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Abstract

Detailed modeling of the performance of commercial applica-

tions is difficult. The applications can take a very long time to run

on real hardware and it is impractical to simulate them to comple-

tion on performance models. Furthermore, these applications have

complex execution environments that cannot easily be reproduced

on a simulator, making porting the applications to simulators diffi-

cult. We attack these problems using the well-known SimPoint

methodology to find representative portions of an application to

simulate, and a dynamic instrumentation framework called Pin to

avoid porting altogether. Our system uses dynamic instrumentation

instead of simulation to find representative portions — called Pin-

Points — for simulation. We have developed a toolkit that automat-

ically detects PinPoints, validates whether they are representative

using hardware performance counters, and generates traces for

large Itanium® programs. We compared SimPoint-based selection

to random selection of simulation points. We found for 95% of the

SPEC2000 programs we tested, the PinPoints prediction was

within 8% of the actual whole-program CPI, as opposed to 18%

for random selection. We measure the end-to-end error, comparing

real hardware to a performance model, and have a simple and effi-

cient methodology to determine the step that introduced the error.

Finally, we evaluate the system in the context of multiple configu-

rations of real hardware, commercial applications, and industrial-

strength performance models to understand the behavior of a com-

plete and practical workload collection system. We have success-

fully used our system with many commercial Itanium® programs,

some running for trillions of instructions, and have used the result-

ing traces for predicting performance of those applications on

future Itanium processors. 

1.  Introduction

Designers rely on detailed simulation for evaluating fea-

tures in future microprocessors. It is important to choose work-

loads for simulation that represent the increasingly complex

and challenging problems future microprocessors must execute

efficiently. Running real programs to completion on an accu-

rate performance model is not practical because it can require

months of execution time. Instead, microprocessor architects

choose only a small portion of the execution of a program to

run on a detailed cycle-accurate model and use extrapolation to

predict the behavior of the entire program. Selecting represen-

tative portions of programs is difficult because the behavior of

programs changes over time.

Another obstacle to obtaining representative workloads for

simulation is the difficulty in reproducing the complex execu-

tion environments required by real applications. Applications

can have run-time license checking, special device drivers or

other kernel dependencies, large storage requirements, and

elaborate installation procedures. Whole-system simulators

[1],[2] allow a high degree of control and visibility, but it is

usually time consuming to get the latest versions of complex

applications running properly on such a system.

Collecting workloads is a never-ending task. Different

applications become important, existing applications change,

and compilers are tuned. It is desirable to update the workloads

to ensure that new microprocessor features are not fixing yes-

terday's problems. Unfortunately, the difficulty of getting a new

application to work in the simulation environment combined

with the complexity of identifying and capturing a representa-

tive portion of a program means important workloads are often

missing or out-of-date.

The entire process of collecting performance-modeling

workloads requires expertise in several domains: operating sys-

tems, simulation technology, benchmark analysis, and knowl-

edge about exercising the application.

Our goal is to automate the workload-collection process as

much as possible and to simplify any tasks that must be done

manually. Our system does not require expertise in benchmark

characterization or simulation technology nor does it require an

elaborate setup. If you can run the program, you can collect

appropriately-sized regions and be confident that they are rep-

resentative of the whole-program behavior.

To achieve our goal, we employed two key technologies:

the SimPoint methodology from Sherwood et al. [3] and the

Pin dynamic instrumentation tool [5]. SimPoint uses an execu-

tion profile to identify representative portions (slices) of an

application. These slices — or simulation points — are vali-

dated against whole-program behavior and can be used to col-

lect instruction traces or to drive an execution-driven

simulation. Pin is a flexible tool for instrumenting Itanium®/

Linux programs at run time. Running a program under Pin only

requires a small change to the command line, so it can easily

use an existing setup for an application. Since Pin relies on

direct execution, it is much faster than traditional simulation

technology. We use Pin-based tools to collect SimPoint pro-

files, validation statistics, and instruction traces. We call the
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representative portions of programs we find PinPoints and call

our technique the PinPoints methodology.

We have used our system to collect traces for many com-

mercial applications — including a database system, a compu-

tational fluid dynamics modeler, and a molecular dynamics

simulation package. Some of the applications we processed

with PinPoints are described in Table 1, where the last column

shows the range of retired instruction counts encountered for

multiple inputs to the applications. The total trace-collection

time for these applications ranged from a few hours (for SPEC)

to a few days (Fluent) which we think is very reasonable, espe-

cially since all the steps are automated. We successfully ana-

lyzed an application with more than 25 trillion dynamic

instructions, which is two orders of magnitude longer than the

longest SPEC2000 program run. With this work, we have made

the following contributions: 

1. a demonstration of a practical system for workload charac-

terization and tracing in a production environment

2. an evaluation of its effectiveness when applied to commer-

cial applications on an industrial performance model

3. a quick-and-easy method to determine if the PinPoints

actually represent whole-program behavior

4. methods for handling non-determinism caused by data

speculation on the Itanium® architecture

5. validation of an Itanium-2 performance model using Pin-

Points

6. an extension of SimPoint techniques to handle multi-

threaded programs and multi-input program runs.

2.  Background

In this section we describe the underlying technologies for

the toolkit: SimPoint and Pin.

2.1.  SimPoint

We use SimPoint analysis tools to identify representative

portions of programs. We explain the algorithm briefly in this

section. See Sherwood et al. [3] for more information. 

SimPoint methodology divides the program execution into

intervals of equal instruction counts. Each interval is called a

slice. A phase in the program is a collection of slices with sim-

ilar behavior. A representative slice, or a simulation point, is

chosen from each phase.

