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Abstract

We consider the dynamics of a slender, evaporating droplet containing nanoparticles. We use

lubrication theory to derive a coupled system of equations that govern the film thickness and the

concentration of nanoparticles. These equations account for capillarity, Marangoni stresses, evap-

oration and disjoining pressure; the nanoparticles-induced structural component of the disjoining

pressure is also considered. Contact line singularities are avoided through the adsorption of ultra-

thin films wherein evaporation is suppressed by the disjoining pressure; a similar approach has

recently been used by Ajaev [J. Fluid Mech., 528, 279–296, 2005] who has built on the previous

work of Moosman and Homsy [J. Colloid Interface Sci., 73, 212–223, 1980]. The results of our

numerical simulations indicate that, depending on the value of system parameters, the droplet

exhibits a variety of different behaviours, which include spreading, evaporation-driven retraction,

contact line pinning, and ‘terrace’-formation.
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I. INTRODUCTION

The spreading of fluids on the surface of solids is dependent on the interfacial tensions

and the film energy, an integral of the disjoining pressure over the film thickness. The

disjoining pressure comprises van der Waals forces, electrostatic interactions and steric and

structural effects [1, 2]. The latter effects can play a key role in the spreading of nanofluids.

This is due to particle confinement between the liquid-solid and air-liquid interfaces in the

vicinity of the contact line. Decreasing the separation between the two interfaces leads to

their entropically-driven attraction, which drives phase separation in colloidal dispersions

[1, 3–8]. The structural component of the disjoining pressure is oscillatory in the direction

normal to the interacting surfaces. Such oscillatory structural interactions also arise in thin

liquid layers sandwiched between two smooth solid walls even in the absence of nanoparticles

[6]; in this case, they are referred to as “solvation” forces. The presence of these forces has

been shown to give rise to ‘stepwise’ thinning of foams and colloidal dispersions [9–18], with

particle layering between 5 nm and 2 µm [6, 12], and the ‘terraced’ spreading of nanodroplets

[19, 20].

Structural forces can have a much longer range than van der Waals interactions [8, 11]

leading to an increase in the spreading rate of thin films [21]. These effects have been

examined within the context of detergency and the promotion of oil droplet detachment

from solids by surfactant solutions [8, 11, 21–23]. The equilibrium meniscus shape near the

contact line of a drop laden with nanoparticles has been calculated recently by [8, 23] who

accounted for the structural disjoining pressure component for an oil-aqueous phase system.

An analytical expression for this component was used [8, 23] based on the Percus-Yevick

theory, which treats the confining surfaces and the nanoparticles as hard-spheres. This

expression accounts for the oscillations in this component as a function of the film thickness,

due to particle layering, followed by exponential decay at large thicknesses; when the film

thickness equals the particle diameter, this expression includes a term, which ensures that

the Percus-Yevick predictions are consistent with exact statistical mechanical results [7].

The results of these studies showed that an increase in contact line displacement resulted

from a rise in the concentration of nanoparticles, and a decrease in their diameter and the

degree of their polydispersity.

More recently, Matar et al. [24], examined the effect of the structural component of the
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disjoining pressure on the spreading dynamics of a droplet. They used lubrication theory

to derive a pair of coupled evolution equations for the thin film thickness and nanoparticle

concentration; the approach of Trokhymchuk et al. and Chengara et al. [8, 23] was followed

to model the presence of structural effects. Their results indicated the development of a ‘step’

near the contact line, which became more pronounced with increasing particle concentration.

The results of simulations showing terracing of droplets were also reported.

A number of studies have also examined the evaporation of thin films and droplets in

the absence [25–33] and presence of particles [34–42]. The latter works have demonstrated

the development of rings in the drying of coffee drops and films containing latex particles

[35–37], the formation of rings [43–45] and tree-like structures [46] in nanoparticulate thin

evaporating films of binary mixtures of nitrocellulose in amyl acetate and hexadecylamine

in hexane, complex stain morphologies in crystallising droplets [38], stick-slip motion [41],

and fingering phenomena in dewetting films of nanofluids [40, 42]. (There are also related

studies that examine the patterns formed during the evaporation of drops and films of

polymer solutions [47–49].) Yet, in spite of this large number of studies, to the best of our

knowledge, none of these has modelled the flow dynamics in the simultaneous presence of

structural forces and phase change effects. The combination of the effects may be significant:

it is well known that the evaporative flux is largest near the contact line of a drop [30, 35,

36]; evaporation from this region increases particle concentration, thereby increasing the

relative significance of the structural component. Although this may promote spreading

[21], an increase in the particle concentration also leads to an increase in viscosity, which

acts to retard the spreading. Thus, careful modelling of the dynamics is required in order to

determine the outcome of the competition between these phenomena; this is the main aim

of our paper.

