
PINT : Probabilistic In-band Network Telemetry

Ran Ben Basat
Harvard University

ran@seas.harvard.edu

Sivaramakrishnan Ramanathan
University of Southern California

satyaman@usc.edu

Yuliang Li
Harvard University

yuliangli@g.harvard.edu

Gianni Antichi
Queen Mary University of London

g.antichi@qmul.ac.uk

Minlan Yu
Harvard University

minlanyu@seas.harvard.edu

Michael Mitzenmacher
Harvard University

michaelm@eecs.harvard.edu

ABSTRACT

Commodity network devices support adding in-band telemetry mea-

surements into data packets, enabling a wide range of applications,

including network troubleshooting, congestion control, and path

tracing. However, including such information on packets adds sig-

nificant overhead that impacts both flow completion times and

application-level performance.

We introduce PINT , an in-band network telemetry framework

that bounds the amount of information added to each packet. PINT

encodes the requested data on multiple packets, allowing per-packet

overhead limits that can be as low as one bit. We analyze PINT and

prove performance bounds, including cases when multiple queries

are running simultaneously. PINT is implemented in P4 and can

be deployed on network devices.Using real topologies and traf-

fic characteristics, we show that PINT concurrently enables appli-

cations such as congestion control, path tracing, and computing

tail latencies, using only sixteen bits per packet, with performance

comparable to the state of the art.

KEYWORDS

Network Telemetry, Networking Algorithms, Networking Protocols

1 INTRODUCTION
Network telemetry is the basis for a variety of network management

applications such as network health monitoring [72], debugging [28],

fault localization [6], resource accounting and planning [56], attack

detection [27, 65], congestion control [46], load balancing [2, 41,

42], fast reroute [47], and path tracing [36]. A significant recent

advance is provided by the In-band Network Telemetry (INT) [75].

INT allows switches to add information to each packet, such as

switch ID, link utilization, or queue status, as it passes by. Such

telemetry information is then collected at the network egress point

upon the reception of the packet.

INT is readily available in programmable switches and network in-

terface cards (NICs) [8, 14, 58, 85], enabling an unprecedented level

of visibility into the data plane behavior and making this technology

attractive for real-world deployments [16, 46]. A key drawback of

INT is the overhead on packets. Since each switch adds information

to the packet, the packet byte overhead grows linearly with the path

length. Moreover, the more telemetry data needed per-switch, the

higher the overhead is: on a generic data center topology with 5 hops,

requesting two values per switch requires 48 Bytes of overhead, or

4.8% of a 1000 bytes packet (§2). When more bits used to store

telemetry data, fewer bits can be used to carry the packet payload

and stay within the maximum transmission unit (MTU). As a result,

applications may have to split a message, e.g., an RPC call, onto

multiple packets, making it harder to support the run-to-completion

model that high-performance transport and NICs need [7]. Indeed,

the overhead of INT can impact application performance, potentially

leading in some cases to a 25% increase and 20% degradation of

flow completion time and goodput, respectively (§2). Furthermore, it

increases processing latency at switches and might impose additional

challenges for collecting and processing the data (§2).

We would like the benefits of in-band network telemetry, but

at smaller overhead cost; in particular, we wish to minimize the

per-packet bit overhead. We design Probabilistic In-band Network

Telemetry (PINT), a probabilistic variation of INT, that provides

similar visibility as INT while bounding the per-packet overhead

according to limits set by the user. PINT allows the overhead budget

to be as low as one bit, and leverages approximation techniques

to meet it. We argue that often an approximation of the telemetry

data suffices for the consuming application. For example, telemetry-

based congestion control schemes like HPCC [46] can be tuned to

work with approximate telemetry, as we demonstrate in this paper.

In some use cases, a single bit per packet suffices.

With PINT , a query is associated with a maximum overhead al-

lowed on each packet. The requested information is probabilistically

encoded onto several different packets so that a collection of a flow’s

packets provides the relevant data. In a nutshell, while with INT

a query triggers every switch along the path to embed their own

information, PINT spreads out the information over multiple pack-

ets to minimize the per-packet overhead. The insight behind this

approach is that, for most applications, it is not required to know

all of the per-packet-per-hop information that INT collects. existing

techniques incur high overheads due to requiring perfect telemetry

information. For applications where some imperfection would be

sufficient, these techniques may incur unnecessary overheads. PINT

Is designed for precisely such applications For example, it is pos-

sible to check a flow’s path conformance [30, 56, 72], by inferring

its path from a collection of its packets. Alternatively, congestion

control or load balancing algorithms that rely on latency measure-

ments gathered by INT, e.g., HPCC [46], Clove [41] can work if

packets convey information about the path’s bottleneck, and do not

require information about all hops.

We present the PINT framework (§3) and show that it can run

several concurrent queries while bounding the per-packet bit over-

head. To that end, PINT uses each packet for a query subset with

cumulative overhead within the user-specified budget. We introduce

the techniques we used to build this solution (§4) alongside its im-

plementation on commercial programmable switches supporting

P4 (§5). Finally, we evaluate (§6) our approach with three differ-

ent use cases. The first traces a flow’s path, the second uses data

1

Metadata value Description

Switch ID ID associated with the switch

Ingress Port ID Packet input port

Ingress Timestamp Time when packet is received

Egress Port ID Packet output port

Hop Latency Time spent within the device

Egress Port TX utilization Current utilization of output port

Queue Occupancy The observed queue build up

Queue Congestion Status Percentage of queue being used

Table 1: Example metadata values.

plane telemetry for congestion control, and the third estimates the

experienced median/tail latency. Using real topologies and traffic

characteristics, we show that PINT enables all of them concurrently,

with only sixteen bits per packet and while providing comparable

performance to the state of the art.

In summary, the main contributions of this paper are:

• We present PINT , a novel in-band network telemetry approach

that provides fine-grained visibility while bounding the per-packet

bit overhead to a user-defined value.

• We analyze PINT and rigorously prove performance bounds.

• We evaluate PINT in on path tracing, congestion control, and

latency estimation, over multiple network topologies.

• We open source our code [1].

2 INT AND ITS PACKET OVERHEAD

INT is a framework designed to allow the collection and reporting

of network data plane status at switches, without requiring any con-

trol plane intervention. In its architectural model, designated INT

traffic sources, (e.g., the end-host networking stack, hypervisors,

NICs, or ingress switches), add an INT metadata header to pack-

ets. The header encodes telemetry instructions that are followed

by network devices on the packet’s path. These instructions tell

an INT-capable device what information to add to packets as they

transit the network. Table 1 summarizes the supported metadata

values. Finally, INT traffic sinks, e.g., egress switches or receiver

hosts, retrieve the collected results before delivering the original

packet to the application. The INT architectural model is intention-

ally generic, and hence can enable a number of high level appli-

cations, such as (1) Network troubleshooting and verification, i.e.,

microburst detection [36], packet history [30], path tracing [36],

path latency computation [34]; (2) Rate-based congestion control,

i.e., RCP [22], XCP [40], TIMELY [53]; (3) Advanced routing, i.e,

utilization-aware load balancing [2, 42].

INT imposes a non insignificant overhead on packets though. The

metadata header is defined as an 8B vector specifying the telemetry

requests. Each value is encoded with a 4B number, as defined by

the protocol [75]. As INT encodes per-hop information, the overall

overhead grows linearly with both the number of metadata val-

ues and the number of hops. For a generic data center topology

with 5 hops, the minimum space required on packet would be 28

bytes (only one metadata value per INT device), which is 2.8%

of a 1000 byte packet (e.g., RDMA has a 1000B MTU). Some

applications, such as Alibaba’s High Precision Congestion Con-

trol [46] (HPCC), require three different INT telemetry values for

each hop. Specifically, for HPCC, INT collects timestamp, egress

port tx utilization, and queue occupancy, alongside some additional

data that is not defined by the INT protocol. This would account

 1

 1.1

 1.2

 1.3

28 48 68 88 108

N
o

rm
a

liz
e

d
 F

C
T

Overhead (Bytes)

30%
70%

 0

 0.2

 0.4

 0.6

 0.8

 1

28 48 68 88 108

N
o

rm
a

liz
e

d
 G

o
o

d
p

u
t

Overhead (Bytes)

30%
70%

Figure 1: Normalized average

Flow Completion Time varying

the network load and increasing

the per-packet overhead.

Figure 2: Normalized average

goodput of long flows (>10MB)

varying the network load and in-

creasing per-packet overhead.

for around 6.8% overhead using a standard INT on a 5-hop path.1

This overhead poses several problems:

1. High packet overheads degrade application performance. The

significant per-packet overheads from INT affect both flow comple-

tion time and application-level throughput, i.e., goodput. We ran an

NS3 [76] experiment to demonstrate this. We created a 5-hop fat-tree

data center topology with 64 hosts connected through 10Gbps links.

Each host generates traffic to randomly chosen destinations with a

flow size distribution that follows a web search workload [3]. We

employed the standard ECMP routing with TCP Reno. We ran our

experiments with a range of packet overheads from 28B to 108B.

The selected overheads correspond to a 5-hop topology, with one

to five different INT values collected at each hop. Figure 1 shows

the effect of increasing overheads on the average flow completion

time (FCT) for 30% (average) and 70% (high) network utilization.

Figure 2, instead, focuses on the goodput for only the long flows,

i.e., with flow size >10 MBytes. Both graphs are normalized to the

case where no overhead is introduced on packets.

In the presence of 48 bytes overhead, which corresponds to 3.2%

of a 1500B packet (e.g., Ethernet has a 1500B MTU), the average

FCT increases by 10%, while the goodput for long flows degrades

by 10% if network utilization is approximately 70%. Further in-

creasing the overhead to 108B (7.2% of a 1500B packet) leads to

a 25% increase and 20% degradation of flow completion time and

goodput, respectively. This means that even a small amount of band-

width headroom can provide a dramatic reduction in latency [4].

The long flows’ average goodput is approximately proportional to

the residual capacity of the network. That means, at a high network

utilization, the residual capacity is low, so the extra bytes in the

header cause larger goodput degradation than the byte overhead

itself [4]. As in our example, the theoretical goodput degradation

should be around 1 − 100%−70%∗1.072
100%−70%∗1.032 ≈ 10.1% when increasing the

header overhead from 48B to 108B at around 70% network utiliza-

tion. This closely matches the experiment result, and is much larger

than the extra byte overhead (4%).

Although some data center networks employ jumbo frames to

mitigate the problem2, it is worth noting that (1) not every network

can employ jumbo frames, especially the large number of enterprise

and ISP networks; (2) some protocols might not entirely support

jumbo frames; for example, RDMA over Converged Ethernet NICs

provides an MTU of only 1KB [54].

1HPCC reports a slightly lower (4.2%) overhead because they use customized INT.

For example, they do not use the INT header as the telemetry instructions do

not change over time.
2https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/network_mtu.html

2

 https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/network_mtu.html

Application Description Measurement Primitives

Per-packet aggregation

Congestion Control [22, 29, 40, 46] Congestion Control with in-network support timestamp, port utilization, queue occupancy

Congestion Analysis [17, 38, 57] Diagnosis of short-lived congestion events queue occupancy

Network Tomography [26] Determine network state, i.e., queues status switchID, queue occupancy

Power Management [31] Determine under-utilized network elements switchID, port utilization

Real-Time Anomaly Detection [66, 86] Detect sudden changes in network status timestamp, port utilization, queue occupancy

Static per-flow aggregation

Path Tracing [36, 56, 65, 72] Detect the path taken by a flow or a subset switchID

Routing Misconfiguration [45, 69, 72] Identify unwanted path taken by a given flow switchID

Path Conformance [45, 69, 73] Checks for policy violations. switchID

Dynamic per-flow aggregation

Utilization-aware Routing [2, 41, 42] Load balance traffic based on network status. switchID, port utilization

Load Imbalance [45, 65, 73] Determine links processing more traffic. switchID, port utilization

Network Troubleshooting [36, 57, 73] Determine flows experiencing high latency. switchID, timestamp

Table 2: Use cases enabled by PINT, organized per aggregation mode.

