Jb and (9.2)

= Re
〈
u, eφ1

[
− ∆r +

2
r

∂

∂r
, J
]
b
〉

≤ ‖u‖L2

∥∥∥eφ1

[
− ∆r +

2
r

∂

∂r
, J
]
b
∥∥∥
L2
.

Since [∆r, J ]b = 2∇J · ∇b+ ∆J · b and [2r
∂
∂r , J ] = 2

r
∂J
∂r , we have

‖u‖L2 ≤ ε−1{2‖eφ1∇J‖∞‖∇b‖L2 + ‖eφ1∇ · (∇J)‖∞‖b‖L2}

+ ε−1
∥∥∥eφ1

2
r

∂J

∂r

∥∥∥
∞
‖b‖L2.

This gives

(9.8) ‖Jeφ1b‖L2 ≤ Cε−1 sup
x∈supp(∇J)

eφ1‖b‖H1 .

To obtain an exponential bound ξ, we follow the same argument as above to prove
(9.8). We use the fact that −∆r and n2b2

r2 are positive operators and the inequality
|∇φ2|2 ≤ λ

2 [f(f + 1) − ε] to get〈
v,
(
− ∆r +

n2b2

r2
+
λ

2
f(f + 1) − |∇φ2|2

)
v
〉
≥
〈
v,

(
λ

2
f(f + 1) − |∇φ2|2

)
v
〉

≥ λ

2
ε‖v‖2

for any function v with support in {r ≥ R}. Let u = Jeφ2ξ, and let J be the same
function as defined in the proof of (9.4) above. We have

λ

2
ε‖u‖2

L2 ≤
〈
u,
(
− ∆r +

n2b2

r2
+
λ

2
f(f + 1) − |∇φ2|2

)
u
〉

= Re
〈
u, eφ2

(
− ∆r +

n2b2

r2
+
λ

2
f(f + 1)

)
e−φ2u

〉
by (9.6)

= Re
〈
u, eφ2 [−∆r, J ]ξ + eφ2J

n2b2

r2

〉
by e−φ2u = Jξ and (9.1)

≤ ‖u‖L2

∥∥∥eφ2 [−∆r, J ]ξ + eφ2J
n2b2

r2

∥∥∥
L2
.

Therefore,

(9.9) ‖u‖L2 ≤ 2λ−1ε−1

(
‖eφ2[−∆r, J ]ξ‖L2 +

∥∥∥eφ2J
n2b2

r2

∥∥∥
L2

)
.

The first term can be estimated as in (9.8); this gives

(9.10) ‖eφ2 [−∆r, J ]ξ‖L2 ≤ Cε−1 sup
x∈supp(∇J)

eφ2‖ξ‖H1 .

For the second term, we use the fact that for any ρ > 0 there is d > 0 such that

(9.11) |b(x)| ≤ d

∫
B

R2 (x,ρ)

|b(y)| dy
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(see [CFKS, Theorem 2.4]). We have∥∥∥eφ2J
n2b2

r2

∥∥∥2

L2

≤
( n
R

)4
∫
e2φ2 |b|4 dx

≤
(dn
R

)4
∫
dx e2φ2

(∫
B

R2(x,ρ)

|b(y)| dy
)4

by (9.11)

≤
(dn
R

)4
∫
dx e−δφ2

(∫
B

R2(x,ρ)

e(
1
2+ δ

4 )φ2(y)+cρ|b(y)| dy
)4

.

Since φ2(x) ≤ φ2(ρ) + cρ for |x− y| ≤ ρ, the latter quantity is dominated by(
dn

R

)4 ∫
dx e−δc

′|x|
(∫

B
R2(x,ρ)

dy

)2(∫
B

R2 (x,ρ)

e(1+
δ
2 )φ2(y)+2cρ|b(y)|2 dy

)2

.

Applying the Cauchy–Schwartz inequality and the estimate φ2(x) ≥ c′|x|, we find

(9.12)
∥∥∥eφ2J

n2b2

r2

∥∥∥2

L2
≤
(dn
R

)4 1
δc′

vol(BR2(0, ρ))2e4cρ‖e( 1
2+ δ

4 )φ2b‖4
L2.

Inequalities (9.9), (9.10), and (9.12) with ρ = 1 imply the estimate

(9.13) ‖Jeφ2ξ‖L2 ≤ C
(
ε−1 sup

x∈supp(∇J)

eφ2‖ξ‖H1 + δ−1R−4‖e( 1
2+ δ

4 )φ2b‖4
L2

)
.

Now, by increasing constants, we can replace φ1 and φ2 on the right-hand sides of
(9.8) and (9.13) by r and mλr, respectively. Here, mλ = min(

√
λ, 2). Since r ≤ R + 1

on supp(1−J), we have ‖eφ1b‖2 ≤ ‖Jeφ1b‖2 + e2(R+1)‖(1−J)b‖2. Combined with (9.8),
this yields (9.4). Inequality (9.5) is obtained similarly. �

Picking now Rnew = Rnew(ε) so that f2(r) ≥ 1 − ε for r ≥ Rnew, we obtain

φ1(r) ≥ (1 − 2ε)(r −Rnew)

and

φ2(r) ≥ min(
√
λ, 2)(1 − 2ε)(r −Rnew) for r ≥ Rnew.(9.14)

Using (9.14) in (9.4) and (9.5) in Theorem 9.1 and using (9.11) once again, we arrive at
the following statement.

Corollary 9.1. Let mλ = min(
√
λ, 2), and let R ≡ Rnew be as in (9.14). Then

1 − |fn| ≤ c(R)e−mλ|x| and 1 − |an| ≤ c(R)e−|x|.
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