The rest of the paper is organised as follows. In section II, we provide details of the model

derivation. Here, we build on the work of Chengara et al. [23], Ajaev [30] and Matar et al.

[24] and use lubrication theory to derive coupled evolution equations for the film thickness

and particle concentration, which accounts for evaporation and disjoining pressure effects.

The results of our numerical simulations are presented in section III and concluding remarks

are provided in section IV.
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II. FORMULATION

A. Governing equations

We consider the dynamics of a thin, evaporating droplet, which contains monodisperse

nanoparticles of diameter d. The characteristic thickness and length of this droplet are H
and L, respectively. A rectangular coordinate system, (x, z), is used to model the two-

dimensional film flow, in which x and z denote the horizontal and vertical coordinates,

respectively. The drop is bounded by a solid wall at z = 0 and by an inviscid gas from above.

The gas-liquid interface is located at z = h(x, t), which has a constant surface tension, σ.

The velocity field is denoted by u = (u,w) wherein u and w represent the horizontal and

vertical velocity components, respectively. The drop viscosity is dependent on the volume

fraction of the particles, φ, through a Krieger-Dougherty-type relation, µ = µ0(1−φ/φm)−2,

where φm is the volume fraction at close packing.

The dynamics are modelled using lubrication theory, [26, 50], by assuming that ε ≡
H/L ¿ 1. The mass, momentum and energy conservation equations are then given by [30]

ux + wz = 0, px = (µ(φ)uz)z , pz = 0, Tzz = 0, (1)

where p and T denote the pressure and temperature, respectively, and gravitational forces

have been neglected; we also neglect convective heat transfer effects and assume conduction

to be dominant. Equations (1) are solved subject to no-slip and no-penetration conditions

at the wall, u = w = 0 at z = 0; we also assume the wall to be highly conducting and set

T = Tw at z = 0. Normal and tangential stress conditions are applied at z = h in addi-

tion to kinematic and thermal flux conditions; following the application of the lubrication

approximation, these conditions are respectively given by

p = pv − σhxx − Π, µuz = σx + hxσz, ht + uhx − w +
J

ρl

= 0, ∆HvJ = −λTz, (2)

where Π represents the disjoining pressure, J denotes the evaporative flux, ρl is the fluid

density and pv is the vapour pressure; ∆Hv and λ are the latent heat of vapourisation and

(constant) thermal conductivity, respectively. The surface tension, σ, depends on temper-

ature linearly through σ = σ0 − γ(T − Ts), where γ ≡ −dσ/dT and σ0 denotes the value

of the surface tension at the equilibrium saturation temperature, Ts. In Eqs. (2), we have
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neglected vapour recoil effects in the normal stress balance, and kinetic energy effects and

the thermal conductivity of the vapour phase in the thermal flux condition.

In order to model evaporative effects, the following non-equilibrium interfacial condition

is applied [30, 51, 52]

pve

pv

− 1 =
σ

ρlRTs

(p− pv) +
∆Hv

RTs

(
Ti

Ts

− 1

)
, (3)

where Ti corresponds to the interfacial temperature, R is the gas constant per unit volume,

and pve is the equilibrium vapour pressure. The following equilibrium relation is used for

the saturation temperature, Ts, [30, 51, 52]

Ts =
2π

R

(
J

ρv(
pve

pv
− 1)

)2

. (4)

The intermolecular interactions are modelled using a combination of oscillatory structural

disjoining pressures and van der Waals interactions: Π = Πvw + Πos, wherein Πos denotes

the structural component given by [6]

Πos = P cos

(
2πh

d1

)
exp

(
d3

d2
1d2

− h

d2

)
, h ≥ d,

Πos = −P, 0 < h < d, (5)

and van der Waals interactions, Πvw, are expressed by

Πvw =
A

6πh3
. (6)

Alternative structural disjoining pressures [8, 23] are available and were used by the present

authors in previous work [24]. The expression for Πos in Eq. (5) is simpler in form and

encompasses the decaying oscillatory behaviour in h, which is an essential ingredient of

the model. In Eq. (5), d is the particle diameter; d1 = df1(φ) and d2 = df2(φ) in which

f1 =
√

(2/3) + a1∆φ + a2(∆φ)2 and f2 = b1/∆φ− b2; here, φ is the volume fraction of the

particles, ∆φ = π/3
√

2− φ, a1 = 0.23728, a2 = 0.63300, b1 = 0.48663 and b2 = 0.42032 [6].