For each slice, a basic block vector is collected. The vector

has one count associated with each basic block—the number of

instructions in the block multiplied by the number of times the

block is executed during the slice. SimPoint algorithm clusters

the basic block vectors. It normalizes each vector, and uses a

random projection to map it into a 15-dimension space. Reduc-

ing the dimension of the vector makes the analysis efficient.

Next, the K-means clustering algorithm is used to assign slices

to clusters. Some points are chosen randomly to be cluster cen-

ters, and each slice is assigned to the cluster with the closest

center. After the first clustering is finished, the algorithm picks

new cluster centers by finding the centroid of the clusters and

repeats the clustering until there is no change or a fixed itera-

tion count is reached. This process is repeated for K=1 through

10 clusters. The Bayesian Information Criterion is used to find

the smallest K that finds a clustering within 80% of the best

clustering. In the end, we get K clusters of slices and a repre-

sentative (called a simulation point) is chosen from each clus-

ter. The weight of a simulation point is the relative size of the

cluster it represents.

We configured our tools to choose up to 10 slices of 250

million instructions. Even with our relatively large slice size,

some programs exhibit wide variations in behavior from slice

to slice. This makes it difficult to capture all the behavior of a

program with just 10 points. Collecting more points would

help, but would require too much simulation time. The choice

of slice size of 250 million instructions was driven by an inter-

nal study we did with traces of size 100 million instructions. In

Table 1: Some applications processed with PinPoints methodology

Application 

 (# runs)
Description

# Retired 

Instructions 

(billions)

AMBER-sander (5) Assisted Model Building with Energy Refinement: A suite of bio-molecular simulation codes (Version 8,

March, 2004) from University of California (SF) [6].

1300 — 3900

Fluent(8) Computational Fluid Dynamics code (version 6.1.22, June 2003) from Fluent Inc.[7]. 141 — 3900

LS-DYNA(1) A general purpose transient dynamic finite element analysis program (SMP 970.3858 release for Itanium®

linux OpenMP version) from Livermore Software Technology Corporation [8]. Public-domain benchmark

3cars: 3 vehicle collision.

4900

RenderMan® A photo-realistic rendering application (version 11.5, un-released) from Pixar [9]. 340 —797

ASIM (1) An Itanium performance model built using the ASIM [19] framework. We ran PinPoints steps on the perfor-

mance model binary while it was simulating a trace from a commercial database system.

8600

SPECOMP2001

(11 - medium)

Medium workloads from SPEC's benchmark suite for evaluating performance based on multi-threaded

OpenMP applications [10].

830 — 4800

SPEC2000 (48:ref) SPEC CPU2000 suite [11]. 2 —723 
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the study we simulated the traces twice — once treating all

cold misses as hits and the second time treating cold misses as

ordinary misses and found the performance difference around

10% for SPEC but was up to 40% for some commercial pro-

grams. Of course, the performance with proper warm-up will

be between the two extremes. We chose large 250 million

instruction slices to ease warm-up problems — in the same

spirit as Conte et al. [4] who proposed increasing cluster size to

reduce cold-start effect.

Random sampling [4],[12] is an alternative that has the

potential to provide higher accuracy with a smaller number of

dynamic instructions. Wunderlich et al. [12], in a technique

called SMARTS, use random sampling to collect 10000 slices

of 1000 instructions each. Sampling from a much larger set of

points in the program makes it easier to capture all the behavior

of the program. However, a short slice size requires a warm-up

period for processor structures such as the caches and branch

predictors. It is difficult to know how many instructions are

adequate for warm-up, and conservative estimates would

unnecessarily increase simulation time. Wunderlich et al. also

proposed using functional warm-up, where only the cache and

branch predictors are simulated in the intervals between slices.

This method of warm-up would require extensive changes to

the performance models that consume the traces we generate.

For these reasons, we do not believe that fine-grain sampling is

an appropriate choice for the performance models we target.

2.2.  Pin

Pin [5] is a tool for dynamic, user-defined instrumentation

of Itanium®/Linux programs. It provides an API for inserting

calls to user-defined analysis procedures at arbitrary points in a

program, and allows the instrumentation to observe the archi-

tectural state of the processor. Pin provides an infrastructure for

writing program analysis tools similar to Atom [13]. We use

Pin-based tools to collect basic block profiles for SimPoint, to

collect validation data, and to generate instruction traces.

Pin performs the instrumentation at run time. It uses a just-

in-time compiler to translate and instrument an application,

allowing it to seamlessly handle shared libraries, hand-written

assembly, mixed code and data, and some forms of dynami-

cally generated code. It also employs dynamic optimization to

make instrumentation efficient. Pin does not require any spe-

cial compiler or linker switches and can run Itanium®/Linux

programs “out-of-the-box” without modification. It can instru-

ment programs using multiple threads and signals. It provides a

high degree of transparency — instrumenting a program does

not change code or data addresses.

It is easier to dynamically instrument an application with

Pin than to statically instrument it and it is faster to run an

application under Pin than to run it on a simulator. This has

enabled workload collection for more applications than would

otherwise be possible. However, there are some limitations; Pin

is unable to instrument operating system activity as Pin only

operates in user mode. Second, inserting instrumentation slows

down the program and can change its time-dependent behavior.

For example, the locking behavior of parallel programs might

change if the program runs slower. We hope to address some of

these issues in future work. For this paper, we have chosen to

focus on commercial applications (mostly from the high-per-

formance computing (HPC) domain) and SPEC2000 programs

that do not spend much time in the kernel and are not affected

by the time-dilation effects of instrumentation. 

3.  Methodology

Our technique has four steps: 

1. Collect a profile with a pin-based tool. 2. Analyze the

profile with SimPoint tools to find representative portions (Pin-

Points). 3. Compare the behavior of the PinPoints to the whole

program using Pin and pfmon [15]. 4. Generate a trace with a

Pin-based tool or use the PinPoints to fast forward to represen-

tative portions in execution-based simulation.

