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Abstract

G protein-coupled receptors (GPCRs) play a key role in cellular communication, allowing human cells to sense
external cues or to talk each other through hormones or neurotransmitters. Research in this field has been recently
awarded with the Nobel Prize in chemistry to Robert J. Lefkowitz and Brian K. Kobilka, for their pioneering work on
beta adrenergic receptors (βARs), a prototype GPCR. Such receptors, and β2AR in particular, which is extensively
distributed throughout the body, are involved in a number of pathophysiological processes. Moreover, a large
amount of studies has demonstrated their participation in ageing process. Reciprocally, age-related changes in
regulation of receptor responses have been observed in numerous tissues and include modifications of βAR
responses. Impaired sympathetic nervous system function has been indeed evoked as at least a partial explanation
for several modifications that occur with ageing. This article represents an updated presentation of the current
knowledge in the field, summarizing in a systematic way the major findings of research on ageing in several organs
and tissues (crime scenes) expressing βARs: heart, vessels, skeletal muscle, respiratory system, brain, immune system,
pancreatic islets, liver, kidney and bone.
Introduction
The β adrenergic receptors (or adrenoceptors, ARs) be-
long to the guanine nucleotide-binding G protein-coupled
receptor (GPCR) superfamily [1]. GPCRs with seven trans-
membrane helices are indisputably the most important
drug targets in medicine and their molecular and struc-
tural characterization has recently been honored with the
2012 Nobel Prize for chemistry to Bob Lefkowitz and
Brian Kobilka [2-7].
βARs mediate physiological responses to catechol-

amines. There are three receptor subtypes in βAR family:
β1AR is found at its highest levels in the heart, β2AR is
distributed extensively throughout the body [8] and β3AR
is mainly expressed in the white and brown adipose tissue
[9,10]. These receptors consist of seven membrane-
spanning domains, three intra- and three extracellular
loops, one extracellular ammino-terminal domain, and
one intracellular carboxy-terminal tail [11,12]. Ligand
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binding to the receptor promotes the exchange of
bound guanosine diphoshate (GDP) for guanosine tri-
phosphate (GTP) on the Gα subunit and subsequent
dissociation of Gα from Gβγ, leading to the activation of
Gα and release of Gβγ heterodimers. Thus, both Gα
and Gβγ function as signaling mediators to directly
interact with a variety of downstream effector proteins.
There are several isoforms of each subunit of the tri-
meric G protein. In particular, β2AR is coupled to the
Gαs protein, which associates with the third intracellular
loop of the βAR, resulting in activation of adenylyl cy-
clase, which in turn catalyzes the conversion of adeno-
sine triphosphate to cyclic AMP, as depicted in Figure 1.
All three βARs couple primarily to Gαs, but under cer-
tain conditions can also couple to Gαi [13]. Focusing on
the β2AR, although the majority of its signaling occurs
via Gαs and subsequent cAMP-dependent mechanisms,
there is evidence of other signaling schemes. The main
alternative signaling pathway is the Gαi-dependent
pathway, which ultimately results in the activation of
the mitogen-activated protein kinase (MAPK) pathway
[14-17]. Recent studies suggested that β2AR signaling
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Figure 1 Classical pathway of β2 adrenergic receptor (β2AR) activating Gαs protein, which in turn activates the conversion of ATP in
cAMP by the adenylate cyclase (AC). An alternative signaling pathway involves Gαi protein. G-protein-linked receptor kinase 2 (GRK2) and β-
Arrestin participate in the desensitization process of the receptor.
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might also occur via a G protein independent mechanism
[18-21]. These paradigms of signaling may be observed in
the same cell type occurring differently and according to
the functional state of the cell. Therefore numerous condi-
tions including chronic stimulation, acidosis, cell hypoxia
and ageing can all modify the response to GPCR stimulus.