2. Switch processing time. In addition to consuming bandwidth,

the INT overhead also affects packet processing time at switches.

Every time a packet arrives at and departs from a switch, the bits

carried over the wire need to be converted from serial to parallel and

vice versa, using the 64b/66b (or 66b/64b) encoding as defined by

the IEEE Standard 802.3 [33]. For this reason, any additional bit

added into a packet affects its processing time, delaying it at both in-

put and output interfaces of every hop. For example, adding 48 bytes

of INT data on a packet (INT header alongside two telemetry infor-

mation) would cause a latency increase with respect to the original

packet of almost 76ns and 6ns for 10G and 100G interfaces, respec-

tively3. On a state-of-the-art switch with 10G interfaces, this can

represent an approximately 3% increase in processing latency [60].

On larger topologies and when more telemetry data is needed, the

overhead on the packet can cause an increase of latency in the order

of microseconds, which can hurt the application performance [61].

3. Collection overheads. Telemetry systems such as INT generate

large amounts of traffic that may overload the network. Additionally,

INT produces reports of varying size (depending on the number of

hops), while state-of-the-art end-host stack processing systems for

telemetry data, such as Confluo [43], rely on fixed-byte size headers

on packets to optimize the computation overheads.

3 THE PINT FRAMEWORK

We now discuss the supported functionalities of our system, formal-

izing the model it works in.

Telemetry Values. In our work, we refer to the telemetry informa-

tion as values. Specifically, whenever a packet pj reaches a switch s,

we assume that the switch observes a value v(pj , s). The value can

be a function of the switch (e.g., port or switch ID), switch state

(e.g., timestamp, latency, or queue occupancy), or any other quantity

computable in the data plane. In particular, our definition supports

the information types that INT [75] can collect.

3.1 Aggregation Operations

We design PINT with the understanding that collecting all (per-

packet per-switch) values pose an excessive and unnecessary over-

head. Instead, PINT supports several aggregation operations that

3Consuming 48Bytes on a 10G interface requires 6 clock cycles each of them burning 6.4 ns [83].

On a 100G interface, it needs just one clock cycle of 3ns [84].

allow efficient encoding of the aggregated data onto packets. For ex-

ample, congestion control algorithms that rely on the bottleneck link

experienced by packets (e.g., [46]) can use a per-packet aggregation.

Alternatively, applications that require discovering the flow’s path

(e.g., path conformance) can use per-flow aggregation.

• Per-packet aggregation summarizes the data across the different

values in the packet’s path, according to an aggregation func-

tion (e.g., max/min/sum/product). For example, if the packet

pj traverses the switches s1, s2, . . . , sk and we perform a max-

aggregation, the target quantity is max
{
v(pj , si)

}k
i=1

.

• Static per-flow aggregation targets summarizing values that may

differ between flows or switches, but are fixed for a (flow, switch)

pair. Denoting the packets of flow x by p1, . . . ,pz , the static prop-

erty means that for any switch s on x’s path we have v(p1, s) =
. . . = v(pz , s); for convenience, we denotev(x , s) ≜ v(p1, s). If the

path taken by x is s1, . . . , sk , the goal of this aggregation is then to

compute all values on the path, i.e., v(x , s1),v(x , s2), . . . ,v(x , sk).
As an example, if v(x , si) is the ID of the switch si , then the

aggregation corresponds to inferring the flow’s path.

• Dynamic per-flow aggregation summarizes, for each switch on

a flow’s path, the stream of values observed by its packets. Denote

by p1, . . . ,pz the packets of x and by s1, . . . , sk its path, and let

sequence of values measured by si on x’s packets be denoted as

Sx,i = ⟨v(p1, si),v(p2, si), . . .v(pz , si)⟩. The goal is to compute a

function of Si,x according to an aggregation function (e.g., median

or number of values that equal a particular value v). For example,

ifv(pj , si) is the latency of the packet pj on the switch si , using the

median as an aggregation function equals computing the median

latency of flow x on si .

3.2 Use Cases

PINT can be used for a wide variety of use cases (see Table 2). In

this paper, we will mainly discuss three of them, chosen in such a way

that we can demonstrate all the different PINT aggregations in action.

Per-packet aggregation: Congestion Control. State of the art con-

gestion control solutions often use INT to collect utilization and

queue occupancy statistics [46]. PINT shows that we can get similar

or better performance while minimizing the overheads associated

with collecting the statistics.

3

Static per-flow aggregation: Path Tracing. Discovering the path

taken by a flow is essential for various applications like path confor-

mance [45, 69, 73]. In PINT , we leverage multiple packets from the

same flow to infer its path. For simplicity, we assume that each flow

follows a single path.

Dynamic per-flow aggregation: Network Troubleshooting. For

diagnosing network issues, it is useful to measure the latency quan-

tiles from each hop [17, 34, 36, 57]. Tail quantiles are reported as

the most effective way to summarize the delay in an ISP [19]. For

example, we can detect network events in real-time by noticing a

change in the hop latency [9]. To that end, we leverage PINT to

collect the median and tail latency statistics of (switch, flow) pairs.

3.3 Query Language

Each query in PINT is defined as a tuple ⟨val_t, agg_t, bit-budget,

optional: space-budget, flow definition, frequency⟩ that specifies

which values are used (e.g., switch IDs or latency), the aggrega-

tion type as in Section 3.1, and the query bit-budget (e.g., 8 bits

per packet). The user may also specify a space-budget that deter-

mines how much per-flow storage is allowed, the flow-definition

(e.g., 5-tuple, source IP, etc.) in the case of per-flow queries, and

the query frequency (that determines which fraction of the packets

should be allocated for the query).

PINT works with static bit-budgets to maximize its effectiveness

while remaining transparent to the sender and receiver of a packet.

Intuitively, when working with INT/PINT one needs to ensure that

a packet’s size will not exceed the MTU even after the telemetry

information is added. For example, for a 1500B network MTU, if the

telemetry overhead may add to X bytes, then the sender would be

restricted to sending packets smaller than 1500−X . Thus, by fixing

the budget, we allow the network flows to operate without being

aware of the telemetry queries and path length.

3.4 Query Engine

PINT allows the operator to specify multiple queries that should

run concurrently and a global bit-budget. For example, if the global

bit-budget is 16 bits, we can run two 8-bit-budget queries on the

same packet. In PINT , we add to packets a digest – a short bitstring

whose length equals the global bit budget. This digest may compose

of multiple query digests as in the above example.

Each query instantiates an Encoding Module, a Recording Mod-

ule, and an Inference Module. The Encoding runs on the switches

and modifies the packet’s digest. When a packet reaches a PINT

Sink (the last hop on its path), the sink extracts (removes) the di-

gest and sends the data packet to its destination. This way, PINT

remains transparent to both the sender and receiver. The extracted

digest is intercepted by the Recording Module, which processes and

stores the digests. We emphasize that the per-flow data stored by the

Recording Module sits in an offline storage and no per-flow state is

stored on the switches. Another advantage of PINT is that, compared

with INT, we send fewer bytes from the sink to be analyzed and

thereby reduce the network overhead. The Inference Module runs

on a commodity server that uses the stored data to answer queries.

Fig. 3 illustrates PINT ’s architecture.

Importantly, all switches must agree on which query set to run on

a given packet, according to the distribution chosen by the Query

Engine. We achieve coordination using a global hash function, as

Queries𝑄1, 𝑄2, …
Max

overhead
Query

Engine

Query Set Probability{𝑄2} 0.4{𝑄3} 0.3{𝑄1, 𝑄4} 0.3
Execution Plan

PINT Sink PINT Source

Sender Receiver

Storage

Inference

Module

Fixed-width

PINT digest

Packet

Header Packet Payload

Figure 3: PINT ’s architecture: The Query Engine decides on an

execution plan that determines the probability of running each

query set on packets and notifies the switches. The first hop, PINT

Source, adds a digest whose size is determined by the user. Ev-

ery switch along the path may modify the digest but does not add

bits. The last hop, PINT Sink, removes the collected telemetry in-

formation and sends it to the Recording Module. On demand, the

Inference Module is invoked to analyze the recorded data.

described in Section 4.1. Unlike INT, we do not add a telemetry

header; in this way we minimize the bit overhead.4 Instead, the

PINT Query Engine compiles the queries to decide on the execution

plan (which is a probability distribution on a query set, see Fig. 3)

and notifies the switches.

3.5 Challenges

We now discuss several challenges we face when designing algo-

rithms for PINT .

Bit constraints. In some applications, the size of values may be

prohibitively large to a point where writing a single value on each

packet poses an unacceptable overhead.

Switch Coordination. The switches must agree on which query

set to use for each packet. While the switches can communicate

by exchanging bits that are added to packets, this increases the

bit-overhead of PINT and should be avoided.

Switch constraints. The hardware switches have constraints, in-

cluding limited operations per packet, limited support for arith-

metic operations (e.g., multiplication is not supported), inability

to keep per-flow state, etc. See [12] for a discussion of the con-

straints. For PINT , these constraints mean that we must store mini-

mal amount of state on switches and use simple encoding schemes

that adhere to the programmability restrictions.

4 AGGREGATION TECHNIQUES

In this section, we present the techniques used by PINT to over-

come the above challenges. We show how global hash functions

allow efficient coordination between different switches and be-

tween switches and the Inference Module. We also show how dis-

tributed encoding schemes help reduce the number of packets needed

to collect the telemetry information. Finally, we adopt compres-

sion techniques to reduce the number of bits required to represent

numeric values (e.g., latency).

Our techniques reduce the bit-overhead on packets using proba-

bilistic techniques. As a result, some of our algorithms (e.g., latency

quantile estimation) are approximate, while others (e.g., path tracing)

require multiple packets from the same flow to decode. Intuitively,

4We note that removing the header is minor compared to the overhead saving PINT
obtains by avoiding logging all per-hop values.

4

oftentimes one mostly cares about tracing large (e.g., malicious)

flows and does not require discovering the path of very short ones.

Similarly, for network diagnostics it is OK to get approximated

latency measurements as we usually care about large latencies or

significant latency changes. We summarize which techniques apply

for each of the use cases in Table 3.

Use Case Global Hashes Distributed Coding Value Approximation

Congestion Control ✗ ✗ ✓

Path Tracing ✓ ✓ ✗

Latency Quantiles ✓ ✗ ✓

Table 3: A summary of which techniques are used for each use case.

4.1 Implicit Coordination via Global Hash

Functions

In PINT , we extensively use global hash functions to determine

probabilistic outcomes at the switches. As we show, this solves the

switch coordination challenge, and also enables implicit coordination

between switches and the Inference Module – a feature that allows

us to develop efficient algorithms.