3.1.  Profile Collection

We profile the branches of an application. For each

branch, we count the number of executed instructions since the

last taken branch. After executing a fixed number of instruc-

tions (e.g. 250 million), the profiler outputs the counts for each

branch, resets all the counters to zero, emits a marker to iden-

tify the point in the execution, and continues execution. The

final profiling output is a list of vectors of counts, one vector

per slice, in a format suitable for input to the SimPoint tools.

After SimPoint selects the simulation points, other tools

such as the trace generator must be able to reliably find the

same points in the execution in a later run. We identify a simu-

lation point with a marker, which is an instruction address

paired with the number of times it is executed. Pin relies on

direct execution on real hardware for speed and simplicity. On

the Itanium architecture the data and control speculation mech-

anisms can cause non-determinism in the program control flow,

which can make the marker method unreliable.

With speculation, the compiler can move a load above a

branch (control speculation) or a load above a store (data spec-

ulation). The Itanium architecture provides hardware mecha-

nisms to detect if this code motion is invalid. Moving a load

above a branch is invalid when the load causes an exception it

originally did not cause. Moving a load above a store is invalid

when the store and load use the same address. When it detects

an invalid speculation, the processor branches to compiler-gen-

erated recovery code which usually repeats some of the instruc-

tions in the correct order and resumes execution. The

transitions to recovery code are similar to conditional branches.

Even a correct speculation can sometimes trigger the exe-

cution of recovery code. A translation look-aside buffer miss

can cause a control speculation to fail and a context switch can

flush the data speculation table (ALAT), causing all in-progress

data speculations to fail. In addition, Pin sometimes must

explicitly flush data speculation table entries. Failed specula-

tions can cause instruction counts and control-flow paths to

change from run to run. The change in behavior makes simple
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instruction count or address/count markers unreliable. To solve

this problem, we describe markers that are independent of the

speculation recovery flows. Our profiler identifies recovery

code dynamically. When the program reaches the end of a slice,

the profiler defers emitting a marker until the recovery flow has

rejoined the main flow in the application. At that point, we emit

an address/count marker. As part of our validation step, we

check that PinPoints are reached at the right point in the execu-

tion, and have found such checks to be very effective.

3.2.  Profile Analysis

We use the SimPoint analysis tool to select representative

slices from a profile. We mostly used SimPoint version 1.1 as

that was the latest version available during the initial part of

this work. However, we did repeat some of the experiments

with SimPoint 2.0 when it became available. SimPoint groups

the vectors of counts into clusters of similarly behaving slices,

and then picks a single slice from the cluster to represent the

behavior of the entire cluster. We call the representative slice a

PinPoint. The number of slices in a cluster divided by the total

number of slices determines the weight of the PinPoint. 

For multi-threaded programs we simply concatenate the

individual thread profiles and present the combined profile to

the SimPoint analysis tool. This amounts to treating the multi-

threaded run as one large single-threaded run. SimPoint analy-

sis finds representative slices for the concatenated profile

regardless of the fact that the representative slices may belong

to different threads. The concatenated profile retains the iden-

tity of individual threads. PinPoints for multi-threaded pro-

grams belong to individual threads and the tracing tool needs to

assign individual PinPoints to the right thread. When a Pin-

Point in a thread is reached, the trace generator may decide

which thread(s) to actually trace.

3.3.  Validation of PinPoints 

After identifying PinPoints, a user of the PinPoints tool

needs to know if they accurately represent the performance of

the application on the performance model. The most basic per-

formance measure is cycles-per-instruction (CPI), but we

would also like the PinPoints to accurately model other behav-

ior like cache misses. For validating PinPoints we collect per-

formance statistics for the PinPoints and for the entire program

and compare the whole-program statistics with those predicted

by PinPoints, similar to SimPoint and SMARTS. However,

SimPoint and SMARTS both use cycle-accurate simulation of

the entire benchmark or portions of the benchmark during vali-

dation. Our performance models are very detailed and hence

slow, making the use of simulation to get whole-program statis-

tics unacceptably time consuming. We want to provide a quick

turnaround when looking at a new application or see the effect

of a new compiler on an existing application. To speed up the

process, we split the validation process into three steps: 

1. Comparison of the performance of the entire application

to the performance of PinPoints on real hardware. We use

pfmon [15] to sample hardware performance counters and

then compute various metrics such as CPI or cache-misses

-per-thousand-instructions (MPKI) for the whole program

and for the PinPoints. We then use PinPoints statistics and

weights to predict the statistics for the entire program. We

compare these predictions to the actual values for the

entire program. Note that while collecting performance

counter data for the PinPoints we still need to run the

entire program (at least until the last PinPoint). Hence,

there is no cold-start effect on the performance metrics for

the PinPoints in this step.

2. Ensuring that the PinPoints are actually reached during

trace generation/simulation.We run a test program at least

twice — first for profiling and second for trace generation/

simulation. We assume that the behavior of the program

does not change between the two runs. We verify that Pin-

Points based on the profiling run of the program are actu-

ally encountered in the tracing/simulation run.

3. Comparison of the PinPoints performance on real hard-

ware to the PinPoints performance on a cycle accurate

simulator. Here we simulate the PinPoints traces/regions,

get performance metrics and compare them to those

obtained in Step 1. Obviously, this step can only be done if

there is real hardware corresponding to the performance

model; otherwise we do the comparison for as many real

hardware platforms (with the same architecture) as possi-

ble to gain confidence in the PinPoints. In the results sec-

tion, we present some data that suggests that cross-

platform validation is sufficient. This confirms earlier

results from Perelman et al. [16] showing that a single set

of simulation points can accurately predict behavior across

multiple configurations of the same architecture.