Understanding ageing
Ageing is a complex process characterized by a gradual
decline in organ functional reserves, which eventually
reduces the ability to maintain homeostasis [22,23]. Se-
veral theories of ageing have been proposed and all of
them relate to individual maintenance mechanisms. The
somatic mutation theory relates to the failure of DNA
repair; the free radical theory relates to the failure of de-
fenses against reactive oxygen species; the autoimmune
theory proposes that the immune system eventually fails
to distinguish self from non-self antigens [24]; other re-
searchers relate to the deleterious effects of toxic chemicals
or to the loss of epigenetic controls, including DNA methy-
lation [22,25,26].
In summary, the lifespan of each species seems to de-

pend on the efficacy of maintenance of several biological
processes and there is much evidence that such mainten-
ance is more effective in long-lived, such as human, than
in short-lived species [22,27]. The mechanisms underlying
ageing have to be definitely looked at the cellular and mo-
lecular level, using a broad biological approach. Although
the process seems to be irreversible and continuous, age-
ing itself does not mean pathology [25]. Indeed, ageing is a
totally natural phenomenon and cannot be considered a
pathological condition. However age-linked modifications
indubitably pave the way for disease.
In this review we present an updated exposition of the

current knowledge in the relationship between ageing
and βARs, summarizing the major findings of research
on ageing in several organs expressing βARs (Table 1).
The senescence process is different in each tissue: the
brain suffers from neurofibrillary degeneration and se-
nile plaques; the vessels become rigid due to protein
glycation and develop atheroma; renal function declines
in parallel with the fall in the glomerular filtration rate
due to a gradual decrease in the nephron pool; immune
defenses become less effective due to the functional deg-
radation of the lymphocytes and thymus involution. This
article represents the first systematic report of the
potential reciprocal regulation of ageing and βARs in
various districts, providing both molecular and clinical
implication for the use of common pharmaceuticals such
as the βAR agents, both agonists and blockers, in elderly
[28]. In particular, it is widely recognized that the inci-
dence of adverse reactions to β-blockers is greater in
hospitalized senescent patients than younger patients
[29]. Of course, concomitant disorders, polypharmacy,
nutritional and fitness status might play even a greater
than age itself. However, the available data can be used
to give an understanding of the potential modifications
in pharmacodynamics and pharmacokinetics of the βAR
system with ageing that can help anticipate adverse
effects, predict potential interactions with other
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medications and disease states, guide selection of
therapy and titration to target dose.

Cardiovascular system
Impaired βAR vasorelaxation
Ageing is associated with evident changes in the car-
diovascular system [30,31] that presumably reflect per-
turbations of biochemical adaptive mechanisms [32].
Experimental findings indicate an age-associated de-
crease in catecholamine-responsiveness in the elderly,
documenting a decreased βAR vasorelaxation with ageing
[33-35]. Indeed, younger individuals are more responsive
than elderly subjects to isoproterenol-induced increases in
blood flow in the brachial artery [36]. A large and growing
body of scientific evidence has shown that vascular tone is
regulated by both the medial (vascular smooth muscle
cells, VSMC) and the intimal (endothelial cells, EC) layers,
as well as through interlayer interactions [37-40]. Since
both VSMC and EC express β2AR [41-45], such receptor
is expected to play a critical role in age-mediated decline
in vasoreactivity [46]. The described decline in adrenergic
responsiveness in turn impairs vasodilatation and hastens
vasoconstriction, thereby increasing total peripheral resis-
tances. The age-related deterioration in β2AR function
and subsequent cAMP generation [47-50] is a common
factor underlying hypertension, atherosclerosis, vascular
insufficiency and orthostatic hypotension, all conditions
associated to noteworthy morbidity and mortality
[38,51-53]. The increased incidence of atherosclerosis
and restenosis with age may also rely on the age-
associated deterioration in βAR-mediated cAMP pro-
duction, since cAMP is considered an inhibitor of
VSMC proliferation [54].
Concerning the molecular mechanisms, the age-linked