Coordination among switches. We use a global (i.e., that is known

to all switches) hash function to determine which query set the

current packet addresses. For example, suppose that we have three

queries, each running with probability 1/3, and denote the query-

selection hash, mapping packet IDs to the real interval5 [0, 1], by

q. Then if q(pj) < 1/3, all switches would run the first query, if

q(pj) ∈ [1/3, 2/3] the second query, and otherwise the third. Since

all switches compute the same q(pj), they agree on the executed

query without communication. This approach requires the ability to

derive unique packet identifiers to which the hashes are applied (e.g.,

IPID, IP flags, IP offset, TCP sequence and ACK numbers, etc.). For

a discussion on how to obtain identifiers, see [21].

Coordination between switches and Inference Module. The In-

ference Module must know which switches modified an incoming

packet’s digest, but we don’t want to spend bits on encoding switch

IDs in the packet. Instead, we apply a global hash function д on a

(packet ID, hop number)6 pair to choose whether to act on a packet.

This enables the PINT Recording Module to compute д’s outcome

for all hops on a packet’s path and deduct where it was modified.

This coordination plays a critical role in our per-flow algorithms

as described below.

Example #1: Dynamic Per-flow aggregation. In this aggregation,

we wish to collect statistics from values that vary across packets,

e.g., the median latency of a (flow, switch) pair. We formulate

the general problem as follows: Fix some flow x . Let p1, . . . ,pz
denote the packets of x and s1, . . . , sk denote its path. For each

switch si , we need to collect enough information about the sequence

Si,x = ⟨v(p1, si),v(p2, si), . . .v(pz , si)⟩ while meeting the query’s

bit-budget. For simplicity of presentation, we assume that packets

can store a single value.7

5For simplicity, we consider hashing into real numbers. In practice, we hash into M

bits (the range {0, . . . , 2M − 1}) for some integer M (e.g., M = 64). Checking if

the real-valued hash is in [a, b] corresponds to checking if the discrete hash is in the

interval
[⌊
(2M − 1) · a

⌋
,
⌊
(2M − 1) · b

⌋]
.

6The hop number can be computed from the current TTL on the packet’s header.
7If the global bit-budget does not allow encoding a value, we compress it at the cost

of an additional error as discussed in Section 4.3. If the budget allows storing multiple

values, we can run the algorithm independently multiple times and thereby collect more

information to improve the accuracy.

PINT ’s Encoding Module runs a distributed sampling process.

The goal is to have each packet carry the value of a uniformly

chosen hop on the path. That is, each packet pj should carry each

value from
{
v(pj , s1), . . . ,v(pj , sk)

}
with probability 1/k . This way,

with probability 1 − e−Ω(z/k), each hop will get z/k · (1 ± o(1))
samples, i.e., almost an equal number.

To get a uniform sample, we use a combination of global hashing

and the Reservoir Sampling algorithm [82]. Specifically, when the

i’th hop on the path (denoted si) sees a packet pj , it overwrites its

digest with v(pj , si) if д(pj , i) ≤ ri . Therefore, the packet will end

up carrying the value v(pj , si) only if (i) д(pj , i) ≤ ri , and (ii) ∀ȷ ∈
{i + 1, . . . ,k} : д(pj , ȷ) > r ȷ . To get uniform sampling, we follow

the Reservoir Sampling algorithm and set ri ≜ 1/i. Indeed, for each

hop (i) and (ii) are simultaneously satisfied with probability 1/k.

Intuitively, while later hops have a lower chance of overriding the

digest, they are also less likely to be replaced by the remaining

switches along the path.

Intuitively, we can then use existing algorithms for constructing

statistics from subsampled streams. That is, for each switch si , the

collected data is a uniformly subsampled stream of Si,x . One can

then apply different aggregation functions. For instance, we can esti-

mate quantiles and find frequently occurring values. As an example,

we can estimate the median and tail latency of the (flow, switch) pair

by finding the relevant quantile of the subsampled stream.

On the negative side, aggregation functions like the number

of distinct values or the value-frequency distribution entropy are

poorly approximable from subsampled streams [49].

PINT aims to minimize the decoding time and amount of per-flow

storage. To that end, our Recording Module does not need to store

all the incoming digests. Instead, we can use a sketching algorithm

that suits the target aggregation (e.g., a quantile sketch [39]). That is,

for each switch si through which flow x is routed, we apply a sketch-

ing algorithm to the sampled substream of Si,x . If given a per-flow

space budget (see §3.3) we split it between the k sketches evenly.

This allows us to record a smaller amount of per-flow information

and process queries faster. Further, we can use a sliding-window

sketch (e.g., [5, 11, 13]) to reflect only the most recent measure-

ments. Finally, the Inference Module uses the sketch to provide

estimates on the required flows.

The accuracy of PINT for dynamic aggregation depends on the ag-

gregation function, the number of packets (z), the length of the path

(k), and the per-flow space stored by the Recording Module (which

sits off-switch in remote storage). We state results for two typical

aggregation functions. The analysis is deferred to Appendix A.1.

THEOREM 1. Fix an error target ε ∈ (0, 1) and a target quantile

ϕ ∈ (0, 1) (e.g., ϕ = 0.5 is the median). After seeing O(kε−2) packets

from a flow x , usingO(kε−1) space, PINT produces a (ϕ±ε)-quantile

of Sx,i for each hop i.

THEOREM 2. Fix an error target ε ∈ (0, 1) and a target threshold

θ ∈ (0, 1). After seeingO(kε−2) packets from a flow x , usingO(kε−1)
space, PINT produces all values that appear in at least a θ -fraction

of Sx,i , and no value that appears less than a (θ − ε)-fraction, for

each hop i.

5

…𝑒1 𝑒2 𝑒3 𝑒𝑘
Message

Blocks

010000000101 111111010011 010110101111 010110101001
Encoders

𝑀1 𝑀2 𝑀3 𝑀𝑘

Packets’ path
Receiver

Arriving

Packets

𝑀1, … ,𝑀𝑘
Decode

010000000000010000110000
010011110000 010110101111

Figure 4: Multiple encoders send a distributed message.

4.2 Distributed Coding Schemes

When the values are static for a given flow (i.e., do not change

between packets), we can improve upon the dynamic aggregation

approach using distributed encoding. Intuitively, in such a scenario,

we can spread each value v(x , si) over multiple packets. The chal-

lenge is that the information collected by PINT is not known to

any single entity but is rather distributed between switches. This

makes it challenging to use existing encoding schemes as we wish to

avoid adding extra overhead for communication between switches.

Further, we need a simple encoding scheme to adhere to the switch

limitations, and we desire one that allows efficient decoding.

Traditional coding schemes assume that a single encoder owns

all the data that needs encoding. However, in PINT , the data we

wish to collect can be distributed among the network switches.

That is, the message we need to transfer is partitioned between

the different switches along the flow’s path.

We present an encoding scheme that is fully distributed without

any communication between encoders. Specifically, we define our

scheme as follows: a sequence of k encoders hold a k-block message

M1, . . . ,Mk such that encoder ei has Mi for all i ∈ {1, . . . ,k}. The

setting is illustrated in Fig. 4. Each packet carries a digest which

has a number of bits that equals the block size and has a unique

identifier which distinguishes it from other packets. Additionally,

each encoder is aware of its hop number (e.g., by computing it from

the TTL field in the packet header). The packet starts with a digest

of 0 (a zero bitstring) and passes through e1, . . . , ek . Each encoder

can modify the packet’s digest before passing it to the next encoder.

After the packet visits ek , it is passed to the Receiver, which tries to

decode the message. We assume that the encoders are stateless to

model the switches’ inability to keep a per-flow state in networks.

Our main result is a distributed encoding scheme that needs k ·
log log∗ k · (1 + o(1)) packets for decoding the message with near-

linear decoding time. We note that Network Coding [32] can also be

adapted to this setting. However, we have found it rather inefficient,

as we explain later on.

Baseline Encoding Scheme. A simple and intuitive idea for a dis-

tributed encoding scheme is to carry a uniformly sampled block on

each packet. That is, the encoders can run the Reservoir Sampling

algorithm using a global hash function to determine whether to write

their block onto the packet. Similarly to our Dynamic Aggregation al-

gorithm, the Receiver can determine the hop number of the sampling

switch, by evaluating the hash function, and report the message.

The number of packets needed for decoding the message using

this scheme follows the Coupon Collector Process (e.g., see [24]),

where each block is a coupon and each packet carries a random sam-

ple. It is well-known that for k coupons, we would need k lnk(1 +
o(1)) samples on average to collect them all. For example, for

k = 25, Coupon Collector has a median (i.e., probability of 50%

0 50 100 150 200
Number of Packets

0

5

10

15

20

25

E
[M

is
si

n
g
 H

o
p
s]

XOR

Hybrid

Baseline

(a) Algorithm Progress

0 50 100 150 200
Number of Packets

0.0

0.2

0.4

0.6

0.8

1.0

D
e
co

d
e
 P

ro
b

a
b

ili
ty

XOR

Hybrid

Baseline

(b) Probability of Decoding

Figure 5: The XOR scheme (with prob. 1/d) decodes fewer hops at first

but is able to infer the entire path using a similar number of packets to

Baseline. By interleaving both schemes (Hybrid), we get a better result

as the first hops are mainly decoded by Baseline packets and the last

hops by XOR packets that have XOR probability log logd/logd and

are more likely to hit the missing hops. Plotted for d = k = 25 hops.

to decode) of 89 packets and a 99’th percentile of 189 packets,

as shown in Fig. 5.

The problem with the Baseline scheme is that while the first

blocks are encoded swiftly, later ones require a higher number of

packets. The reason is that after seeing most blocks, every consec-

utive packet is unlikely to carry a new block. This is because the

encoders are unaware of which blocks were collected and the proba-

bility of carrying a new block is proportional to number of missing

blocks. As a result, the Baseline scheme has a long “tail”, meaning

that completing the decoding requires many packets.

Distributed XOR Encoding. An alternative to the Baseline scheme

is to use bitwise-xor while encoding. We avoid assuming that the

encoders know k , but assume that they know a typical length d , such

that d = Θ(k). Such an assumption is justified in most cases; for

example, in data center topologies we often know a tight bound on

the number of hops [72]. Alternatively, the median hop count in the

Internet is estimated to be 12 [80], while only a few paths have more

than 30 hops [15, 77]. The XOR encoding scheme has a parameter

p, and each encoder on the path bitwise-xors its message onto the

packet’s digest with probability p = 1/d , according to the global hash

function. That is, the i’th encoder changes the digest if д(pj , i) < p.

We note that this probability is uniform and that the decision of

whether to xor is independent for each encoder, allowing a distributed

implementation without communication between the encoders.

When a packet reaches the Receiver, the digest is a bitwise-xor

of multiple blocks Mi1 ⊕ . . . ⊕ MiK , where K is a binomial random

variable K ∼ Bin(k,p). The Receiver computes д(pj , 1), . . . ,д(pj ,k)
to determine the values i1, . . . , iK . If this set contains exactly one

unknown message block, we can discover it by bitwise-xoring

the other blocks. For example, if we have learned the values of

M1,M3,M4,M6 and the current digest is pj .dig = M1 ⊕ M5 ⊕ M6,

we can derive M5 since M5 = pj .dig ⊕ M1 ⊕ M6.

On its own, the XOR encoding does not asymptotically improve

over the Baseline. Its performance is optimized when p = 1/d =
Θ(1/k), where it requires O(k logk) packets to decode, i.e., within a

constant factor from the Baseline’s performance. Interestingly, we

show that the combination of the two approaches gives better results.

Interleaving the Encoding Schemes. Intuitively, the XOR and

Baseline schemes behave differently. In the Baseline, the chance of

learning the value of a message block with each additional packet

decreases as we receive more blocks. In contrast, to recover data

6

from an XOR packet, we need to know all xor-ed blocks but one.