3.4.  Using PinPoints

PinPoints are designed to drive processor performance

models. We support two variants: instruction trace driven and

execution driven simulation. Our toolkit provides an instruc-

tion trace generator that is implemented as a Pin-based tool, so

generating a trace is as easy as collecting a profile. Execution

driven simulators use the PinPoint file to decide when to switch

between fast forward mode (not in a PinPoint) and detailed

modeling mode (in a PinPoint). A PinPoint identifies the begin-

ning and end of a dynamic sequence of instructions. We use an

instruction address and a count for the number of times this

address is executed to identify a unique point in the execution.

Regardless of the operating mode — trace-driven or exe-

cution-driven — the performance model only observes the

instructions from the PinPoint, and none between PinPoints.

This potentially creates a cold-start effect where structures such

as caches and branch predictors are starting empty or untrained,

which can cause inaccuracy in simulation. We chose a large

slice, 250 million instructions so that cold-start effects should

be negligible for all but the really large structures on a proces-

sor. The slice is also large enough for the consumer of a Pin-

Point to use some part of the beginning of a slice for warm-up,
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and the rest for detailed simulation. The decision about how to

handle cold-start effects is left to the user of the PinPoints.

3.4.1.  Simulating Multi-threaded Programs

For multi-threaded programs PinPoints may be scattered

across different threads. Whenever a PinPoint is reached in a

thread, our tracing tool starts tracing all threads in order to cap-

ture interactions between threads. Thus, multiple trace files are

generated for each PinPoint. We have successfully traced four-

threaded runs of some SPECOMP2001[10] programs this way.

We assume that all PinPoints will be reached during trac-

ing. For that to happen, the behavior of the program during

tracing has to be similar to the behavior during profiling. For

multi-threaded programs such determinism is hard to guaran-

tee. In particular, some multi-threaded programs may use

dynamic scheduling for load balancing and various threads

may do different work on different runs. While processing

SPECOMP2001 programs we did find some cases where Pin-

Points were not encountered during tracing. We are investigat-

ing an approach based on the work by Ronsse et al. [18] to

make multi-threaded programs repeatable.

4.  Results and Discussion

We now present results for SPEC2000 programs and some

commercial applications we processed. These applications are

described in Table 1. During the course of this work we pro-

cessed SPEC2000 programs built with different compilers/opti-

mizations multiple times — we present results for one

collection of SPEC2000 binaries with reference inputs. These

binaries were generated with Intel's Electron Compiler (version

8.0 Beta) using a high level of optimization. Some of the

machine configurations we used for testing are described in

Table 2. The time to process all 48 SPEC2000 runs with vari-

ous PinPoints steps (profile collection, analysis, and CPI vali-

dation but not trace generation) is around five days on a 4-

processor machine with Config3 (see Table 2). Trace genera-

tion time is dominated by the time for on-the-fly compression

(using bzip2) of the trace and formatting the output and is gen-

erally around three hours for a trace of 100 million instructions.

4.1.  Program Characterization

We used Itanium-2 performance counters to identify the

bottlenecks in the programs we tested. The counters allow us to

characterize the program in terms of resource usage as

described in the work by Jarp [20]. Such characterization

allows us to identify the components of whole-program CPI

that are not accurately predicted by PinPoints. We first present

results from whole-program “Cycle Accounting” for some of

our test programs in Figure 1 and Figure 2. Cycle accounting is

a methodology that uses hardware performance counters to

identify how cycles are spent during a program execution. We

divide the overall (including NOPs) CPI for a given program

into the following four sub-components (as shown from bottom

to top in the figures): 1. Un-stalled cycles: Cycles where useful

work gets done. 2. BE_EXE_BUBBLE_ALL: Stall cycles in the

execution stage of the Itanium-2 pipeline when execution units

do not find required data in registers allocated for the operation

being executed. These are due to data access stalls or unsatis-

Table 2: Three main machine configurations used for CPI validation

Configuration Config1: IBM Intellistation Z Pro 

(2P)
 Config2: HP rx5670 (4P) Config3: HP rx5670 (4P)

Processor, Frequency, Main Memory Itanium® Processor, 800 MHz, 10

GB

Itanium® 2 processor, 900 MHz,

16 GB

Itanium® 2 processor, 1.3 GHz,

8GB

L1 D Cache: 

capacity, line size, associativity, latency

16 KB, 32 bytes, 2 cycles 16 KB, 64 bytes, 1 cycle 16 KB, 64 bytes, 1 cycle

L2 Unified Cache: 

capacity, line size, associativity, latency

96 KB, 64 bytes, 6-way, 6 cycles

(int/min) 9 cycles (fp/min)

256 KB, 128 bytes, 8-way, 5

cycles (int/min) 6 cycles (fp/

min)

256 KB, 128 bytes, 8-way, 5

cycles (int/min) 6 cycles (fp/

min)

L3 Unified Cache: 

capacity, line size, associativity, latency

2 MB (off chip), 64 bytes, 4-way,

21cycles (int/min) 24 cycles (fp/

min)

1.5 MB (on chip), 128 bytes, 4-

ways per MB, 12 cycles (int/

min) 13 cycles (fp/min)

3 MB (on chip), 128 bytes, 4-

ways per MB, 12 cycles (int/

min) 13 cycles (fp/min)

CPI Accounting: Some SPEC2000 Programs: Config3
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Figure 1  Whole-program CPI breakdown for some 

SPEC2000 programs.
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fied register dependencies. 3. BE_L1D_FPU_BUBBLE_ALL:

Stall cycles due to various pipelines (L1 D-cache, floating

point unit), and other memory system resources. 4. Other stalls

(including those due to branch mispredictions).