decrease in βAR-mediated relaxation has been proposed
to be due to decreased receptor density, less efficient
coupling to adenylate cyclase, impaired generation of
cyclic AMP, or attenuated activation of downstream
components [55]. Variations in cyclooxygenase expres-
sion and vasoactive prostanoid levels have been recently
implicated [56]. However there is not a single cellular or
molecular factor that can fully explain the age-related
decline in βAR function and the primary cause of such
homeostatic imbalance is yet to be identified. The
etiology seems to be associated with an age-related
alteration in the ability of βAR to respond to agonists
at the cellular level. A fundamental understanding of
why βAR-mediated vasodilatation is impaired with age will
provide new insights and innovative strategies for the
management of the multiple disorders that affect older
people [38,44,47,57-59].
An increase in basal levels of circulating catecho-

lamines has been observed with advancing age [60], mir-
rored by a significant decrease in the number of high
affinity βAR [61]. These findings suggest that age-related
alterations may be due to βAR desensitization rather
than loss of βAR density. βAR affinity for the ligand is
dependent upon GPCR phosphorylation, which in turn
is in the domain of G protein-coupled receptor kinases
(GRKs) and GRK2 in particular [62,63]. Indeed, both
GRK2 expression and activity increase in vascular tissue
with ageing [64]. Similarly, a generalized impairment
of βAR-mediated vasorelaxation has been shown both
in animal models of hypertension [58,65] and in hu-
man hypertensive patients [62]. Such alteration has
been related to an increase in GRK2 abundance and
activity [55]: the transgenic overexpression of GRK2 in
the vasculature leads to impaired βAR signaling and
vasodilatative response, causing a hypertensive pheno-
type in mice. Such a point of view has been supported
in humans by the observation that GRK2 expression
correlates with blood pressure as well as impaired
βAR-mediated adenylate cyclase activity [66].

βAR control of inotropism
An age-associated decrease in βAR sensitivity and dens-
ity has been shown in the cardiac muscle [31], and has
been mainly attributed to down-regulation and impaired
coupling of βAR to adenylate cyclase [67]. In particular,
a generalized trend toward resting and exertional cardiac
output has been reported with advancing age [30,68].
Moreover, a decrease in the catecholamine stimulated

adenylate cyclase activity in rat myocardium [69] and in
the sensitivity of βARs, measured by isoproterenol-
induced changes in pulse rate and blood pressure [70],
had been reported. The age-linked decline in cardiac
βAR response, which is consistent across species, seems
to be primarily due to a down-regulation of β1ARs, as
reported in aged explanted human hearts [71]. Intri-
guingly, such feature is similar to what seen in patients
with heart failure. Actually, whether ageing causes a se-
lective downregulation of cardiac βAR (β1AR vs β2AR)
remains a moot point. Whereas a non-selective decline
in both β1AR and β2AR has been reported in rat senes-
cent cardiac tissue [67], a selective decrease in β1AR has
been described in ventricular myocytes isolated from
aged rats [72]. Many of the modifications that occur in
the sympathetic nervous system with ageing (increased
circulating catecholamines and hyposensitivity to adren-
ergic stress, as with exercise, isoproterenol infusion
and other agents used to assess cardiovascular reserve)
are also common in patients with heart failure [32].
Other potential mechanisms underlying these peculiar
aspects are decreased agonist binding of β1AR, un-
coupling of β2AR, involvement of cardiac β3AR and
abnormal G-protein mediated transduction. Remarkably,
unlike heart failure, there is no evidence of upregulation of
Gi proteins with ageing [67,73]. The compartmentalization
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of the receptors may also partake in the decreased
βAR responsiveness. Indeed, whereas β1ARs are widely
distributed on the plasma membrane, β2ARs are usually
located in the transverse tubules, which are invagina-
tions of the plasma membrane containing several pro-
teins that couple membrane depolarization (excitation)
to calcium-mediated myofilament shortening (contrac-
tion). Thus, the peculiar localization of β2AR in cardiac
cells leads to the generation of spatially restricted cAMP
production, affecting thereby calcium dependent proteins
that control the contraction of myofilaments [74,75]. A
disrupted localization of β2AR has been recently described
in chronically failing cardiomyocytes [76], with significant
functional sequelae [77]. A similar remodeling of cell sur-
face topography may be involved in ageing, but no specific
studies are currently available to confirm such hypothesis.
Importantly, conditions presenting a depressed cardiac
function elicit activity (fight or flight response [78]) from
the sympathetic nervous system to increase cardiac output
and to divert blood flow to critical organs. Catecholamines
are fundamental actors of this system. The fact that the re-
lease of these hormones is strictly controlled by GPCRs
relates the adrenal gland and the heart in a ’long-distance
affair’ [79,80]. Unfortunately, the relationship between
ageing and βARs has not been extensively investigated
in chromaffin cells. However, several studies have
demonstrated that β2AR is definitively involved in the
regulation of cathecolamines secretion by the adrenal
gland [81-84].