When p is much larger than 1/k, many packet digests are modified

by multiple encoders, which means that the probability to learn a

message block value increases as we decode more blocks.

As an example for how the interleaved scheme helps, consider

the case of k = 2 encoders. The Baseline scheme requires three

packets to decode the message in expectation; the first packet always

carries an unknown block, but each additional packet carries the

missing block with probability only 1/2. In contrast, suppose each

packet chooses the Baseline scheme and the XOR scheme each with

probability 1/2, using p = 1. For the interleaved scheme to complete,

we need either two Baseline packets that carry different blocks or

one XOR packet and one Baseline packet. A simple calculation

shows that this requires just 8/3 packets in expectation.

For combining the schemes, we first choose whether to run the

Baseline with probability τ , or the XOR otherwise. Once again,

switches make the decision based on a global hash function applied

to the packet identifier to achieve implicit agreement on the packet

type. Intuitively, the Baseline scheme should reduce the number

of undecoded blocks from k to k ′, and the XOR will decode the

rest. To minimize the number of packets, we can set τ = 3/4 and the

XOR probability8 to log logd/logd to reduce the required number of

packets to O(k log logk/log log logk). In such setting, the Baseline

decodes most hops, leaving k ′ ≈ k/logk for the XOR layer. For

example, when k = 25, we get a median of 41 packets and a 99’th

percentile of 68 packets to decode the message. That is, not only

does it improve the average case, the interleaving has sharper tail

bounds. This improvement is illustrated in Fig. 5.

Multi-layer Encoding. So far, we used a single probability for

xor-ing each packet, which was chosen inversely proportional to k ′

(the number of hops that were not decoded by the Baseline scheme).

This way, we maximized the probability that a packet is xor-ed

by exactly one of these k ′ blocks, and we xor any block from the

k − k ′ that are known already to remove them from the decoding.

However, when most of the k ′ blocks left for XOR are decoded,

it also “slows down” and requires more packets for decoding each

additional block. Therefore, we propose to use multiple XOR lay-

ers that vary in their sampling probabilities. We call the Baseline

scheme layer 0, and the XOR layers 1, . . . ,L. Each XOR layer

ℓ ∈ {1, . . . ,L} starts with kℓ undecoded blocks, xors with probabil-

ity pℓ , and ends when kℓ+1 blocks are undecoded.

Our analysis, given in Appendix A.2, shows that by optimizing

the algorithm parameters τ ,L, {kℓ}Lℓ=1 and {pℓ}Lℓ=1, we obtain the

following result. The value of L is a function of d, and we have

that L = 1 if d ≤ ⌊ee ⌋ = 15 and L = 2 if 16 ≤ d ≤ ee
e
; i.e.,

in practice we need only one or two XOR layers.

THEOREM 3. After seeing k log log∗ k(1+o(1)) packets, the Multi-

layer scheme can decode the message.

We note that the o(1) term hides an O(k) packets additive term,

where the constant depends on how well d approximates k . Namely,

when d = k , our analysis indicates that k(log log∗ k+2+o(1)) packets

are enough. Finally, we note that if d is not representative of k at all,

we still get that k lnk(1 + o(1)) packets are enough, the same as in

the Baseline scheme (up to lower order terms). The reason is that

8If d ≤ 15 then log logd < 1; in this case we set the probability to 1/logd .

our choice of τ is close to 1, i.e., only a small fraction of the packets

are used in the XOR layers.

Comparison with Linear Network Coding. Several algorithms

can be adapted to work in the distributed encoding setting. For

example, Linear Network Coding (LNC) [32] allows one to decode a

message in a near-optimal number of packets by taking random linear

combinations over the message blocks. That is, on every packet, each

block is xor-ed into its digest with probability 1/2. Using global hash

functions to select which blocks to xor, one can determine the blocks

that were xor-ed onto each digest. LNC requires just ≈ k + log2 k

packets to decode the message. However, in some cases, LNC may

be suboptimal and PINT can use alternative solutions. First, the LNC

decoding algorithm requires matrix inversion which generally takes

O(k3) time in practice (although theoretically faster algorithms are

possible). If the number of blocks is large, we may opt for approaches

with faster decoding. Second, LNC does not seem to work when

using hashing to reduce the overhead. As a result, in such a setting,

LNC could use fragmentation, but may require a larger number of

packets than the XOR-based scheme using hashing.

Example #2: Static Per-flow Aggregation. We now discuss how

to adapt our distributed encoding scheme for PINT ’s static aggrega-

tion. Specifically, we present solutions that allow us to reduce the

overhead on packets to meet the bit-budget in case a single value

cannot be written on a packet. For example, for determining a flow’s

path, the values may be 32-bit switch IDs, while the bit-budget can

be smaller (even a single bit per packet). We also present an imple-

mentation variant that allows to decode the collection of packets

in near-linear time. This improves the quadratic time required for

computing
{
д(pj , i)

}
for all packets pj and hops i.

Reducing the Bit-overhead using Fragmentation. Consider a sce-

nario where each value has q bits while we are allowed to have

smaller b-bits digests on packets. In such a case, we can break each

value into F ≜ ⌈q/b⌉ fragments where each has ≤ b bits. Using an

additional global hash function, each packet pj is associated with a

fragment number in {1, . . . , F }. We can then apply our distributed

encoding scheme separately on each fragment number. While frag-

mentation reduces the bit overhead, it also increases the number of

packets required for the aggregation, and the decode complexity, as

if there were k · F hops.

Reducing the Bit-overhead using Hashing. The increase in the

required number of packets and decoding time when using fragmen-

tation may be prohibitive in some applications. We now propose

an alternative that allows decoding with fewer packets, if the value-

set is restricted. Suppose that we know in advance a small set of

possible block values V, such that any Mi is in V. For example,

when determining a flow’s path, V can be the set of switch IDs

in the network. Intuitively, the gain comes from the fact that the

keys may be longer than log2 |V| bits (e.g., switch IDs are often

32-bit long, while networks have much fewer than 232 switches).

Instead of fragmenting the values to meet the q-bits query bit bud-

get, we leverage hashing. Specifically, we use another global hash

function h that maps (value, packet ID) pairs into q-bit bitstrings.

When encoder ei sees a packet pj , if it needs to act it uses h(Mi ,pj)
to modify the digest. In the Baseline scheme ei will write h(Mi ,pj)
on pj , and in the XOR scheme it will xor h(Mi ,pj) onto its current

digest. As before, the Recording Module checks the hop numbers

7

that modified the packet. The difference is in how the Inference

Module works – for each hop number i, we wish to find a single

valuev ∈ V that agrees with all the Baseline packets from hop i. For

example, if p1 and p2 were Baseline packets from hop i, Mi must

be a value such that h(Mi ,p1) = p1.dig and h(Mi ,p2) = p2.dig. If

there is more than one such value, the inference for the hop is not

complete and we require additional packets to determine it. Once

a value of a block Mi is determined, from any digest pj that was

xor-ed by the i’th encoder, we xor h(Mi ,pj) from pj .dig. This way,

the number of unknown blocks whose hashes xor-ed pj decreases by

one. If only one block remains, we can treat it similarly to a Baseline

packet and use it to reduce the number of potential values for that

block. Another advantage of the hashing technique is that it does not

assume anything about the width of the values (e.g., switch IDs), as

long as each is distinct.

Reducing the Decoding Complexity. Our description of the en-

coding and decoding process thus far requires processing is super-

quadratic (ω(k2)) in k . That is because we need ≈ k log log∗ k pack-

ets to decode the message, and we spend O(k) time per packet in

computing the д function to determine which encoders modified its

digest. We now present a variant that reduces the processing time

to nearly linear in k. Intuitively, since the probability of changing

a packet is Ω(1/k), the number of random bits needed to determine

which encoders modify it is O(k logk). Previously, each encoder

used the global function д to get O(logk) pseudo-random bits and

decide whether to change the packet. Instead, we can use д to create

O(log 1/p) = O(logk) pseudo-random k-bit vectors. Intuitively, each

bit in the bitwise-and of these vectors will be set with probability p

(as defined by the relevant XOR layer). The i’th encoder will modify

the packet if the i’th bit is set in the bitwise-and of the vectors9.

At the Recording Module, we can compute the set of encoders that

modify a packet in time O(logk) by drawing the random bits and us-

ing their bitwise-and. Once we obtain the bitwise-and vector we can

extract a list of set bits in time O(#set bits) using bitwise operations.

Since the average number of set bits is O(1), the overall per-packet

complexity remains O(logk) and the total decoding time becomes

O(k logk log log∗ k). We note that this improvement assumes that k

fits in O(1) machine words (e.g., k ≤ 256) and that encoders can do

O(logk) operations per packet.

Improving Performance via Multiple Instantiations. The num-

ber of packets PINT needs to decode the message depends on the

query’s bit-budget. However, increasing the number of bits in the

hash may not be the best way to reduce the required number of

packets. Instead, we can use multiple independent repetitions of the

algorithm. For example, given an 8-bit query budget, we can use two

independent 4-bit hashes.

4.3 Approximating Numeric Values

Encoding an exact numeric value on packet may require too many

bits, imposing an undesirable overhead. For example, the 32-bit la-

tency measurements that INT collects may exceed the bit-budget. We

now discuss to compress the value, at the cost of introducing an error.

Multiplicative approximation. One approach to reducing the num-

ber of bits required to encode a value is to write on the packet’s

9This assumes that the probability is a power of two, or provides a
√
2 approximation of

it. By repeating the process we can get a better approximation.

digest a(pj , s) ≜
[
log(1+ε)2 v(pj , s)

]
instead of v(pj , s). Here, the [·]

operator rounds the quantity to the closest integer. At the Inference

Module, we can derive a (1 + ε)-approximation of the original value

by computing (1 + ε)2·a(pj ,s). For example, if we want to compress

a 32-bit value into 16 bits, we can set ε = 0.0025.

Additive approximation. If distinguishing small values is not as

crucial as bounding the maximal error, we obtain better results

by encoding the value with additive error instead of multiplicative

error. For a given error target ∆ (thereby reducing the overhead by⌊
log2 ∆

⌋
bits), the Encoding Module writes a(pj , s) ≜

[
v(pj ,s)

2∆

]
, and

the Inference Module computes (2∆) · a(pj , s).
Randomized counting. For some aggregation functions, the aggre-

gation result may require more bits than encoding a single value.

For example, in a per-packet aggregation over a k-hop path with

q-bit values, the sum may require q + logk bits to write explic-

itly while the product may take q · k bits. This problem is espe-

cially evident if q is small (e.g., a single bit specifying whether

the latency is high). Instead, we can take a randomized approach

to increase the value written on a packet probabilistically. For ex-

ample, we can estimate the number of high-latency hops or the

end-to-end latency to within a (1 + ε)-multiplicative factor using

O(log ε−1 + log log(2q · k · ε2))) bits [55].

Example #3: Per-packet aggregation. Here, we wish to summa-

rize the data across the different values in the packet’s path. For

example, HPCC [46] collects per-switch information carried by INT

data, and adjusts the rate at the end host according to the highest link

utilization along the path. To support HPCC with PINT , we have two

key insights: (1) we just need to keep the highest utilization (i.e., the

bottleneck) in the packet header, instead of every hop; (2) we can

use the multiplicative approximation to further reduce the number of

bits for storing the utilization. Intuitively, PINT improves HPCC as

it reduces the overheads added to packets, as explained in Section 2.

In each switch, we calculate the utilization as in HPCC, with slight

tuning to be supported by switches (discussed later). The multipli-

cation is calculated using log and exp based on lookup tables [67].