Itanium-2 can execute up to six instructions per cycle, so

the best possible CPI value is 1/6. sixtrack from SPECFP2000

actually approaches this ideal CPI value and as Figure 1 shows,

most of the cycles in sixtrack are un-stalled cycles doing useful

work. We note that BE_EXE_BUBBLE_ALL is the dominant

reason for stalls in most of the test programs (except swim).

Further monitoring of sub-events revealed that the major rea-

son for stalls is (not surprisingly) the memory sub-system.

Monitoring sub-events of BE_L1D_FPU_BUBBLE_ALL indi-

cates that L1-D-cache related stalls are more prominent than

the FPU related stalls. We also notice that SPEC programs

show a wide variety in terms of CPI values and sub-component

distribution. For commercial programs, we found that memory

subsystem is the major reason for stalls (except for AMBER).

4.2.  PinPoints Generated 

Table 3 lists the PinPoints generated for some of the appli-

cations we processed with the PinPoints kit. The second col-

umn lists the number of retired instructions (predicated on and

off) as counted by our Pin-based profiling tool. The third col-

umn shows the total number of slices of size 250 Million

instructions each seen during profiling and the last column

shows the number of representative slices or PinPoints chosen

by SimPoint analysis. For brevity we list the average values for

SPECINT and SPECFP. We see that the PinPoints constitute

less than one percent of the total number of slices, a drastic

reduction in simulation time for the programs. We also note

that Fluent-l1 gets the maximum allowed number of PinPoints

(10) and possibly has more than 10 phases.

4.3.  Validation of PinPoints

As discussed in section Section 3.3, there are three compo-

nents to validation. We check that (1) the whole-program

behavior matches the PinPoint behavior as reported by the per-

formance monitoring counters, (2) we can actually capture the

desired PinPoint during tracing/simulation, and (3) the Pin-

Point behavior on the performance model and on real hardware

match. We look at each step individually and discuss the causes

of error.

4.3.1.  Predicting Whole-program Behavior 

Our goal is to determine how closely PinPoints predict

whole-program CPI. We compute CPI for PinPoint regions and

the whole program with pfmon as described in Section 3.3. We

compute a predicted CPI for the whole program with PinPoints

CPI values and weights. To assess whether one set of PinPoints

can be used for multiple configurations of a processor, we

repeated the process with the same set of binaries and Pin-

Points on three different machines using different implementa-

tions of the Itanium® architecture. Some of the key differences

between the machines we used are listed in Table 2. Config1

uses a processor from the first implementation of the Itanium

architecture. Whereas, Config2 and Config3 use processors

from the second implementation of the Itanium architecture.

Thus, the microarchitecture in Config1 is different from the

microarchitecture in Config2 and Config3. The differences

between the 2nd and 3rd configurations are the processor fre-

quency, the capacity of L3 Cache, and memory size. We also

used a Config4 machine for some experiments. Config4 (not in

Table 2) is similar to Config3 except for the frequency (1.5

GHz) and the L3 capacity (6 MB). All the machines we used

were running Red Hat Advanced Server 2.1 with pfmon-

enabled variants of Linux kernel 2.4. For RenderMan evalua-

tions, we used machines similar to Config2 and Config3 but

running Red Hat Enterprise Linux 3.0.

We first look at actual and predicted CPI values for vari-

ous test programs on Config3 in Figure 3 and Figure 4. There

are two Y-axes — one for CPI values (on the left) and the other

for percent difference in CPI values (on the right). The two

lines show actual and predicted CPI for the test programs plot-

ted in increasing values of CPI. The bars (hanging upside down

CPI Accounting: Some Commercial Programs: Config3
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Table 3: PinPoints generated for some programs tested

Program

#Retired 

Instructions 

(Billions)

# Slices

(250 Million 

Insts).

#Pinpoints

AMBER-rt 3994 15975 6 

Fluent-m3 2625 10499 8 

Fluent-l1 3340 13360 10

LS-DYNA-3cars 4932 19729 6

RenderMan-ball 541 2163 3 

SPECINT (Avg.) 142 567 4

SPECFP (Avg.) 373 1491 5 
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in the figures) show percent delta between actual and predicted

CPI. We notice that, in general, the predicted CPI values track

actual CPI values well and the delta is less than 10% in most

cases. Further, the % delta does not seem to be correlated with

CPI values indicating that the prediction is working across the

board not just for programs with low CPI.

We want to use PinPoints to evaluate performance and

microarchitectural changes of future Itanium processors. For

that, we would first like to know if PinPoints can predict per-

formance differences among existing implementations of the

Itanium processor. Various machine configurations we used

have a variety of processor implementations, cache sizes and

parameters, and microarchitectures. That gives us an opportu-

nity to find out how well PinPoints predict performance of the

same set of binaries across different configurations. Figure 5

shows results for some SPEC2000 programs. We computed the

actual CPI and CPI predicted by the same set of PinPoints on

four machine configurations (three listed in Table 2). We con-

verted the CPI values to run-time and then computed the

speedup on Config2,3,4 over Config1. Figure 5 shows two

lines for each configuration — one for actual speedup and the

other for PinPoints-predicted speedup. We notice that predicted

speedup tracks actual speedup in most cases for all the configu-

rations we tested. That indicates that PinPoints based on branch

counts are sufficient to capture whole-program behavior across

various implementations of the Itanium architecture for most

programs we tested. This is a significant result as it gives

designers confidence in using PinPoints to evaluate future

implementations of the Itanium architecture. We show similar

results for 18 commercial applications (speedup over Config2)

in Figure 6.