Skeletal muscle
Ageing is associated with a progressive loss of skeletal
muscle mass (sarcopenia) and a subsequent decline in
muscle strength [85]. Recent investigations have focused
on the underlying mechanisms of age-related effects on
skeletal muscle, responsible for the gradual loss of func-
tional independence amongst the elderly. Progressive
muscle fibre denervation, a loss of motor units, and po-
tential motor unit remodeling, intrinsic variations in
skeletal muscle fibers, including excitation–contraction
coupling, have been implicated [86,87].
Skeletal muscle contains all three βAR subtypes, with

a ~10 fold greater proportion of the β2AR isoform than
either β1 or β3. β2ARs are involved in the regulation of
contraction, plasma potassium level and glycogenolysis.
The available scientific literature concerning the effect
of ageing on muscular βARs is controversial and the
situation is not so sharp like portrayed above for the
cardiac muscle. Whereas some studies imply no age-
dependent modification in βAR in skeletal muscle
[88,89], other reports suggest an age-related loss in the
responsiveness of βAR [35,90]. Indirect evidence for a
role of β2AR in sarcopenia and ageing comes from
works pointing out the capability of specific β2AR
agonists in reversing age-dependent muscle wasting and
weakness. In rats, 4 weeks of fenoterol (a specific β2AR
agonist) treatment (1.4 mg/kg/day) has been shown to
counteract the atrophy and weakness associated with
sarcopenia, increasing muscle mass and strength [91].
Of note, fenoterol treatment caused a small increase in
fatiguability due to a decrease in oxidative metabolism
in both extensor digitorum longus and soleus muscles. In
another recent paper, formoterol treatment has been
shown to improve structural and functional regenerative
capacity in senescent rats by activation of the mechanis-
tic target of rapamycin (mTOR) [92].
Further investigation is definitively warranted into the

mechanisms underlying the relationship between ageing
and βARs. In particular, the differences in adrenergic sig-
naling between fast- and slow-twitch skeletal muscles
should be assessed. Indeed, the age-linked shift in mus-
cular fiber type proportions (there are more oxidative,
type I, fibers in aged tissue) may play a role in such a
mechanism. Furthermore, since both α1AR and β2AR
partake in angiogenesis [37,44,93], this issue should be
taken in consideration in the studies exploring the po-
tential mechanisms underlying age-associated muscle
weakness and fatigue. Lastly, it is unclear whether β2AR
is responsible for changes in calcium handling and meta-
bolic properties of the muscle. In this sense, the emer-
ging role of mitochondria should be considered [94].
Indeed, decreased mitochondrial content and function
have been reported with ageing and might contribute to
sarcopenia and chronic disorders. Recent evidence also
suggests that mitochondrial biogenesis following aer-
obic exercise is mediated at least in part through βAR
signaling [95].