Equation (5) comprises an oscillatory, structural disjoining pressure component for h > d,

which arises when interactions of surfaces separated by model fluids are considered using

statistical mechanical arguments [53]. For h < d, depletion forces are present, represented

by P = ρkTf3(φ) and for all h van der Waals forces are present and represented by A/6πh3;

additionally, A is the Hamaker constant, ρ = 6φ/πd3 denotes the number density of the
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particles, k is the Boltzmann constant and f3 = (1 + φ + φ2 − φ3)/(1 − φ)3; electrostatic

contributions have been neglected.

The dynamics of the particle concentration, c, are governed by a standard convective-

diffusion equation, which is expressed by

ct + ucx + wcz = D (cxx + czz) , (7)

in which D is the diffusion coefficient of the nanoparticles. Solutions of Eq. (7) are sought

subject to the following boundary conditions

cz = 0, z = 0,

D(n · ∇)c = c(u− us) · n, (8)

where us denotes the velocity of the interface. These conditions correspond to no-flux

at the wall and a diffusive flux at z = h due to concentration variations associated with

evaporation. Note that φ is taken to be related to c by φ = φm(c/ρp)/ [1 + (c/ρp)] in which

ρp is the density of individual particles (see appendix). Next, we exploit the slenderness of

the drop to derive evolution equations that govern its dynamics.

B. Scaling and cross-sectional averaging

We render the governing equations dimensionless using the following scalings in which

the tildes denote dimensionless variables

x = Lx̃, (z, h) = Ca1/3L(z̃, h̃), t = (L/U)t̃,

(u, w) = U(ũ, Ca1/3w̃), (p, P, Π) = (σCa1/3/L)(p̃, P̃ , Π̃),

T = Ts + Ca2/3TsT̃ , c = cρc̃, φ = φmφ̃, J = ρlUCa1/3J̃ , µ = µ0µ̃. (9)

Here, φm = 0.664 denotes the volume fraction and in terms of c̃, the normalised particle

volume fraction, φ̃, can be expressed as φ̃ = c̃/[1+c̃]. The capillary number, Ca ≡ µ0U/σ0 ¿
1, is a small parameter, where U ≡ λTs/ρl∆HvL represents a characteristic velocity. Note

that Ca1/3 = H/L ¿ 1, which is the droplet aspect ratio. The tildes are henceforth

suppressed.
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The dimensionless convective diffusion equation governing the evolution of c is then given

by

ct + ucx + wcz =
1

Ca2/3Pe

(
czz + Ca2/3cxx

)
, (10)

where Pe ≡ UL/D is a Peclet number characterising the importance of convective versus

diffusive particle transport. The following boundary conditions are imposed on the solutions

of Eq. (10)

cz = 0, at z = 0,

−Ca2/3hxcx + cz = Ca2/3Pe c [−hx(u− us) + w − ws] at z = h. (11)

We shall work in the rapid vertical diffusion limit and assume Ca2/3Pe ¿ 1 so that we can

substitute c(x, z, t) = c0(x, t) + Ca2/3Pe c1(x, z, t) into Eq. (10) [54]:

c0t + uc0x =
1

Pe
c0xx + c1zz + O(Ca2/3Pe). (12)

A similar substitution into Eq. (11) yields

c1z = 0, at z = 0,

c1z =
hxc0x

Pe
+ c0J, at z = h, (13)

where use was also made of Eq. (A1). Cross-sectional averaging of Eq. (12) and application

of Eqs. (13) yields

c0t + ūc0x =
1

hPe
(hc0x)x +

c0J

h
, (14)

where ū = (1/h)
∫ h

0
udz is the average droplet velocity, and the cross-sectional average of

c1(x, z, t) is taken to be zero so that (1/h)
∫ h

0
c1dz = 0. The normalised particle volume

fraction at leading order in Ca2/3Pe is φ0 = c0/[1 + c0].