We have used pfmon to validate a number of program sta-

tistics other than CPI. We now present results from validation

of some cache-related statistics. The metric we chose for cache

statistics is misses per thousand instructions (MPKI). Figure 7
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shows L2-MPKI values for some SPEC2000 programs on

Config2. The lines show the actual and predicted L2-MPKI

values and the bars (hanging upside down) show absolute value

of the delta between actual and predicted L2-MPKIs. We show

absolute delta values instead of percentages because unlike CPI

values, MPKI values can be arbitrarily small, even zero, and a

small delta in a small MPKI value shows up as a large percent-

age distorting its contribution to performance. L2-MPKI pre-

diction does work well across the entire range of L2-MPKI

values. However, if we look at a similar plot for L3-MPKI (on

Config3) in Figure 8, we see that predicted L3-MPKI deviates

from the actual L3-MPKI for a number of programs. The delta

for art-ref1 is unusually large and the large delta in L3-MPKI

prediction for art-ref1 is not reflected in the corresponding

delta in CPI prediction (see Figure 3). art-ref1 is often stalled

for memory subsystem as indicated by the relatively large

BE_EXE_BUBBLE_ALL component in the CPI for art-ref1 in

Figure 1. Figure 8 shows L3_MISSES which includes all

prefetches, instruction misses, L2 write-backs in addition to

data misses. Many of these accesses occur in parallel. Further,

prefetch and L2-writeback misses do not stall the processor

pipeline. Therefore, a large delta in L3 MPKI is not causing a

corresponding large delta in CPI for art-ref1.

We now take a closer look at some of the cases where per-

centage delta during CPI validation is relatively high. First, we

used pfmon to capture Itanium performance counters for “stall

analysis” to figure out the bottlenecks for the whole program

[20]. Once the major contributors to processor stalls for the

entire program were identified, we captured values for those

events for the PinPoint regions. Just like CPI validation we

then got a “predicted” breakup in stall contributions and com-

pared it with the actual breakup in stall contribution. 

L2 Misses Per Thousand Insts for Some SPEC2000 Programs

Config2: Actual vs. Predicated
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For example, when we did the stall analysis of gcc-166 on

machine Config3 we found that the major bottlenecks are

related to pipeline and the memory-system resources (event

BE_L1D_FPU_BUBBLE_L1D) and to register-register or reg-

ister-load dependencies (BE_EXE_BUBBLE_GRALL). We

then sampled these events for PinPoints and did a comparison

of predicted and actual stall contributors. The comparison is

illustrated in Figure 9. We see two bars: for each program: one

for actual CPI contributors and another for CPI contributors

predicted from PinPoint samples. We see that both un-stalled

cycles and L1 D-cache related CPI contributions are well pre-

dicted by PinPoints. However, register-(register/load) depen-

dency related stalls are not predicted well. Further selective

sampling showed that register-load dependency related stalls

are not predicted well by PinPoints. We then focused on L1, L2

and L3 cache misses for gcc-166 and found that the MPKI as

predicted by PinPoints was off by 1.5 for L1, 1.4 for L2, and

0.3 for L3. These deltas (using average latency values for L2/

L3 and memory accesses) explain why the predicted CPI is off

by 0.06 for gcc-166.

Figure 9 also compares CPI break-down for gzip-source

and apsi-ref for Config3. The CPI delta for gzip-source on

Config3 is very low (0.82%) and Figure 9 shows that the CPI

break-down for gzip-source is predicted very well by the Pin-

Points. For apsi-ref both BE_L1D_FPU_BUBBLE_L1D and

BE_EXE_BUBBLE_FR_ALL are not predicted well. All other

cases with high delta in CPI can be explained in a similar fash-

ion. Figure 10 shows how various components of CPI for some

commercial programs are predicted by PinPoints. There are

two bars for each program — the first (on the left) is for the

actual CPI and the second is for the predicted CPI. Note that

the un-stalled portion of the CPI (bottom region, which shows

CPI for useful work) is very well predicted across all commer-

cial programs. That is the case even with SPEC2000 programs.

4.3.2.  Capturing PinPoints

The previous results determined whether the PinPoints are

representative of whole-program behavior. We need to capture

the PinPoints as traces. A Pin-based tool called pingtrace reads

a file that lists the markers for the begin and end of PinPoints,

and then runs the program and collects traces. A marker is an

address of an instruction and a count of the number of times to

execute the instruction before triggering a trace begin or end.

After trace collection is complete, we verify that the markers

were seen in the proper order at approximately the same

instruction counts we had seen during the profiling phase.

Our initial implementation suffered from a marker order

problems. This occurred when a marker was placed in the

recovery code for speculation. The number of times recovery

code is executed can change between the profiling run and the

trace collecting run, which means that an address and count

marker might never be reached if speculation failures occur

less often, or might be reached too soon if speculation failures

occur more often during trace generation. Avoiding markers in

recovery code eliminates this problem.

An additional issue is the skew between the instruction

counts in the profile and trace collection phases. pingtrace logs

actual instruction counts as PinPoints begin and end. Those

counts can be contrasted with the intended instruction counts

for PinPoint regions in the PinPoints files. Ideally, pingtrace

should begin tracing PinPoints at the intended beginnings.

However, the per-instruction instrumentation required for trac-

ing is rather intrusive and results in more data speculation fail-

ures and hence more recovery code execution with pingtrace

than during profiling. As a result, the actual instruction counts

at PinPoint beginnings during tracing is higher than during pro-

filing, and the trace lengths vary from the ideal 250 million.

We looked at the logs from pingtrace for SPEC programs

and found that the skew between actual and intended beginning

dynamic instruction counts of PinPoints is on an average 1.4%

for SPECINT and 0.02% for SPECFP. We found a strong corre-

lation between the use of data speculation in the program and

the skew. Most SPEC binaries made very little use of data spec-

ulation. The gap binary has significant use of data speculation

and correspondingly the skew between actual PinPoint begin-

nings and trace lengths for tracing of gap is large (30%+).