Airways
β2AR in the airways and lungs are clinically important
in a number of disorders, including chronic obstructive
pulmonary disease and asthma [96,97]. Studies using
different animal models indicate either no change, or a
decrease in responsiveness to βAR stimulation with age.
In addition, the βAR population has been demonstrated
to change with respect to age in different species. A
marked increase in βAR number has been shown in late
fetal and early post-natal life of rat and rabbit lung [98].
In the rat, this time period coincides with physiological
and biochemical changes related to pulmonary matur-
ation. Significant fluctuations in the concentrations of
catecholamines, thyroid hormone and corticosteroids
have been implicated in the regulation of βAR activity
[98]. Several studies have attempted to examine the
influence of ageing on responses observed to β2AR
agonists and other bronchodilators. A decreased βAR
agonist affinity and adenylate cyclase activity has been
observed in senescent rat lung [99]. Further, age-



Table 1 Summary of the experimental evidence focusing on β2AR in ageing

Tissue Main experimental finding Potential implications in age-related disorders

Cardiovascular system Age-associated decline in βAR sensitivity Hypertension, Heart failure

Skeletal muscle β2AR agonists rescue age-dependent muscle weakness Sarcopenia

Airways Decreased responsiveness to β2AR with ageing Asthma, chronic obstructive pulmonary disease

Brain Increased β2AR density in Alzheimer’s disease Senile dementia

Immune system β2AR induces a shift towards Th2 response Autoimmune and inflammatory disorders

Pancreatic islets Impaired β2AR-mediated insulin release with age Diabetes mellitus, glucose intolerance

Liver β2AR density follows a J-shaped curve Hepatocellular carcinoma

Kidney Increased β2AR density in aged rats Glomerulosclerosis, hypertension

Bone β2AR stimulates reabsorption of bone tissue Osteoporosis
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related changes in the effectiveness of the βAR ago-
nists isoproterenol and fenoterol in both guinea pig
and rat isolated tracheal smooth muscle have been
reported [100]. An age-associated decrease in βARs has
also been described in bovine airways: the quantity of
βARs in tracheal epithelium and smooth muscle in cows
was 37% and 35% lower, respectively, than in calves [101].
Corroborating these findings, an age-linked reduction in
the responsiveness of human subjects to specific β2AR
agonists has been reported [102]. In particular, response
to salbutamol has been investigated in young versus
elderly asthmatics, showing a progressive decline in
bronchodilation [103].

Brain
Alterations in the central adrenergic system have been
implicated in depression and memory loss, including
those suffered by patients with senile dementia. More-
over, adrenergic drugs can improve different aspect of
memory loss in ageing animals [104]. An age-related
increase in the density of βARs had been reported in
the cerebral cortex of both mice [105] and rats [106].
These findings have been also confirmed in aged primates
(>20 year-old rhesus monkeys), displaying an increase in
the density of these receptors in the somatosensory areas
and in the primary motor cortex [107]. In humans, exam-
ination of postmortem brains has shown that β2AR dens-
ity is elevated in hippocampus and frontal cortex in ageing
and in Alzheimer’s disease [108]. Besides, β2ARs have been
ascertained to play a critical role in the control of behav-
ioral symptoms of Alzheimer’s disease [109]. During
the course of the illness, many patients develop indeed
aggression, irritability, and agitation [110]. Interestingly,
an increase of β2AR density has been found in cerebellar
subcortical white matter of aggressive demented patients
[111]. Furthermore, β2ARs in cerebral microvessel frac-
tions from human brain have been found to be signifi-
cantly increased in Alzheimer’s disease [112]. These
studies might help to explain the role of β2AR in the
pathogenesis of senile dementia and whether treatment
with β2AR antagonists may provide new therapeutic
options for the treatment of Alzheimer’s disease.
Importantly, elderly patients are more susceptible to

the psychiatric side-effects of β-blockers than young
people [113]. β-blockers may actually cause increased
anxiety and agitation [113,114]. Other psychiatric effects
common in aged patients include mania, hostility, im-
pulsive behavior and hallucinations [115]. In a recent
prospective study conducted in over 5000 subjects with
a mean age of 70 years, β-blockers were associated to
an increased risk of incident depressive symptoms, es-
pecially if non-selective (able to block both β1 and β2
AR) and lipophilic (able to pass the blood–brain-
barrier) [116]. These results suggest a functional role
for the age-related modifications in β2AR density in the
brain. The decreased number of βAR observed in
lymphocyte of patients with major depressive disorder
[117] and the fact that salbutamol has been found to
be as effective as clomipramine in a small trial with
depressed inpatients [118], support such a point of view,
implying that monoaminergic hyperactivity might be one
of the mechanisms underlying the depressive disorder.