The dimensionless governing equations remain unchanged from Eqs. (1), while the di-

mensionless interfacial conditions are expressed by

p = pv − hxx − Π, µuz = −Ma (Tx + hxTz) , ht + uhx − w + J = 0, J = −Tz, (15)

where Ma ≡ γTs/σ0 is a Marangoni number. Note that in the normal stress condition,

only the leading order contribution of the dimensionless capillary term has been retained:

(1 − Ca2/3MaT )hxx = hxx + O(Ca2/3); that is, Marangoni effects on capillarity have been

7



neglected at leading order. The dimensionless expression for Π is Πos + Πvw where

Πos = P cos

(
2πh

εf1(φ0)

)
exp

(
1

f 2
1 (φ0)f2(φ0)

− h/ε

f2(φ0)

)
, h ≥ ε,

Πos = −P, 0 < h < ε, (16)

where ε ≡ d/Ca1/3L is a dimensionless particle diameter and P = (6/π)Sφ0f3(φ0)(1 +

Ca2/3T ) = (6/π)Sφ0f3(φ0) + O(Ca2/3) in which S ≡ kTsL/σ0d
3Ca1/3, a dimensionless pa-

rameter that represents the relative significance of structural disjoining pressure effects;

here, the effect of thermal variations on P have been neglected at leading order. The van

der Waals component of the disjoining pressure is also scaled so

Πvw =
A
h3

(17)

where A is a rescaling of the Hamaker constant to

A =
A

6πσ0H2ε2
.

The dimensionless constitutive relation for J , which results from Eqs. (3) and (4) is given

by

KJ = ∆(p− pv) + Ti, (18)

where Ti is the interfacial temperature; K ≡ ρlU
√

2πRTs/ρvCa1/3∆Hv and ∆ ≡
σ0/ρlL∆HvCa1/3 are parameters that characterise the importance of interfacial kinetic ef-

fects and of variations in the pressure on the phase-change interfacial temperature [30]. The

conditions at z = 0 are given by

u = w = 0, T =
Tw − Ts

TsCa2/3
≡ Θ, (19)

where Θ represents a dimensionless difference between the wall temperature and the equi-

librium saturation temperature.

The leading order temperature equation, Tzz = 0, is integrated twice and the temperature

conditions in Eqs. (15) and (19) are imposed, which yields

T = Θ− zJ. (20)

The x-component of the momentum conservation equation is also readily integrated and

the tangential stress and no-slip boundary conditions in Eqs. (15) and (19) applied (after

making use of Eq. (20)) to yield the following expression for u

u =
1

µ(φ0)

[
Maz (hJ)x + px

(
z2

2
− zh

)]
, (21)
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whence ū is readily obtained:

ū =
1

µ(φ0)

[
Ma

h

2
(hJ)x −

h2

3
px

]
. (22)

Since pz = 0, the pressure is given by the normal stress condition in Eq. (15),

p = pv − hxx − Π. (23)

Substitution of Eq. (20) and (23) into Eq. (18) yields an expression for J :

J =
Θ−∆ (hxx + Π)

K + h
. (24)

The kinematic boundary condition in Eq. (15) can be re-expressed as ht +(ūh)x +J = 0.

Substitution of Eq. (22) into this equation and Eq. (14) finally yields evolution equations

for h and c0, respectively:

ht +

(
1

µ(φ0)

[
Ma

h2

2
(hJ)x −

h3

3
px

])

x

+ J = 0, (25)

c0t +
1

µ(φ0)

[
Ma

h

2
(hJ)x −

h2

3
px

]
c0x =

1

hPe
(hc0x)x +

c0J

h
, (26)

where p and J are given by Eqs. (23) and (24), respectively, and µ = (1 − φ0)
−2; the

‘0’ subscript is suppressed henceforth. Estimates of the magnitudes of the dimensionless

groups for the structural disjoining pressure that appear in the evolution equations are

ε ∼ 0.005−0.5, S ∼ 0.5−2000 and A ∼ 10−8−10−4 and are estimated using values given in

[24]. The other dimensionless groups have ranges that are estimated using fluid properties

given in [55, 56] such that realistic ranges are Ca ∼ 10−5 − 10−2, K ∼ 0− 1, ∆ ∼ 0− 10−2,

Pe ∼ 102 − 106, Θ ∼ 0− 1 and Ma ∼ 0− 100.