However, this skew does not cause a problem because all the

extra instructions are from recovery code, which the simulator

can choose to ignore. Since the data speculation related

resources are implementation dependent, traces capture data

speculation behavior on the machine used for tracing. We

believe the simulator should completely ignore the portions for

recovery code in the incoming traces and should implement its

own strategy (e.g. assigning a fixed CPI penalty for data specu-

lation) depending on the microarchitecture being simulated.

4.3.3.  Matching Performance Model with Hardware

Our final test was to determine whether a performance

model and hardware agree on the CPI of the PinPoints. For

that, we used a model for a currently shipping Itanium-2 pro-

cessor (1.5GHz, 6MB L3) based on an Itanium performance

simulator called Dante.

We simulated the SPEC PinPoints traces on Dante/Ita-

nium-2 and obtained CPIs for the traces. Since the Itanium pro-

CPI:SPECINT2000
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Figure 11  SPECINT2000: Prediction of CPI using Pin-

Points traces on a Dante/Itanium-2 model.
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cessor we simulated (Confg4: Itanium-2, 1.5 GHz, 6MB L3) is

already available, we could validate our SPEC2000 CPI projec-

tions from Dante/Itanium-2 against the actual SPEC2000 CPI

from real hardware. The current results from Dante/Itanium-2

CPI projection are presented in Figure 11.

The delta between actual and Dante-predicted SPEC CPIs

shown in Figure 11 depends on three factors (1) how closely

PinPoints capture whole-program behavior, (2) how accurately

the simulator models actual hardware, and (3) cold-start effects

in the simulator. Error due to (1) is bounded by the results pre-

sented earlier in Section 4.3. The error due to modeling inaccu-

racies should be corrected. Finally, the cold-start effects are

reduced by choosing a large slice size (250 million instruc-

tions). The PinPoints toolkit is a valuable resource for identify-

ing modeling inaccuracies. We can collect useful statistics such

as cache misses and branch mispredictions on the real hardware

for various PinPoints. We then compare those statistics with

those from the simulation of corresponding traces. That allows

us to narrow down the possible architecture features (cache,

branch predictor) that may not be accurately modeled in the

simulator. For mcf we first observed a large delta between

actual and Dante-predicted CPI. When we compared statistics

for PinPoints from pfmon to those from the simulation of corre-

sponding traces we noticed that a large number of prefetches

were missing in the simulator. We tracked this down to incor-

rect effective addresses for data-prefetching instructions. The

compiler had inserted prefetch instructions incorrectly request-

ing semi-random 64-bit addresses. These prefetches caused

faults in the Virtual Hash Page Table (VHPT) (used for virtual-

to-physical translation of the Itanium architecture on a DTLB

miss) and then were aborted. However, Dante does not model

the VHPT (which is normally maintained by an OS,) and hence

did not cancel the prefetches. This caused thrashing in the

cache and hence a difference in Dante-predicted CPI and actual

hardware CPI. The solution was to cancel prefetches that

missed DTLB translations. We are continuing these efforts to

bridge the gap between actual and predicted performance for

the SPEC programs.

4.4.  Merging PinPoints for Multi-input Programs

Many users of PinPoints traces have expressed concern

over long simulation times for multiple traces from multiple

inputs for the same SPEC binary (5 for gcc, 7 for perlbmk…).

Hence, we experimented with reducing the number of Pin-

Points for programs with multiple inputs.

The idea is that some aspects of program behavior will not

change with changing input so we should capture PinPoints for

a ‘merged’ run with all the inputs. We profile individual runs as

before. We wrote a utility called ‘bbmerge’ that merges profile

vectors from multiple runs into a single profile file (keeping the

identity of individual runs intact). We then run the combined

file through SimPoint tools increasing the maximum number of

allowable PinPoints to 20 instead of the default 10.

Thus, we get up to 20 ‘merged’ PinPoints. The PinPoint

generation script then creates PinPoints files for individual

runs. The only difference is that the weights for the PinPoints

for a given input no longer sum to 100%, although the weights

for all PinPoints across multiple runs do sum to 100%.

To evaluate the effectiveness of merged PinPoints we look

at the combined CPI for all the runs using (1) per-input Pin-

Points and (2) merged PinPoints. In each case we compare pre-

dicted and actual CPI. We show the results for some multi-

input SPEC programs in on Config3 in Figure 12. There are

two bars for each program – the one on the left shows % delta

in CPI as predicted by original PinPoints and the one on the

right shows the % delta in CPI as predicted by the merged set

of PinPoints. On the X-axis we show program name followed

by the number of original and merged PinPoints. The total

number of PinPoints goes from 126 down to 52. We expect that

this reduction in the number of PinPoints will be accompanied

by an increase in delta between actual and predicted CPI. The

CPI delta is reasonable in most cases. In fact, CPI delta for gcc

and art improved slightly with PinPoint merging. Merged Pin-

Points for vortex show a large % delta indicating that the phase

behavior of vortex is quite different for different inputs – in

particular, we noticed that the CPI for vortex with input

lendian2 is markedly lower than the CPI for inputs lendian1

and lendian3. We do not think merged PinPoints are well-

suited for projecting absolute SPEC scores. However, they can

be used for relative performance studies for evaluating new

architectural features.