The result is encoded using multiplicative approximation. To further

eliminate systematic error, we write a(pj , s) ≜
[
log(1+ε)2 v(pj , s)

]
R

,

the [·]R randomly performs floor or ceiling, with a probability distri-

bution that gives an expected value equals to log(1+ε)2 v(pj , s). This

way, some packets will overestimate the utilization while others

underestimate it, thus resulting in the correct value on average. In

practice, we just need 8 bits to support ε = 0.025.

Tuning HPCC calculation for switch computation. We maintain

the exponential weighted moving average (EWMA) of link utiliza-

tion U of each link in the switch. U is updated on every packet with:

U = T−τ
T ·U + τ

T · u, where u =
qlen
B ·T +

byte
B ·τ is the new sample for

updating U . Here, T is the base RTT and B is the link bandwidth

(both are constants). Intuitively, the weight of the EWMA, τT , corre-

sponds to each new packet’s time occupation τ . The calculation of u

also corresponds to each new packet: byte is the packet’s size, and

qlen is the queue length when the packet is dequeued10.

10This is slightly different from HPCC, where the calculation is done in the host,

which can only see packets of its own flow. Therefore, the update is scaled for

packets of the same flow (τ is time gap between packets of the same flow, and

byte includes the bytes from other flows in between). Here, the update is performed

8

0
10
20
30
40
50
60
70

G
o
o
d

p
u

t
[G

b
p

s]

HPCC(PINT)

HPCC(INT)

20 30 40 50 60 70
Network Load [%]

0
20
40
60
80

G
a
in

 [
%

]

(a) Web search workload (large flows)

7K 20K 30K 50K 73K 197K 989K 2M 5M 30M

Flow Size [Bytes]

2

4

6

8

10

S
lo

w
d

o
w

n

HPCC(INT)

HPCC(PINT)

(b) Web search workload

324 399 500 599 699 999 7K 46K 120K 10M

Flow Size [Bytes]

2

4

6

8

10

S
lo

w
d

o
w

n

HPCC(INT)

HPCC(PINT)

(c) Hadoop workload

Figure 7: Comparison of the 95th-percentile slowdown of the standard INT-based HPCC and the PINT -based HPCC. PINT improves the performance

for the long flows due to its reduced overheads. In (b) and (c), the network load is 50% and the x-axis scale is chosen such that there are 10% of the

flows between consecutive tick marks.

Switch Pipeline

Stage 1 Stage 2 Stage 3 Stage 4 Stage 5 Stage 6 Stage 7 Stage 8

HPCC

Arithmetics

HPCC

Arithmetics

HPCC

Arithmetics

HPCC

Arithmetics

HPCC

Arithmetics

Value

Compression

Write

Digest

Write

Digest

Compute

Latency

Value

Compression
Compute 𝑔

Choose

Layer 1

Choose

Layer 2

Compute 𝑔
Compute 𝑔

Compute

hash

Compute

hash

Write

Digest

Write

Digest

HPCC

Arithmetics

Choose a

query subset

Figure 6: Layout illustration for two path tracing hashes, alongside a

latency query, and a congestion control query.

To calculate the multiplications, we first do the following transfor-

mation:U = T−τ
T ·U +

qlen·τ
B ·T 2 +

byte
B ·T . Then we calculate the multiplica-

tions using logarithm and exponentiation as detailed in Appendix B.

5 IMPLEMENTATION

PINT is implemented using the P4 language and can be deployed

on commodity programmable switches. We explain how each of our

use cases is executed.

For running the path tracing application (static per-flow aggre-

gation), we require four pipeline stages. The first chooses a layer,

another computes д, the third hashes the switch ID to meet the

query’s bit budget, and the last writes the digest. If we use more

than one hash for the query, both can be executed in parallel as

they are independent.

Computing the median/tail latency (dynamic per-flow aggrega-

tion) also requires four pipeline stages: one for computing the latency,

one for compressing it to meet the bit budget; one to compute д; and

one to overwrite the value if needed.

Our adaptation of the HPCC congestion control algorithm re-

quires six pipeline stages to compute the link utilization, followed

by a stage for approximating the value and another to write the di-

gest. For completeness, we elaborate on how to implement in the

data plane the different arithmetic operations needed by HPCC in

Appendix C. We further note that running it may require that the

switch would need to perform the update of U in a single stage. In

other cases, we propose to store the last n values of U on separate

stages and update them in a round-robin manner, for some integer n.

This would mean that our algorithm would need to recirculate every

n’th packet as the switch’s pipeline is one-directional.

Since the switches have a limited number of pipeline stages, we

parallelize the processing of queries as they are independent of each

on all packets on the same link. Since different flows may interleave on the link,

our calculation is more fine-grained.

other. We illustrate this parallelism for a combination of the three

use cases of PINT .We start by executing all queries simultaneously,

writing their results on the packet vector. Since HPCC requires more

stages than the other use cases, we concurrently compute which

query subset to run according to the distribution selected by the

Query Engine (see §3.4). We can then write the digests of all the

selected queries without increasing the number of stages compared

with running HPCC alone. The switch layout for such a combination

is illustrated in Fig. 6.

6 EVALUATION

We evaluate on the three use cases discussed on §3.2.

6.1 Congestion Control

We evaluate how PINT affects the performance of HPCC [46] using

the same simulation setting as in [46]. Our goal is not to propose a

new congestion control scheme, but rather to present a low-overhead

approach for collecting the information that HPCC utilizes. We use

NS3 [76] and a FatTree topology with 16 Core switches, 20 Agg

switches, 20 ToRs, and 320 servers (16 in each rack). Each server has

a single 100Gbps NIC connected to a single ToR. The capacity of

each link between Core and Agg switches, as well as Agg switches

and ToRs, are all 400Gbps. All links have a 1µs propagation delay,

which gives a 12µs maximum base RTT. The switch buffer size is

32MB. The traffic is generated following the flow size distribution

in web search from Microsoft [3] and Hadoop from Facebook [62].

Each server generates new flows according to a Poisson process,

destined to random servers. The average flow arrival time is set

so that the total network load is 50% (not including the header

bytes). We use the recommended setting for HPCC:WAI = 80 bytes,

maxStaдe = 0, η = 95%, and T = 13µs.

The results, depicted in Fig. 7(b) and Fig. 7(c), show that PINT has

similar performance (in terms of slowdown) to HPCC, despite using

just 8 bits per packet. Here, slowdown refers to the ratio between

the completion time of the flow in the presence of other flows and

alone. Specifically, PINT has better performance on long flows while

slightly worse performance on short ones. The better performance

on long flows is due to PINT ’s bandwidth saving. Fig. 7(a) shows the

relative goodput improvement, averaged over all flows over 10MB,

of using PINT at different network load. At higher load, the byte

saving of PINT brings more significant improvement. For example,

at 70% load, using PINT improves the goodput by 71%. This trend

aligns with our observation in §2.

To evaluate how the congestion control algorithm would perform

alongside other queries, we experiment in a setting where only a

9

7K 20K 30K 50K 73K 197K987K 2M 5M 30M

Flow Size [Bytes]

2

4

6

8

10

S
lo

w
d

o
w

n

p=1=256

p=1=16

p=1

(a) Web search workload

324 399 500 599 699 999 7K 46K 120K 10M

Flow Size [Bytes]

2

4

6

8

10

S
lo

w
d

o
w

n

p=1=256

p=1=16

p=1

(b) Hadoop workload

Figure 8: The 95th-percentile slowdown of running PINT -based HPCC

(at 50% network load) on p-fraction of the packets. On both workloads,

the performance of running it on 1/16 of the packets produces similar

results to running it on all.

200 400 600 800 1000
Sample Size [Packets]

0

10

20

30

40

50

R
e
la

ti
v
e
 E

rr
o
r

[%
]

Web Search Tail

200 400 600 800 1000
Sample Size [Packets]

Hadoop Tail

200 400 600 800 1000
Sample Size [Packets]

Hadoop Median

100 200 300
Sketch Size [Bytes]

0

10

20

30

40

50

R
e
la

ti
v
e
 E

rr
o
r

[%
]

100 200 300
Sketch Size [Bytes]

100 200 300
Sketch Size [Bytes]

PINT (b=8) PINT (b=4) PINTS (b=8) PINTS (b=4)

Figure 9: PINT error on estimating latency quantiles with a sketch

(PINTS) and without. In the first row, the sketch has 100 digests; in

the second, the sample has 500 packets.

p = 1, 1/16, 1/256 fraction of the packets carry the query’s digest.

As shown in Fig. 8(a) and Fig. 8(b), the performance only slightly

degrades for p = 1/16. This is expected, because the bandwidth-

delay product (BDP) is 150 packets, so there are still 9.4 (≈150/16)

packets per RTT carrying feedback. Thus the rate is adjusted on

average once per 1/9.4 RTT (as compared to 1/150 RTT with per-

packet feedback), which is still very frequent. With p = 1/256,

the performance of short flows degrades significantly, because it

takes longer than an RTT to get feedback. The implication is that

congestion caused by long flows is resolved slowly, so the queue

lasts longer, resulting in higher latency for short flows. The very long

flows (e.g., > 5MB) also have worse performance. The reason is that

they are long enough to collide with many shorter flows, so when

the competing shorter flows finish, the long flows have to converge

back to the full line rate. With p = 1/256, it takes much longer time

to converge than with smaller p.

In principle, the lower feedback frequency p only affects the con-

vergence speed as discussed above, but not the stability and fairness.

Stability is guaranteed by no overreaction, and HPCC’s design of ref-

erence window (constant over an RTT) provides this regardless of p.

Fairness is guaranteed by additive-increase-multiplicative-decrease

(AIMD), which is preserved regardless of p.

6.2 Latency Measurements

Using the same topology and workloads as in our congestion control

experiments, we evaluate PINT ’s performance on estimating latency

quantiles. We consider PINT in four scenarios, using b = 4 and

b = 8 bit-budgets, with sketches (denoted PINTS), and without. In

our experiment, we have used the, state of the art, KLL sketch [39].

The results, appearing in Fig. 9, show that when getting enough

packets, the error of the aggregation becomes stable and converges

to the error arising from compressing the values. As shown, by

compressing the incoming samples using a sketch (e.g., that keeps

100 identifiers regardless of the number of samples), PINT accuracy

degrades only a little even for small 100B sketches. We conclude

that such sketches offer an attractive space to accuracy tradeoff.

6.3 Path Tracing

We conduct these experiments on Mininet [52] using two large-

diameter (denoted D) ISP topologies (Kentucky Datalink and US

Carrier) from Topology Zoo [44] and a (K = 8) Fat Tree topology.

The Kentucky Datalink topology consisted of 753 switches with a

diameter of 59 and the US carrier topology consisted of 157 switches

with a diameter of 36. For each topology and every path, we esti-

mate the average and 99’th percentile number of packets needed for

decoding over 10K runs. We consider three variants of PINT– using

1-bit, 4-bit, and two independent 8-bit hash functions (denoted by

2 × (b = 8)). We compare PINT to two state-of-the-art IP Traceback

solutions PPM [65] and AMS2 [70] with m = 5 and m = 6. When

configured with m = 6, AMS2 requires more packets to infer the

path but also has a lower chance of false positives (multiple possible

paths) compared with m = 5. We implement an improved version

of both algorithms using Reservoir Sampling, as proposed in [63].

PINT is configured with d = 10 on the ISP topologies and d = 5

(as this is the diameter) on the fat tree topology. In both cases, this

means a single XOR layer in addition to a Baseline layer.