III. RESULTS

In this section, we describe the results of our parametric study. We begin by summarising

the flow behaviour in the absence of particles-induced structural disjoining pressures in order

to provide a baseline case against which these effects can be contrasted. A brief description

of the numerical procedure used to perform the computations is provided first.
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A. Numerical procedure

The evolution equations are solved using a numerical procedure which employs the finite-

difference approximation to discretise the spatial derivatives: centered-differences are used

over the whole of the computational domain except for the end points where one-sided

differences are utilised. In the majority of the cases described below, numerical solutions

were obtained starting from the following initial condition

h(x, 0) = 2(1− x2) + h∞, φ(x, 0) = φ0 for |x| ≤ 1

h(x, 0) = h∞, φ(x, 0) = 0 for |x| > 1. (27)

The initial condition for c is then given by

c(x, 0) ≡ c0 = φ0/(1− φ0), for |x| ≤ 1

c(x, 0) = 0, φ(x, 0) = 0 for |x| > 1. (28)

The initial condition given by Eq. (27) corresponds to a droplet of constant curvature

laden with nanoparticles of volume fraction φ0, released onto an ultra-thin film of uniform

thickness, h∞:

h∞ =

(
∆A
Θ

) 1
3

. (29)

The numerical solutions are subject to the following no-flux conditions

hx(0, t) = hxxx(0, t) = 0, cx(0, t) = 0,

hx(L, t) = hxxx(L, t) = 0, cx(L, t) = 0, (30)

where L is the length of the computational domain. The thickness h∞ corresponds to

an equilibrium, particle-free film, adsorbed from the atmosphere, which is stabilised by the

presence of van der Waals forces. The thickness of h∞ increases with A and ∆ and decreases

with increasing superheat, Θ. Thus the singularity at the advancing contact line of a drop

spreading on a bare substrate is relieved by the presence of the equilibrium film. Note that

this is not simply a device to remove the singularity, but a physical phenomenon created

naturally by the interaction between evaporation and attractive van der Waals forces.

The value of h∞ = 0.01 is fixed for all the computations presented in this paper. Typically,

5000 grid points are used to carry out the computations for 0 ≤ L ≤ 5. The fine grids used

here overcome any minor regularity issues that are connected with the discontinuous gradient

in the height field at the initial droplet edge; convergence is achieved upon mesh refinement.
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FIG. 1: Drop evolution in the presence of evaporation and absence of nanoparticles and Marangoni

stresses with the following parameter values K = 0.2, ∆ = 0.001, A = 10−6 and Ma = 0. Panels

(a) and (b) show the spatio-temporal development of h and J , respectively, at time intervals spaced

by 2 dimensionless time units and starting from t = 0.1. Panel (c) shows h and J at t = 5 for

different values of Θ. Panels (d) and (e) show the effect of Θ on the temporal evolution of the

droplet leading edge and the slope (microscopic contact angle) at this location, respectively.

B. Negligible structural disjoining pressure

We begin the presentation of our results by outlining briefly the system behaviour in the

absence of nanoparticles [56]. This is done via numerical solution of Eq. (25) with µ = 1 and

S = 0. A typical droplet evolution is shown in Fig. 1, in the absence of Marangoni stresses,

Ma = 0, and with Θ = 0.5, Ma = 20, K = 0.2, ∆ = 0.001, Pe = 10−4. It is clearly seen

that the droplet undergoes spreading during the early stages of the flow, as shown in panels
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FIG. 2: Drop evolution in the presence of evaporation and Marangoni stresses, and absence of

nanoparticles with the following parameter values K = 0.2, ∆ = 0.001, A = 10−6 and Θ = 0.05.

Panels (a) and (b) show the spatio-temporal development of h and J , respectively, at time intervals

spaced by 2 dimensionless time units and starting from t = 0.1. Panel (c) shows h and J at t = 5

for different values of Ma. Panels (d) and (e) show the effect of Ma on the temporal evolution of

the droplet leading edge and the slope at this location, respectively.

(a) and (d) of Fig. 1 that depict the spatio-temporal evolution of h and the droplet leading

edge, respectively. It is also evident that mass loss takes place continuously by evaporation

and this is accompanied by retraction of the leading edge until the droplet vanishes.

The evaporative flux exhibits a peak at the leading edge, as shown in Fig. 1(b), where

the interfacial slope is largest and the thickness least. The amplitude of this peak rises

with increasing superheat Θ as expected, which is demonstrated in Fig. 1(c). The ‘contact

angle’ is also shown in Fig. 1(e), defined as the interfacial slope, hx, evaluated at the
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leading edge, or droplet ‘contact line’. Inspection of this figure reveals that the contact line

dynamics exhibit three distinct stages corresponding to early, intermediate and late times.

It is seen that the contact angle decreases rapidly during the early stage of the dynamics

that corresponds to the time interval during which spreading occurs. In the intermediate

stage, the contact angle decreases relatively slowly as the contact line undergoes retraction.