Immunity cells
The immune system has been a focus of intensive geron-
tological research [51,119,120]. The ability to respond to
antigen stimulation declines progressively with age after
maturity and cell loss, qualitative cellular alterations
(mainly related to the signal-receiving mechanisms) and
shift in the proportion of subpopulations have been
detected during ageing [121-124]. The earliest report
of age-related modifications in human βARs showed a
linear decrease in receptor density on lymphocyte mem-
branes taken from subjects between the ages of twenty
and eighty years [125]. However, these findings have
been successively challenged [126]. Age-associated changes
have been described at the receptor and post receptor
levels, with parallel modifications in membrane fluidity
and capping [24]. A growing body of evidence demon-
strates that the complex interaction between the
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nervous system and the immune system plays a critical
role in maintaining homeostasis. Likewise, it is widely
known that the nervous system is capable of modulating
the immune response via activation of β2ARs present on
immunocompetent cells.
Over the past three decades, the immunomodulatory

properties of β2ARs have gained added attention [127].
Alterations in βAR responsiveness have been found in
various autoimmune disorders, such as rheumatoid
arthritis, multiple sclerosis, myasthenia gravis and type I
diabetes mellitus. β2ARs have been identified on differ-
ent immunocompetent cell types and are essential for a
number of functions, including cytokine production,
natural killer-cell cytotoxicity, and antibody production.
Cathecolamine-induced adenylate cyclase activity has
been shown to decrease during ageing in human lympho-
cytes [128]. Moreover, lymphocytes of normal elderly sub-
jects and young asthmatics display dysfunctional βARs
[102]. A role for β2AR in immune regulation is further
supported by the distinctive sequence of its own gene,
which comprises a glucocorticoid reactive element (GRE)
in the promoter region. Glucocorticoids, commonly used
as immunosuppressive drugs to treat autoimmune disease,
can indeed upregulate β2AR expression [129]. Addition-
ally, infusion of either adrenaline or noradrenaline in
human subjects has been shown to modulate the migra-
tory capacity of natural killer cells via a β2AR mechanism
[130]. Recently, β2ARs have been involved, through means
of the modulation of cytokine production, in the regula-
tion of defense against extracellular bacteria and the
pathogenesis of autoimmune and inflammatory disorders.
Activation of β2AR results indeed in an inhibition of
lymphocyte proliferation and a decrease of IL-2 receptor
expression, ultimately leading to a general suppression of
the immune reactions [126]. Further, salbutamol has been
proved to regulate IL-6 and IL-17 production in murine
bone marrow-derived dendritic cells [16,131]. It has been
also suggested that the anti-inflammatory nature of βAR
stimulation may be the cause of immune response deregu-
lation that is often noted in septic shock [132]. Conse-
quently, β2AR activation appears to induce a shift towards
a Th2-type immune response, inhibiting the production of
the Th1-type cytokines. The induction of IL-6 observed
in vivo [133] may be attributed to the β2AR stimulation of
IL-6 release specifically from adipose tissue, providing
thereby a novel mechanism potentially mediating a range
of adrenergic effects on energy balance [134,135].
Pancreatic islets
Impairment of glucose metabolism with age represents a
major determinant of type 2 diabetes epidemics within
the elderly population [20]. Ageing per se is associated
with a progressive decrease in basal insulin release,
increasing the chance of developing abnormalities in
glucose tolerance and overt diabetes mellitus [20,136].
The sympathetic system provides a fine-tuning to the
endocrine pancreas activity through αARs and βARs.
Furthermore, the reciprocal regulation exerted by insulin
and the adrenergic system has been well documented. A
role for β2AR in the pathogenesis of diabetes has been
suggested by the evidence of a decreased number of
β2AR on granulocytes isolated from type I diabetes pa-
tients [137,138]. Studies with β2AR agonists imply that
β2AR might participate in the regulation of insulin secre-
tion [139-141]. In addition, different human polymor-
phisms in the β2AR gene have been associated with
obesity and other metabolic disorders [142,143]. More
recent evidence demonstrated that β2AR knock-out
mice display a peculiar phenotype of impaired glucose
tolerance, essentially due to reduced insulin secretion
from the pancreatic β-cells [20]. In pancreatic islets of
Langerhans isolated from these mice PPARγ expression
was reduced by 50%, leading to repression of the PPARγ
downstream molecules PDX-1 and GLUT2, two key effec-
tors of β-cell function. Importantly, an age-linked decline
in β2AR levels in mouse pancreatic islets has also been
shown [20] and such a feature seems thereby to contribute
to the deterioration in glucose tolerance that accompanies
ageing.
Glucose metabolism is also modulated by the adipose