The results (Fig. 10) show that PINT significantly outperforms

previous works, even with a bit-budget of a single bit (PPM and

AMS both have an overhead of 16 bits per packet). As shown, the

required number of packets for PINT grows near-linearly with the

path length, validating our theoretical analysis. For the Kentucky

Datalink topology (D = 59), PINT with 2 × (b = 8) on average uses

25–36 times fewer packets when compared to competing approaches.

Even when using PINT with b = 1, PINT needs 7–10 times fewer

packets than competing approaches. For the largest number of hops

we evaluated (59, in the Kentucky Datalink topology), PINT requires

only 42 packets on average and 94 for the 99’th percentile, while

alternative approaches need at least 1–1.5K on average and 3.3–5K

for 99’th percentile, respectively.

6.4 Combined Experiment

We test the performance of PINT when running all three use cases

concurrently. Based on the previous experiments, we tune PINT to

run each query using a bit budget of 8 bits and a global budget of

16 bits. Our goal is to compare how PINT performs in such setting,

compared with running each application alone using 16 bits per

packet (i.e., with an effective budget of 3 × 16 bits). That is, each

packet can carry digests of two of the three concurrent queries.

As we observe that the congestion control application has good

performance when running in p = 1/16 of the packets, and the

path tracing requires more packets than the latency estimation, we

choose the following configuration. We run the path algorithm on

all packets, alongside the latency algorithm in 15/16 of the packets,

and alongside HPCC in 1/16 of the packets. As Fig. 11 shows, the

10

6 12 18 24 30 36 42 48 54
Path Length [Hops]

0

500

1000

1500

2000

2500

3000

3500

A
v
e
ra

g
e
 N

u
m

b
e
r

[P
a
ck

e
ts

]

(a) Kentucky Datalink (D = 59)

4 8 12 16 20 24 28 32 36
Path Length [Hops]

0
200
400
600
800

1000
1200
1400
1600
1800

A
v
e
ra

g
e
 N

u
m

b
e
r

[P
a
ck

e
ts

]

(b) US Carrier (D = 36)

2 3 4 5
Path Length [Hops]

0
20
40
60
80

100
120
140
160
180

A
v
e
ra

g
e
 N

u
m

b
e
r

[P
a
ck

e
ts

]

(c) Fat Tree (D = 5)

PINT 2£(b=8)
AMS2 (m=5)

PINT (b=4)

AMS2 (m=6)

PINT (b=1)

PPM

6 12 18 24 30 36 42 48 54
Path Length [Hops]

0

1000

2000

3000

4000

5000

6000

9
9

th
 P

e
rc

e
n

ti
le

 [
P
a
ck

e
ts

]

(d) Kentucky Datalink (D = 59)

4 8 12 16 20 24 28 32 36
Path Length [Hops]

0

500

1000

1500

2000

2500

3000

3500

9
9

th
 P

e
rc

e
n

ti
le

 [
P
a
ck

e
ts

]

(e) US Carrier (D = 36)

2 3 4 5
Path Length [Hops]

0

50

100

150

200

250

300

350

9
9

th
 P

e
rc

e
n

ti
le

 [
P
a
ck

e
ts

]
(f) Fat Tree (D = 5)

Figure 10: Comparison of the number of packets required (lower is better) for path decoding of different algorithms, including PINT

with varying bit-budget.

performance of PINT is close to a Baseline of running each query

separately. For estimating median latency, the relative error increases

by only 0.7% from the Baseline to the combined case. In case of

HPCC, we that observe short flows become 6.6% slower while the

performance of long flows does not degrade. As for path tracing, the

number of packets increases by 0.5% compared with using two 8

bit hashes as in Fig. 10. We conclude that, with a tailored execution

plan, our system can support these multiple concurrent telemetry

queries using an overhead of just two bytes per packet.

Base
lin

e

Combined
0.0

0.5

1.0

1.5

2.0

S
lo

w
d

o
w

n

HPCC(PINT)

Base
lin

e

Combined
0

2

4

6

8

10

12

A
v
e
ra

g
e
 N

u
m

b
e
r

[P
a
ck

e
ts

] Path Tracing

Base
lin

e

Combined
0

1

2

3

4

5

E
rr

o
r

[%
]

Tail Latency

Figure 11: The performance of each query in a concurrent execution

(FatTree topology + Hadoop workload) compared to running it alone.

7 LIMITATIONS

In this section, we discuss the limitations associated with our proba-

bilistic approach. The main aspect to take into consideration is the

required per-packet bit-budget and the network diameter. The bigger

overhead allowed and the smaller the network, the more resilient

PINT will be in providing results in different scenarios.

Tracing short flows. PINT leverages multiple packets from the same

flow to infer its path. In our evaluation (§6), we show that our solu-

tion needs significantly fewer packets when compared to competing

approaches. However, in data center networks, small flows can con-

sist of just a single packet [3]. In this case, PINT is not effective and a

different solution, such as INT, would provide the required information.

Data plane complexity. Today’s programmable switches have a

limited number of pipeline stages. Although we show that it is possi-

ble to parallelize the processing of independent queries (§5), thus

saving resources, the PINT requirements might restrict the amount

of additional use cases to be implemented in the data plane, e.g., fast

reroute [18] or in-network caching [37] and load balancing [2, 42].

Tracing flows with multipath routing. The routing of a flow may

change over time (e.g., when using flowlet load balancing [2, 42])

or multiple paths can be taken simultaneously when appropriate

transport protocols such as Multipath TCP are used [25]. In those

cases, the values (i.e, switch IDs) for some hops will be different.

Here, PINT can detect routing changes when observing a digest

11

that is not consistent with the part of the path inferred so far. For

example, if we know that the sixth switch on a path is M6, and a

Baseline packet pj comes with a digest from this hop that is different

than h(M6,pj), then we can conclude that the path has changed. The

number of packets needed to identify a path change depends on

the fraction of the path that has been discovered. If path changes

are infrequent, and PINT knows the entire path before the change,

a Baseline packet will not be consistent with the known path (and

thus signify a path change) with probability 1 − 2−q . Overall, in the

presence of flowlet routing, PINT can still trace the path of each

flowlet, provided enough packets for each flowlet-path are received

at the sink. PINT can also profile all paths simultaneously at the cost

of additional overhead (e.g., by adding a path checksum to packets

we can associate each with the path it followed).

Current implementation. At the time of writing, the PINT exe-

cution plan is manually selected. We envision that an end to end

system that implements PINT would include a Query Engine that

automatically decides how to split the bit budget.

8 RELATED WORK

Many previous works aim at improving data plane visibility. Some

focus on specific flows selected by operators [56, 78, 87] or only on

randomly selected sampled flows [10, 21]. Such approaches are in-

sufficient for applications that need global visibility on all flows, such

as path tracing. Furthermore, the flows of interest may not be known

in advance, if we wish to debug high-latency or malicious flows.

Other works can be classified into three main approaches: (1)

keep information out-of-band; (2) keep flow state at switches; or (3)

keep information on packets. The first approach applies when the

data plane status is recovered by using packet mirroring at switches

or by employing specially-crafted probe packets. Mirroring every

packet creates scalability concerns for both trace collection and anal-

ysis. The traffic in a large-scale data center network with hundreds of

thousands of servers can quickly introduce terabits of mirrored traf-

fic [28, 62]. Assuming a CPU core can process tracing traffic at 10

Gbps, thousands of cores would be required for trace analysis [87],

which is prohibitively expensive. Moreover, with mirroring it is not

possible to retrieve information related to switch status, such as port

utilization or queue occupancy, that are of paramount importance

for applications such as congestion control or network troubleshoot-

ing. While such information can be retrieved with specially-crafted

probes [74], the feedback loop may be too slow for applications like

high precision congestion control [46]. We can also store flow infor-

mation at switches and periodically export it to a collector [45, 69].

However, keeping state for a large number of active flows (e.g., up

to 100K [62]), in the case of path tracing, is challenging for lim-

ited switch space (e.g., 100 MB [51]). This is because operators

need the memory for essential control functions such as ACL rules,

customized forwarding [68], and other network functions and appli-

cations [37, 51]. Another challenge is that we may need to export

data plane status frequently (e.g., every 10 ms) to the collector, if we

want to enable applications such as congestion control. This creates

significant bandwidth and processing overheads [45].

Proposals that keep information on packets closely relate to this

work [36, 72, 75], with INT being considered the state-of-the-art

solution. Some of the approaches, e.g., Path Dump [72], show how

to leverage properties of the topology to encode only part of each

path (e.g., every other link). Nonetheless, this still imposes an over-

head that is linear in the path length, while PINT keeps it constant.

Alternative approaches add small digests to packets for tracing

paths [64, 65, 70]. However, they attempt to trace back to potential

attackers (e.g., they do not assume unique packet IDs or reliable

TTL values as these can be forged) and require significantly more

packets for identification, as we show in Section 6. In a recent effort

to reduce overheads on packets, similarly to this work, Taffet et

al. [71] propose having switches use Reservoir Sampling to collect

information about a packet’s path and congestion that the packet

encounters as it passes through the network. PINT takes the process

several steps further, including approximations and coding (XOR-

based or network coding) to reduce the cost of adding information

to packets as much as possible. Additionally, our work rigorously

proves performance bounds on the number of packets required to

recover the data plane status as well as proposes trade-offs between

data size and time to recover.

9 CONCLUSION

We have presented PINT , a probabilistic framework to in-band

telemetry that provides similar visibility to INT while bounding

the per-packet overhead to a user-specified value. This is important

because overheads imposed on packets translate to inferior flow

completion time and application-level goodput. We have proven

performance bounds (deferred to Appendix A due to lack of space)

for PINT and have implemented it in P4 to ensure it can be readily

deployed on commodity switches. PINT goes beyond optimizing

INT by removing the header and using succinct switch IDs by re-

stricting the bit-overhead to a constant that is independent of the

path length. We have discussed the generality of PINT and demon-

strated its performance on three specific use cases: path tracing, data

plane telemetry for congestion control and estimation of experienced

median/tail latency. Using real topologies and traffic characteristics,

we have shown that PINT enables the use cases, while drastically

decreasing the required overheads on packets with respect to INT.

Acknowledgements. We thank the anonymous reviewers, Jiaqi

Gao, Muhammad Tirmazi, and our shepherd, Rachit Agarwal, for

helpful comments and feedback. This work is partially sponsored by

EPSRC project EP/P025374/1, by NSF grants #1829349, #1563710,

and #1535795, and by the Zuckerman Foundation.

This work does not raise any ethical issues.

12

REFERENCES
[1] 2020. PINT open source code: https://github.com/ProbabilisticINT. (2020).

https://github.com/ProbabilisticINT

[2] Mohammad Alizadeh, Tom Edsall, Sarang Dharmapurikar, Ramanan

Vaidyanathan, Kevin Chu, Andy Fingerhut, Vinh The Lam, Francis Ma-

tus, Rong Pan, Navindra Yadav, and George Varghese. 2014. CONGA: Distributed

Congestion-aware Load Balancing for Datacenters. In ACM SIGCOMM.

[3] Mohammad Alizadeh, Albert Greenberg, David A. Maltz, Jitendra Padhye,

Parveen Patel, Balaji Prabhakar, Sudipta Sengupta, and Murari Sridharan. 2010.

Data Center TCP (DCTCP). In ACM SIGCOMM.