The final stage is accompanied by a precipitous drop in the contact angle immediately before

the droplet vanishes due to evaporation.

The presence of the three stages of the contact line dynamics appears to be robust for

the various Θ values used. The duration of the intermediate stage decreases with increasing

Θ as does the distance to which the droplet spreading prior to retraction, as shown in Fig.

1(d),(e). The addition of Marangoni stresses via the Marangoni parameter, Ma, acts to

delay the eventual disappearance of the droplet by reducing the effective flux at its edge and

retarding its initial spreading stage; this is shown in Fig. 2.

C. Structural disjoining pressure

In this section, we investigate the effect of structural disjoining pressure via numerical

solution of Eqs. (25) and (26) with S > 0. In Fig. 3 we show the droplet evolution with

c0 = 0.05, and the rest of the parameters remaining unchanged from Fig. 1. As shown

in panel (a) of Fig. 3, generated with S = 1, the behaviour of the droplet is similar to

that in the absence of particles, albeit slightly retarded due to the viscosifying effect of the

particles: the early stages of the dynamics are accompanied by spreading, which then gives

way to evaporatively-driven leading edge retraction. The particles, as shown in Fig. 3(b,c),

concentrate at the leading edge due to the high mass flux local to this region, and are left

behind in the ‘wake’ of the receding edge.

Increasing the relative significance of the structural disjoining component by raising the

value of S leads to the formation of ‘steps’ and ‘terraces’ at the droplet leading edge. As

shown in Fig. 3(d,e), for a value of S = 25 a single step is formed, while, for S = 200,

multiple steps are observed. These steps and terraces remain virtually stationary whilst

the main droplet evaporates. The additional attraction of the structural disjoining pressure

gives stable states where these effects balance the evaporation and fluid remains within the

step. We cannot rule out the fact that these steps and terraces are unstable to spanwise
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perturbations. Indeed, following the work of [57] on receding nanoparticulate films, we

expect these terraces to be vulnerable to a pattern-forming instability.

Also of interest is the effect of S on the temporal evolution of the droplet leading edge. As

shown in Fig. 3(f), increasing S leads to a delay in droplet retraction. This is related to the

formation of steps and terraces, which is typical of the dynamics at large S. Moreover, it is

evident from Fig. 3(f) that the evolution of the leading edge becomes weakly-dependent on

variations in S for sufficiently large S values. We have also found that increasing the initial

particle concentration, c0, has a qualitatively similar effect to that of increasing S. This is

shown in Fig. 4, where by keeping S fixed and increasing c0 from 0.05 to 0.5, retardation of

the leading edge retraction and the formation of more pronounced terraces are observed.

To emphasise that the main droplet evaporates leaving behind the steps and terraces we

display in Fig. 3(g) the position, x90(t), within which 90% of the droplet volume resides.

In contrast to the edge position shown in panel (f) for, say, S = 200 this position recedes

until t ∼ 16 and is largely independent of S. The structural component of disjoining

pressure creates the steps and terraces, but the main droplet evaporates and recedes almost

independently of the disjoining pressure. After t ∼ 16 the cases that involve steps and

terraces have a jump in x90 to a constant position that is, as expected, 90% of the way along

the step.

As noted in section III B, Marangoni stresses were found to retard the retraction of the

leading edge. The effect of Marangoni stresses on the dynamics in the presence of particles

are depicted in Fig. 5 for S = 100 and c0 = 0.05. This plot shows that step-formation is

most pronounced with Ma = 0, that is, in the absence of Marangoni stresses. The droplet

then expands and recedes leaving the step of fluid behind, Fig. 5(c), although ultimately

even the large Ma case leaves a step behind. Thus, at high values of S the disjoining

pressure dominates, and the main droplet takes longer to evaporate. One notable feature

is that the step continues to slowly grow in extent, this is due to the weak diffusion of

particles characterised by the Peclet number. Not shown is the behaviour for low values of

the disjoining pressure, S = 1, as then the effect of the particles is weak. Even with the

droplet restrained by Marangoni stresses no terracing or step formation was detected.

The effect of varying the superheat, Θ, on the dynamics has also been explored. In Fig.