tissue; βARs, which are involved in the lipolysis and
thermogenesis processes, surely partake in such regulation.
However, the data concerning the effect of ageing on
β1AR and β2AR density in adipocytes are controversial
[103,144-146]. In our opinion, this is likely due to the
prominent role of β3AR in adipose tissue [10,147-149],
together with the fact that such receptor is not identi-
fied by the classically used βAR antagonist radioligands.

Liver
A number of studies demonstrated a biphasic trend in
βAR regulation of hepatic glycogenolysis over lifespan:
the βAR response declines rapidly during development
and re-emerges during senescence [150,151]. Age-related
alterations in βAR responsive adenylate cyclase activity
follow a J-shaped curve that mirrors the variations in liver
glycogenolytic responsiveness. Adrenergic stimulation of
glycogenolysis is generally attributed to αAR-mediated
processes in young rats and becomes mediated predomin-
antly by βARs during post-maturational ageing [150,152].
Noticeably, in livers from aged rats, β2AR density is higher
than β1AR density [153]. The age-associated increase
in βAR gene expression might be due to modifications
of the transcription factors involved in regulating the
expressions of βAR in the liver. For instance, the early
response genes, like c-myc, c-fos and c-jun, are
generally thought to partake in regulation of cell
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proliferation and differentiation, denoting a possible in-
crease in hepatocytes of aged rodents. Consistent with
such hypothesis, age-related changes of c-myc expres-
sion in the mouse follow a J-shaped curve similar to
the βAR-sensitive adenylate cyclase activity in the rat
liver [154]. Of interest, in vitro experiments have
shown that βAR density in cultured rat hepatocytes are
dependent on cell density [155]. Besides, multiple lines
of evidence demonstrate that βAR signaling plays an
essential role in the progression and metastasis of can-
cer and may become a novel target for cancer therapy.
A recent report revealed that β2AR is upregulated in
human hepatocellular carcinoma [156], one of the most
common neoplasms and a leading cause of death world-
wide [157]. Further investigations are needed to clarify the
mechanisms responsible for these alterations in the devel-
opment and growth of this kind of cancer.

Kidney
Structural and functional changes in renal function dur-
ing ageing are among the most dramatic of any tissue
[158,159], so that the glomerular filtration rate of
healthy octogenarians is only half to two thirds of that
measured in young adults [160]. The number of func-
tioning glomeruli declines roughly in accord with the
age-linked reduction [161] in renal weight, while the size
of the remaining glomeruli increases [162,163]. The
importance of genetics in the progressive impairment
associated with age has been specifically pointed out in
the kidney, with the discovery of the ‘antiageing’ klotho
gene [164,165]. Mice genetically deficient in klotho de-
velop accelerated age-related disorders, including muscle
atrophy, osteoporosis, arteriosclerosis and stroke [164].
On the contrary, mice that overexpress klotho display a
longer lifespan than wild-type rodents [164,166].
Renal βARs are involved in the modulation of both

hemodynamics and electrolyte balance [167]. β2AR has
been shown to regulate the expression of Na/Cl co-
transporter expression, thereby participating in the
development of salt sensitive hypertension [168,169].
Furthermore, βAR located on the iuxtaglomerular cells
mediates renin release [170]. The actual number of β2ARs
is significantly reduced in membrane preparations of aged
rat kidney compared with the young animals [171]. On
the other hand, a higher β1AR density was found when
comparing kidneys from adult to neonatal rats, accompan-
ied by a decrease in Gαs levels [172].