4.5.  Comparison with Random Selection of Simu-

lation Points

To assess the effectiveness of SimPoint in selecting slices,

we compare it against selecting slices by random sampling. If

the results for SimPoint are no better than sampling, then there

is no benefit for the extra work it requires. For each program

and input, we randomly select the same number and size of
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Figure 12  Effectiveness of PinPoints from profiles merged 

from multiple runs of SPEC2000 programs.
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slices for simulation as SimPoint. The selection is done two

ways, random sampling and systematic sampling. For random

sampling, every slice can be anywhere in the execution of the

program. For systematic sampling, we pick n slices by dividing

the program execution into n intervals and randomly pick one

slice from each interval. This method spreads the slices out

over the entire execution of the program. 

Both the SimPoint and sampling methods are stochastic,

so it is not meaningful to compare one selection of slices by

SimPoint for a program against one selection of slices by sam-

pling. The sampling methods use random selection of slices,

and for a single run you may of may not be lucky in the choice.

SimPoint uses a random linear projection to reduce the basic

block vector to 15 dimensions and uses random seeds in the K-

means algorithm. It re-runs with different seeds and takes the

best result, so we would expect it to be less sensitive to random

effects. However, we have observed that regenerating a profile

and rerunning SimPoint can lead to a very different simulation

point selection.

Instead of comparing the results of individual programs,

we compare a set of experiments with SimPoint against a set of

experiments with sampling. For SPEC2000, the set consists of

48 unique runs (unique program,input combinations).

For SimPoint and sampling, we compute the cumulative

distribution function for the error in CPI. The data for

SPEC2000 is presented in Figure 13. The horizontal axis is the

error in CPI and the vertical axis is the percentage of programs

that have that error or less. For SimPoint on Spec, 95% of the

program/input pairs have 8% or less error, but for sampling,

95% of the runs have 18% or less error. This is a clear advan-

tage of SimPoint over random sampling and suggests that the

SimPoint algorithm is effective in identifying good simulation

points. The standard deviation for SimPoint, random sampling,

and systematic sampling are 3%, 9%, and 10% respectively. It

does not appear that systematic sampling is significantly better

than random sampling.

We performed the same experiment for the 18 runs of the

commercial programs and show the data in Figure 14. This is a

much smaller set of runs compared to SPEC2000, so it is risky

to draw conclusions because a few uncharacteristic results can

distort the graph. SimPoint appears to be better overall than

sampling. We note that for SimPoint, 95% of the program/input

pairs have a CPI error of 8% or less, while only ~85% of the

sampling results have similar error.

5.  Related Work

The goal of our work is to engineer a practical system for

workload characterization and tracing, therefore we have

employed previously-developed technology where possible.

Sherwood et al. [3] presented an architecture-independent

way of finding representative portions of Alpha programs.

They used a static instrumentation tool called Atom [13] to

generate samples of execution counts of various basic blocks in

Alpha programs. These samples, called basic block vectors,

were then fed to cluster finding tools to detect clusters of simi-

lar basic block vectors. A representative sample was chosen

from each cluster and the corresponding program portion, or

slice, was then called a simulation point, to be used for simula-

tion. Each simulation point also got a weight, depending on the

relative size of the cluster for it was chosen.

Wunderlich et al. described [12] a random sampling tech-

nique for SPEC2000 programs called SMARTS. Their analysis

showed that they can sample fewer than 30 million instructions

to estimate CPI within 3% with 99.7% confidence for 41

SPEC2000 benchmarks. Their implementation showed the

actual CPI error to be 0.64% for SPEC2000. This work was

built on statistical distribution theory and they applied fixed

interval sampling and warm-up techniques. We have com-

mented more on this work in Section 2.1.

Desikan et al. [21] did correlation of an Alpha EV6 model

against real hardware. They first used some micro-benchmarks

where they exhibited high accuracy. Then they used 10

SPEC2000 programs with test inputs (called macro-bench-

marks) and found the mean error in double digits. Our experi-

ence with Dante/Itanium-2 shows reasonably low error when

compared to real hardware. Further, PinPoints have enabled us

to do the correlation for the reference runs of all SPEC2000

programs – this makes the correlation more realistic.
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6.  Summary

In this paper we present our experience capturing Itanium/

Linux workloads for microprocessor performance modeling

using the PinPoints system. The system employs the SimPoint

technique to find representative execution slices. Dynamic

instrumentation is used to collect profiles and instruction

traces, and to aid the validation of the workload. On-chip hard-

ware counters allow us to measure and isolate any error. The

system is evaluated by using it to predict the performance of

commercial applications on an industrial performance model,

and is measured against several configurations of real hard-

ware. We found that the same set of PinPoints predict whole-

program statistics reasonably well (within < 10%) across multi-

ple machine configurations using different implementations of

the Itanium processor.

We compared SimPoint-based selection to random selec-

tion of simulation points. We found for 95% of the SPEC2000

programs we tested, PinPoints predict actual CPI within 8% of

the actual whole-program CPI as opposed to 18% for the ran-

dom selection. We found similar results for a small set of com-

mercial programs, showing a clear advantage for SimPoint-

based selection of simulation points over random selection.

Other interesting lessons are harder to quantify. We think

it is incorrect to assume that a workload is collected once and

simulated many times or to assume that collection time and dif-

ficulty are not important. Often, it is desirable to get a quick

prediction of performance for a potential customer or a soft-

ware vendor, and it must be done at the customer site and not

disrupt ongoing work. We believe our dynamic instrumentation

based profiling and trace collecting system enables us to collect

workloads quicker and more easily than other systems. Previ-

ous work focuses on the single step of selecting execution

slices, comparing real hardware to performance models. We

have learned that some errors are only apparent when putting

an entire system together and that it is important to provide a

simple methodology to isolate errors.

For future work, in addition to improving accuracy, there

are many areas where we would like to extend the capabilities

of PinPoints. These include modeling operating system behav-

ior and better support for parallel programs. We are also

actively working on porting Pin and PinPoints tools to Intel®

IA-32 architecture.
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