6 we show that increasing Θ can overwhelm the effect of the structural disjoining pressure;

one moves from a regime with step-formation to one in which the droplet retracts rapidly
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FIG. 3: Drop evolution in the presence of evaporation and nanoparticles. Panels (a) and (b)

show the spatio-temporal development of h and φ, respectively, at time intervals spaced by 2

dimensionless time units and starting from t = 0.1; (c) depicts h and φ at t = 5. In (a)-(c), S = 1

and c0 = 0.05. Panel (d) is analogous to (a) except S = 200, and (e) presents enlarged versions

of the leading edge region for S = 25 and S = 200 that exhibit ‘step’ and ‘terrace’ formation,

respectively. The effect of varying S on the temporal evolution of the droplet leading edge is

shown in (f). The rest of the parameter values remain unchanged from Fig. 1 with Θ = 0.05. The

arrows in (a) and (d) indicate the direction of increasing time. Panel (g) shows the position, x90(t),

within which 90% of the droplet volume resides.
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FIG. 4: The effect of altering the initial particle concentration, c0, on the dynamics with Θ = 0.05,

K = 0.2, ∆ = 10−3, A = 10−6. Panel (a) shows the temporal evolution of the droplet leading edge

with S = 1 while (b) presents an enlarged version of this region for S = 100, t = 100 and different

values of c0; (c) shows h and φ at t = 5 for the same parameters as those used to generate (b).

without forming steps. In panel (d) of Fig. 6 we show a position, x90(t), within which 90%

of the fluid remains at a given time. For the case with the step, Θ = 0.05, this emphasises

that the step remains locked in position, as shown by the plateau in panel (a), but that the

main droplet evaporates and recedes. The sudden jump at t ∼ 15 denotes the time at which

only the step remains and 90% of the fluid remaining is then kept within a fixed domain.

D. Long droplets and stability

If the droplets are sufficiently long then it is possible that a Marangoni-driven instability

will occur causing the droplet to break into a number of smaller droplets. We do not consider

this scenario in detail as our main interest is in the advance/retraction of a single droplet

and the effect of the structural disjoining pressure on the edge behaviour. It is important to

note, however, that this alternative multiple breakup is a possibility and that a flat film or

long droplet can suffer from instability whose origin can be easily identified using a linear

stability analysis [39, 55, 58].

A base state corresponding to an evaporating film of uniform thickness is obtained from
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droplet leading edge while (c) shows h and φ at t = 5 with (b) as an enlargement of the behaviour
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FIG. 6: The effect of varying superheat Θ on the dynamics with K = 0.2, ∆ = 10−3, A = 10−6 and

S = 1 and initial concentration c0 = 0.05. Panel (a) shows the temporal evolution of the droplet

leading edge while (c) shows h and φ at t = 5 with (b) as an enlargement of the behaviour at the

edge for Θ = 0.05. Panel (d) shows the position, x90(t), within which 90% of the fluid volume is

contained.
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Eq. (25) by equating the unsteady term to J (with hxx = 0):

h∗(t∗) = −K +
√

(K + hi)2 − 2Θt∗, (31)

where hi is the initial thickness. Due to evaporation this base state is time-dependent,

as expected. Substitution of the following normal-modes expansion h(x, t; t∗) = h∗(t∗) +

ĥ exp(ωt + ikx) into Eq. (25) and subsequent linearisation yields

ω = k2

(
Ma

2
h2
∗

[
h∗

(
∆k2 − Θ

K + h∗

)
1

K + h∗
+

Θ

K + h∗

]
− k2h3

∗
3

)

− 1

K + h∗

(
∆k2 − Θ

K + h∗

)
. (32)

Here, ĥ ¿ h∗ is the disturbance amplitude, ω and k its growth rate and wavenumber.

Note that in performing the above linear stability analysis, we have assumed implicitly that

the perturbation time scale is much shorter than that associated with the base state. The

quasi-steady-state approximation will therefore lead to an explicit, parametric dependence

on t∗.

The effect of ∆, Θ, Ma and K on the dispersion curves obtained from Eq. (32) is shown in

Fig. 7 for the initial time; decreasing the film thickness maintains the same trends with these

parameters, but with an increased growth rate. It is seen that an increase in the value of

these parameters increases the growth rate of the majority of the k interval (the exception

being an increase in K renders long-wave disturbances less unstable); this increase also

shifts the wavenumber associated with the ‘cut-off’ and ‘most dangerous’ modes to larger

wavenumbers.

We illustrate the effect of this linear instability on the nonlinear dynamics of an initially

long drop, laden with particles but in the absence of structural disjoining pressure effects.