[4] Mohammad Alizadeh, Abdul Kabbani, Tom Edsall, Balaji Prabhakar, Amin Vah-

dat, and Masato Yasuda. 2012. Less is More: Trading a Little Bandwidth for

Ultra-Low Latency in the Data Center. In USENIX NSDI.

[5] Arvind Arasu and Gurmeet Singh Manku. 2004. Approximate Counts and Quan-

tiles over Sliding Windows. In ACM PODS.

[6] Behnaz Arzani, Selim Ciraci, Luiz Chamon, Yibo Zhu, Hongqiang Harry Liu, Jitu

Padhye, Boon Thau Loo, and Geoff Outhred. 2018. 007: Democratically Finding

the Cause of Packet Drops. In USENIX NSDI.

[7] Tom Barbette, Cyril Soldani, and Laurent Mathy. 2015. Fast Userspace Packet

Processing. In IEEE/ACM ANCS.

[8] Barefoot. [n. d.]. Barefoot Deep Insight. https://barefootnetworks.com/products/

brief-deep-insight/. ([n. d.]).

[9] Barefoot Networks. 2018. Barefoot Deep Insight. https://www.barefootnetworks.

com/static/app/pdf/DI-UG42-003ea-ProdBrief.pdf. (2018).

[10] Ran Ben Basat, Xiaoqi Chen, Gil Einziger, Shir Landau Feibish, Danny Raz, and

Minlan Yu. 2020. Routing Oblivious Measurement Analytics. In IFIP Networking.

[11] Ran Ben Basat, Gil Einziger, Isaac Keslassy, Ariel Orda, Shay Vargaftik, and Erez

Waisbard. 2018. Memento: Making Sliding Windows Efficient for Heavy Hitters.

In ACM CoNEXT.

[12] Ran Ben-Basat, Xiaoqi Chen, Gil Einziger, and Ori Rottenstreich. 2018. Efficient

Measurement on Programmable Switches using Probabilistic Recirculation. In

IEEE ICNP.

[13] Ran Ben-Basat, Gil Einziger, and Roy Friedman. 2018. Fast flow volume estima-

tion. Pervasive Mob. Comput. (2018).

[14] Broadcom. [n. d.]. Broadcom BCM56870 Series. https://www.broadcom.com/

products/ethernet-connectivity/switching/strataxgs/bcm56870-series. ([n. d.]).

[15] Robert L Carter and Mark E Crovella. 1997. Server selection using dynamic path

characterization in wide-area networks. In IEEE INFOCOM.

[16] SDX Central. [n. d.]. AT&T Runs Open Source

White Box. https://www.sdxcentral.com/articles/news/

att-runs-open-source-white-box-switch-live-network/2017/04/. ([n. d.]).

[17] Xiaoqi Chen, Shir Landau Feibish, Yaron Koral, Jennifer Rexford, Ori Rottenstre-

ich, Steven A Monetti, and Tzuu-Yi Wang. 2019. Fine-Grained Queue Measure-

ment in the Data Plane. In ACM CoNEXT.

[18] Marco Chiesa, Roshan Sedar, Gianni Antichi, Michael Borokhovich, Andrzej

Kamisiundefinedski, Georgios Nikolaidis, and Stefan Schmid. 2019. PURR: A

Primitive for Reconfigurable Fast Reroute. In ACM CoNEXT.

[19] Baek-Young Choi, Sue Moon, Rene Cruz, Zhi-Li Zhang, and Christophe Diot.

2007. Quantile Sampling for Practical Delay Monitoring in Internet Backbone

Networks. Computer Networks.

[20] Damu Ding, Marco Savi, and Domenico Siracusa. 2020. Estimating Logarithmic

and Exponential Functions to Track Network Traffic Entropy in P4. In IEEE/IFIP

NOMS.

[21] N. G. Duffield and Matthias Grossglauser. 2001. Trajectory Sampling for Direct

Traffic Observation. In IEEE/ACM ToN.

[22] Nandita Dukkipati and Nick McKeown. 2006. Why Flow-Completion Time is the

Right Metric for Congestion Control. ACM SIGCOMM CCR (2006).

[23] David Felber and Rafail Ostrovsky. 2017. A Randomized Online Quantile Sum-

mary in O ((1/ε) log(1/ε))Words. In Theory of Computing.

[24] Philippe Flajolet, Daniele Gardy, and Loÿs Thimonier. 1992. Birthday Paradox,

Coupon Collectors, Caching Algorithms and Self-organizing Search. Discrete

Applied Mathematics (1992).

[25] Alan Ford, Costin Raiciu, Mark J. Handley, and Olivier Bonaventure. 2013. TCP

Extensions for Multipath Operation with Multiple Addresses. (2013).

[26] Yilong Geng, Shiyu Liu, Zi Yin, Ashish Naik, Balaji Prabhakar, Mendel Rosen-

blum, and Amin Vahdat. 2019. SIMON: A Simple and Scalable Method for

Sensing, Inference and Measurement in Data Center Networks. In USENIX NSDI.

[27] Dimitrios Gkounis, Vasileios Kotronis, Christos Liaskos, and Xenofontas Dim-

itropoulos. 2016. On the Interplay of Link-Flooding Attacks and Traffic Engineer-

ing. ACM SIGCOMM CCR (2016).

[28] Chuanxiong Guo, Lihua Yuan, Dong Xiang, Yingnong Dang, Ray Huang, Dave

Maltz, Zhaoyi Liu, Vin Wang, Bin Pang, Hua Chen, Zhi-Wei Lin, and Varugis

Kurien. 2015. Pingmesh: A Large-Scale System for Data Center Network Latency

Measurement and Analysis. In ACM SIGCOMM.

[29] Dongsu Han, Robert Grandl, Aditya Akella, and Srinivasan Seshan. 2013. FCP: A

Flexible Transport Framework for Accommodating Diversity. ACM SIGCOMM

CCR (2013).

[30] Nikhil Handigol, Brandon Heller, Vimalkumar Jeyakumar, David Mazières, and

Nick McKeown. 2014. I Know What Your Packet Did Last Hop: Using Packet

Histories to Troubleshoot Networks. In USENIX NSDI.

[31] Brandon Heller, Srini Seetharaman, Priya Mahadevan, Yiannis Yiakoumis, Puneet

Sharma, Sujata Banerjee, and Nick McKeown. 2010. ElasticTree: Saving Energy

in Data Center Networks. In USENIX NSDI.

[32] T Ho, R Koetter, M Medard, DR Karger, and M Effros. 2003. The Benefits of

Coding over Routing in a Randomized Setting. In IEEE ISIT.

[33] IEEE. [n. d.]. Standard 802.3. https://standards.ieee.org/standard/802_3-2015.

html. ([n. d.]).

[34] Nikita Ivkin, Zhuolong Yu, Vladimir Braverman, and Xin Jin. 2019. QPipe:

Quantiles Sketch Fully in the Data Plane. In ACM CoNEXT.

[35] Svante Janson. 2018. Tail Bounds for Sums of Geometric and Exponential

Variables. Statistics & Probability Letters (2018).

[36] Vimalkumar Jeyakumar, Mohammad Alizadeh, Yilong Geng, Changhoon Kim,

and David Mazières. 2014. Millions of Little Minions: Using Packets for Low

Latency Network Programming and Visibility. In ACM SIGCOMM.

[37] Xin Jin, Xiaozhou Li, Haoyu Zhang, Robert Soulé, Jeongkeun Lee, Nate Foster,

Changhoon Kim, and Ion Stoica. 2017. NetCache: Balancing Key-Value Stores

with Fast In-Network Caching. In ACM SOSP.

[38] Raj Joshi, Ting Qu, Mun Choon Chan, Ben Leong, and Boon Thau Loo. 2018.

BurstRadar: Practical Real-Time Microburst Monitoring for Datacenter Networks.

In ACM APSys.

[39] Zohar S. Karnin, Kevin J. Lang, and Edo Liberty. 2016. Optimal Quantile Ap-

proximation in Streams. In IEEE FOCS.

[40] Dina Katabi, Mark Handley, and Charlie Rohrs. 2002. Congestion Control for

High Bandwidth-Delay Product Networks. In ACM SIGCOMM.

[41] Naga Katta, Aditi Ghag, Mukesh Hira, Isaac Keslassy, Aran Bergman, Changhoon

Kim, and Jennifer Rexford. 2017. Clove: Congestion-Aware Load Balancing at

the Virtual Edge. In ACM CoNEXT.

[42] Naga Katta, Mukesh Hira, Changhoon Kim, Anirudh Sivaraman, and Jennifer

Rexford. 2016. HULA: Scalable Load Balancing Using Programmable Data

Planes. In ACM SOSR.

[43] Anurag Khandelwal, Rachit Agarwal, and Ion Stoica. 2019. Confluo: Distributed

Monitoring and Diagnosis Stack for High-Speed Networks. In USENIX NSDI.

[44] Simon Knight, Hung X Nguyen, Nickolas Falkner, Rhys Bowden, and Matthew

Roughan. 2011. The Internet Topology Zoo. IEEE JSAC (2011).

[45] Yuliang Li, Rui Miao, Changhoon Kim, and Minlan Yu. 2016. FlowRadar: A

Better NetFlow for Data Centers. In USENIX NSDI.

[46] Yuliang Li, Rui Miao, Hongqiang Harry Liu, Yan Zhuang, Fei Feng, Lingbo Tang,

Zheng Cao, Ming Zhang, Frank Kelly, Mohammad Alizadeh, and Minlan Yu.

2019. HPCC: High Precision Congestion Control. In ACM SIGCOMM.

[47] Junda Liu, Aurojit Panda, Ankit Singla, Brighten Godfrey, Michael Schapira,

and Scott Shenker. 2013. Ensuring Connectivity via Data Plane Mechanisms. In

USENIX NSDI.

[48] Gurmeet Singh Manku, Sridhar Rajagopalan, and Bruce G. Lindsay. 1998. Ap-

proximate Medians and Other Quantiles in One Pass and with Limited Memory.

In ACM SIGMOD.

[49] Andrew Mcgregor, A. Pavan, Srikanta Tirthapura, and David P. Woodruff. 2016.

Space-Efficient Estimation of Statistics Over Sub-Sampled Streams. Algorithmica

(2016).

[50] Ahmed Metwally, Divyakant Agrawal, and Amr El Abbadi. 2005. Efficient

Computation of Frequent and Top-k Elements in Data Streams. In ICDT.

[51] Rui Miao, Hongyi Zeng, Changhoon Kim, Jeongkeun Lee, and Minlan Yu. 2017.

SilkRoad: Making Stateful Layer-4 Load Balancing Fast and Cheap Using Switch-

ing ASICs. In ACM SIGCOMM.

[52] Mininet. [n. d.]. Mininet: An Instant Virtual Network on your Laptop. http:

//mininet.org/. ([n. d.]).

[53] Radhika Mittal, Vinh The Lam, Nandita Dukkipati, Emily Blem, Hassan Wassel,

Monia Ghobadi, Amin Vahdat, Yaogong Wang, David Wetherall, and David Zats.

2015. TIMELY: RTT-Based Congestion Control for the Datacenter. In ACM

SIGCOMM.

[54] Radhika Mittal, Alexander Shpiner, Aurojit Panda, Eitan Zahavi, Arvind Krishna-

murthy, Sylvia Ratnasamy, and Scott Shenker. 2018. Revisiting Network Support

for RDMA. In ACM SIGCOMM.

[55] Robert Morris. 1978. Counting Large Numbers of Events in Small Registers. In

Communications of ACM. ACM.

[56] Srinivas Narayana, Mina Tashmasbi Arashloo, Jennifer Rexford, and David Walker.