Bone
Bone remodeling, the mechanism by which vertebrates
regulate bone mass, is a process that occurs continu-
ously throughout life to normally maintain bone struc-
ture and calcium homeostasis. It comprises two phases,
namely the formation by osteoblasts and the resorption
by osteoclasts. Such a process is particularly relevant in
senile people. Osteoporosis, a condition characterized by
low bone mass and increased bone fragility, is indeed
one of the most representative age-related disorders in
the western world, reducing bone strength and increas-
ing fracture risks [173]. The sympathetic tone has been
shown to reduce bone mass by suppressing bone forma-
tion and by enhancing bone resorption via activation of
the β2AR expressed in osteoblasts [174]. In particular,
β2AR partakes in the osteoanabolic action of parathyroyd
hormone (PTH) by controlling expression of PTH-target
genes involved in osteoblast activation and bone formation
[175]. In vivo studies suggest that bone metabolism might
be influenced both through indirect activation of βAR sig-
naling via hypothalamic-derived neural pathways and
through direct modulation of βAR activity by pharmaco-
logical intervention. Indeed, the administration of a spe-
cific β2AR agonist to rats for 6 weeks led to deleterious
effects on trabecular bone microarchitecture, independ-
ently from muscle mass [176]. Consistent with these re-
sults, reports on β2AR knock-out mice [20] have revealed
that, as they age, these animals maintain greater trabecular
bone microarchitecture, as a result of lower bone resorp-
tion and increased bone formation [177]. Another import-
ant piece of evidence is the observation that β1AR and
β2AR exert opposite effects on bone: β1AR induces a
predominant anabolic trigger in response to mechanical
stimulation and during growth, whereas β2AR mainly
regulates bone resorption [177]. Overall, these findings
provide new insights into the molecular mechanisms
underlying the regulation of bone remodeling by sys-
temic hormones and their local mediators [178].

Concluding remarks
The present review summarizes the current knowledge
about the β2AR in ageing. βARs belong to the GPCR
family of heptahelical membrane sensors, one of the largest
classes of cell-surface receptors, representing essentially the
primary target of current pharmaceutical therapies. The
function of βAR is modulated by levels of circulating cate-
cholamines, non-catecholamine hormones, drugs, disease
and age. Despite many clinical observations demonstrate
an age-related decrease in catecholamine responsiveness,
the molecular bases of such a phenomenon are still un-
known. It is possible and likely that ageing is reflected by a
regulation of βAR function at multiple biochemical levels.
Translating these data in the clinical scenario, it is

widely accepted that the efficacy of the drugs is different
when comparing young and aged populations. In par-
ticular, β-blockers have been shown to be more effective
in young patients [179]. Moreover, when used as first
line treatment of hypertension, β-blockers have similar
efficacy to other drugs in younger patients but are less
effective than such drugs in older subjects [180,181].
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Future perspectives
Human lifespan has more than doubled in the developed
world in the last two centuries. Nevertheless, there are
significant gaps in our knowledge of how the process of
ageing is initiated and controlled. Undeniably, a better
understanding of human longevity will assist in the
design of therapeutic strategies to extend the duration
of optimal health. In this sense, the mechanisms con-
trolling the selectivity and intensity of the ageing process
are likely to be one of the primary goals of biogerontology
research in the nearest future. Future investigations
addressing the effects of ageing on βAR function and
signaling may help to identify new molecular mecha-
nisms to extend and ameliorate age-associated disease,
opening new pharmaceutical opportunities for drug
discovery in order to achieve a healthy ageing.
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