In Fig. 8, we show the film evolution by solving Eqs. (25) and (26) with S = 0 starting

from an initial condition given by

h(x, 0) = 1 + h∞ + δh, for |x| < 2π,

h(x, 0) = max(1− (x∓ 2π)2, 0) + h∞ for |x| ≥ 2π, (33)

with the minus (plus) for positive (negative) x; φ(x, 0) = 0.1 in the drop only. The droplet is

a given a small amplitude perturbation of δh = −0.01 cos(πx) which is in the unstable range

of wavenumbers for Θ = 0.5, Ma = 20, K = 0.2, ∆ = 0.001, A = 10−6. As shown in Fig. 8,
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FIG. 7: The effect of ∆, Θ, Ma and K on the dispersion curves generated from Eq. (32). Unless

stated otherwise in the panel legends, the parameter values are Θ = 1,Ma = 20,K = 0.2, h∗ =

1, ∆ = 0.01 and t? = 0 with hi = 1.

the instability grows faster than the droplet retracts and thus it splits in two. Each smaller

droplet then evaporates independently of the other. The instability is Marangoni-driven

and the initial droplet thickness is large relative to the lengthscales over which disjoining

pressure acts; the effect of the disjoining pressure is to prevent the droplet rupturing with

the height field becoming zero. The volume fraction φ shows that the nanoparticles are

deposited on the substrate as the droplet retracts.

IV. CONCLUDING REMARKS

Our aim in this article is to generate a continuum model capable of producing pinned

terraces and steps for evaporating droplets; these features are observed experimentally when

droplets contain nanoparticles. The nanoparticles are taken into account within the model
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FIG. 8: The evolution of an initially long droplet starting from Eq. (33) with Θ = 0.5,Ma =

20,K = 0.2, ∆ = 0.001, c0 = 0.05. The height and particle volume fraction are shown in (a) and

(b) for t = 0.2, 1 and 2 with the initial conditions shown as dotted lines and the arrows indicate

increasing time. In panel (b) the particle fraction at t = 2 is shown as a dashed line for clarity.

by the presence of structure disjoining pressure effects. The dynamics are modelled using

lubrication theory which leads to the derivation of coupled equations for the position of the

interface and particle concentration. The droplets are assumed to be sufficiently slender and

vertical diffusion sufficiently rapid that these collectively act to erase vertical concentration

gradients. The Kralchevsky-Denkov relation is employed in this work to model the presence

of the structural disjoining pressure in the flow. Structural disjoining pressure models have

oscillatory potentials and these lead to locally stable thickness that are the steps and terraces.

Furthermore, we follow a similar approach to that used recently by Ajaev [30] and assume

the presence of adsorbed ultra-thin stable films ahead of the droplet wherein evaporation is

suppressed by the van der Waals disjoining pressure. We show through numerical solution of

the evolution equations that increasing the relative significance of the structural disjoining

pressure and/or increasing the initial particle concentration delays the retraction of the

droplet leading edge, which normally accompanies droplet evaporation; it also leads to the

formation of ‘steps’ and ‘terraces’ at the leading edge. Increasing the degree of superheat, on

the other hand, was found to promote retraction and suppress step and terrace-formation.
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Marangoni stresses act to dramatically delay evaporation via reducing the flux at the main

droplet edge, and can also lead to an instability that breaks up longer and thinner droplets

on a timescale more rapid than the edge retraction created by evaporation.

APPENDIX A: FORMULATION DETAILS

At the interface, we impose a condition of mass conservation:

J = ρl(u− us) · n = ρv(uv − us) · n, (A1)

where ρl and ρv denote the liquid and vapour densities, respectively; uv is the vapour velocity

and us is the velocity of the interface; n is the outward pointing normal to the interface.

We also impose a kinematic boundary condition:

ht + ushx = ws. (A2)

Elimination of ushx − ws from Eqs. (A1) and (A2) yields the kinematic condition in Eq.

(2), which is expressed in terms of the evaporative flux J

ht + uhx − w +
J

ρl

= 0. (A3)

The concentration, c, corresponds to the mass of particles per unit volume of fluid:

c = m/Vf . Here, m = ρpVp where ρp and Vp are the particle density and volume, respectively.

The volume fraction of particles, φ, is the volume of particles divided by the total volume:

φ = Vp/(Vf + Vp). Elimination of Vp yields

φ =
c/ρp

1 + c/ρp

. (A4)

However, crucially this ignores the fact that the particles have a maximal packing fraction,

φm, and that phi is inevitably bounded above by this value (∼ 0.664) rather than unity.

Thus we scale (A4) on φm to build in this extra piece of physics so

φ = φm
c/ρp

1 + c/ρp

. (A5)
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