2016. Compiling Path Queries. In USENIX NSDI.

[57] Srinivas Narayana, Anirudh Sivaraman, Vikram Nathan, Prateesh Goyal, Venkat

Arun, Mohammad Alizadeh, Vimalkumar Jeyakumar, and Changhoon Kim. 2017.

Language-Directed Hardware Design for Network Performance Monitoring. In

ACM SIGCOMM.

[58] Netronome. [n. d.]. Netronome Agilio CX SmartNIC. https://www.netronome.

com/blog/in-band-network-telemetry-its-not-rocket-science/. ([n. d.]).

[59] Donald J Newman. 1960. The Double Dixie Cup Problem. The American

Mathematical Monthly (1960).

13

https://github.com/ProbabilisticINT
https://github.com/ProbabilisticINT
https://barefootnetworks.com/products/brief-deep-insight/
https://barefootnetworks.com/products/brief-deep-insight/
https://www.barefootnetworks.com/static/app/pdf/DI-UG42-003ea-ProdBrief.pdf
https://www.barefootnetworks.com/static/app/pdf/DI-UG42-003ea-ProdBrief.pdf
https://www.broadcom.com/products/ethernet-connectivity/switching/strataxgs/bcm56870-series
https://www.broadcom.com/products/ethernet-connectivity/switching/strataxgs/bcm56870-series
https://www.sdxcentral.com/articles/news/att-runs-open-source-white-box-switch-live-network/2017/04/
https://www.sdxcentral.com/articles/news/att-runs-open-source-white-box-switch-live-network/2017/04/
https://standards.ieee.org/standard/802_3-2015.html
https://standards.ieee.org/standard/802_3-2015.html
http://mininet.org/
http://mininet.org/
https://www.netronome.com/blog/in-band-network-telemetry-its-not-rocket-science/
https://www.netronome.com/blog/in-band-network-telemetry-its-not-rocket-science/

[60] Remi Oudin, Gianni Antichi, Charalampos Rotsos, Andrew W. Moore, and Steve

Uhlig. 2019. OFLOPS-SUME and the art of switch characterization. IEEE JSAC

(2019).

[61] Diana Popescu, Noa Zilberman, and Andrew W. Moore. 2017. Characterizing the

Impact of Network Latency on Cloud-based ApplicationsâĂŹ Performance. In

Technical Report, Number 914, UCAM-CL-TR-914. University of Cambridge.

[62] Arjun Roy, Hongyi Zeng, Jasmeet Bagga, George Porter, and Alex C. Snoeren.

2015. Inside the Social Network’s (Datacenter) Network. In ACM SIGCOMM.

[63] Pegah Sattari. 2007. Revisiting IP Traceback as a Coupon CollectorâĂŹs Problem.

In PhD Dissertation. University of California, Irvine.

[64] Pegah Sattari, Minas Gjoka, and Athina Markopoulou. 2010. A network coding

approach to IP traceback. In IEEE Symposium on Network Coding (NetCod).

[65] Stefan Savage, David Wetherall, Anna Karlin, and Tom Anderson. 2000. Practical

Network Support for IP Traceback. In ACM SIGCOMM.

[66] Robert Schweller, Ashish Gupta, Elliot Parsons, and Yan Chen. 2004. Reversible

Sketches for Efficient and Accurate Change Detection over Network Data Streams.

In ACM IMC.

[67] Naveen Kr. Sharma, Antoine Kaufmann, Thomas Anderson, Arvind Krishna-

murthy, Jacob Nelson, and Simon Peter. 2017. Evaluating the Power of Flexible

Packet Processing for Network Resource Allocation. In USENIX NSDI.

[68] Anirudh Sivaraman, Changhoon Kim, Ramkumar Krishnamoorthy, Advait Dixit,

and Mihai Budiu. 2015. DC.P4: Programming the Forwarding Plane of a Data-

center Switch. In ACM SOSR.

[69] Alex C. Snoeren, Craig Partridge, Luis A. Sanchez, Christine E. Jones, Fabrice

Tchakountio, Stephen T. Kent, and W. Timothy Strayer. 2001. Hash-based IP

Traceback. In ACM SIGCOMM.

[70] Dawn Xiaodong Song and Adrian Perrig. 2001. Advanced and Authenticated

Marking Schemes for IP Traceback. In IEEE INFOCOM.

[71] Philip Taffet and John Mellor-Crummey. 2019. Understanding Congestion in High

Performance Interconnection Networks Using Sampling. In ACM SC.

[72] Praveen Tammana, Rachit Agarwal, and Myungjin Lee. 2016. Simplifying Data-

center Network Debugging with Pathdump. In USENIX OSDI.

[73] Praveen Tammana, Rachit Agarwal, and Mjungjin Lee. 2018. Distributed Network

Monitoring and Debugging with SwitchPointer. In USENIX NSDI.

[74] Cheng Tan, Ze Jin, Chuanxiong Guo, Tianrong Zhang, Haitao Wu, Karl Deng,

Dongming Bi, and Dong Xiang. 2019. Netbouncer: Active Device and Link

Failure Localization in Data Center Networks. In USENIX NSDI.

[75] The P4.org Applications Working Group. [n. d.]. In-band Network Telemetry

(INT) Dataplane Specification. https://github.com/p4lang/p4-applications/blob/

master/docs/telemetry_report.pdf. ([n. d.]).

[76] The University of Washington NS-3 Consortium. [n. d.]. NS3 official website.

https://www.nsnam.org/. ([n. d.]).

[77] Wolfgang Theilmann and Kurt Rothermel. 2000. Dynamic distance maps of the

Internet. In IEEE INFOCOM.

[78] Olivier Tilmans, Tobias Bühler, Ingmar Poese, Stefano Vissicchio, and Laurent

Vanbever. 2018. Stroboscope: Declarative Network Monitoring on a Budget. In

USENIX NSDI.

[79] Muhammad Tirmazi Tirmazi, Ran Ben Basat, Jiaqi Gao, and Minlan Yu. 2020.

Cheetah: Accelerating Database Queries with Switch Pruning. In ACM SIGMOD.

[80] P Van Mieghem, Gerard Hooghiemstra, and Remco Hofstad. 2001. A scaling law

for the hopcount in Internet. In PAM.

[81] Vladimir N Vapnik and A Ya Chervonenkis. 2015. On the Uniform Convergence

of Relative Frequencies of Events to their Probabilities. Measures of Complexity

(2015).

[82] Jeffrey S Vitter. 1985. Random Sampling with a Reservoir. Transactions on

Mathematical Software (1985).

[83] Xilinx. [n. d.]. 10G/25G Ethernet Subsystem. https://www.xilinx.com/products/

intellectual-property/ef-di-25gemac.html. ([n. d.]).

[84] Xilinx. [n. d.]. UltraScale Integrated 100G Ethernet Subsystem. https://www.

xilinx.com/products/intellectual-property/cmac.html. ([n. d.]).

[85] Xilinx. [n. d.]. Xilinx to Showcase Unprecedented Programmability and Visibility.

https://www.xilinx.com/news/press/2018/barefoot-networks-and-xilinx.html. ([n.

d.]).

[86] Minlan Yu, Lavanya Jose, and Rui Miao. 2013. Software Defined Traffic Mea-

surement with OpenSketch. In USENIX NSDI.

[87] Yibo Zhu, Nanxi Kang, Jiaxin Cao, Albert Greenberg, Guohan Lu, Ratul Mahajan,

Dave Maltz, Lihua Yuan, Ming Zhang, Ben Y. Zhao, and Haitao Zheng. 2015.

Packet-Level Telemetry in Large Datacenter Networks. In ACM SIGCOMM.

14

https://github.com/p4lang/p4-applications/blob/master/docs/telemetry_report.pdf
https://github.com/p4lang/p4-applications/blob/master/docs/telemetry_report.pdf
https://www.nsnam.org/
https://www.xilinx.com/products/intellectual-property/ef-di-25gemac.html
https://www.xilinx.com/products/intellectual-property/ef-di-25gemac.html
https://www.xilinx.com/products/intellectual-property/cmac.html
https://www.xilinx.com/products/intellectual-property/cmac.html
https://www.xilinx.com/news/press/2018/barefoot-networks-and-xilinx.html

A ANALYSIS

A.1 Dynamic per-flow Aggregation

We now survey known results that Theorem 1 and Theorem 2 are

based on.

Quantiles. Classical streaming results show that by analyzing a

uniformly selected subset of O(ε−2s log ε−1s) elements, one can esti-

mate all possible quantiles [48, 81] to within an additive error of εs .

It is also known that if one is interested in a specific quantile (e.g.,

median), a subset size of O(ε−2s) is enough.

In our case, for each switch si through which flow x is routed,

we get a sampled substream of Si,x where each packet carries a

value from it with probability 1/k. This is not a fixed-size subset,

but a Bernouli sample. Nevertheless, Felber and Ostrovsky show

that a Bernouli sample with the same expected size is enough [23].

Therefore, for a specific quantile (e.g., median) we need to getO(ε−2s)
samples for each of the k switches on the path. Using a standard

Chernoff bound argument, we have that if z = O(kε−2s) packets reach

the PINT sink, all hops on the path will get at least O(ε−2s) samples

with probability 1 − e−Ω(z/k) = 1 − e−Ω(ε−2s).
To compress the amount of per-flow storage needed for computing

the quantiles, we can use a Õ(ε−1a) space sketch such as KLL [39].

We run separate sketch for each of the k hops, thus needing Õ(kε−1a)
per-flow storage in total. The resulting error would be ε = εs + εa ,

as the sampling adds an additive error of εs and the sketching an

additive error of εa .

Frequent Values. Using a standard Chernoff bound argument, one

can use a O(ε−2s)-sized substream of Si,x , one can estimate the frac-

tion in which each specific value appears, up to an additive error of

εs . We can then use a heavy hitters algorithm like Space Saving [50]

to estimate the frequency of values in the sampled substream to

within an additive error of εa , using O(ε−1a) space. As before, to get

the correct estimations for all hops, we need a factor k multiplicative

overhead to both the number of packets and space.

A.2 Static per-flow Aggregation

Before we can analyze the algorithm (§A.2.2), we start with some

auxiliary results.

A.2.1 Auxiliary Results. The first lemma gives a bound on

how many independent coins with probability p we need to flip until

we get k successes.

LEMMA 4. Let k ∈ N and p,δ ∈ (0, 1).
Denote N = k+2 ln δ−1+

√
2k ln δ−1

p and let X ∼ Bin(N ,p). Then

Pr[X ≤ k] ≤ δ .

PROOF. Using the Chernoff bound we have that for any γ > 0:

Pr[X < E[X](1 − γ)] ≤ e−γ
2
E[X]/2

.

We set γ =
√

2 ln δ−1
Np , which means that γ 2E[X]/2 = lnδ and there-

fore Pr[X < E[X](1 − γ)] ≤ δ .

Finally,

E[X](1 − γ) = Np(1 − γ) = Np −
√
2Np lnδ−1.

Denote x =
√
Np, then we want to show that

x2 − x
√
2 lnδ−1 − k ≥ 0,

which holds for

x >

√
2 lnδ−1 +

√
2 lnδ−1 + 4k
2

=

√
lnδ−1 +

√
lnδ−1 + 2k
√
2

.

This gives

N = x2/p ≥

(√
lnδ−1 +

√
lnδ−1 + 2k

)2
2p

=

k + 2 lnδ−1 +
√
2k lnδ−1

p
.

□

The next theorem provide a high-probability bound on the Double

Dixie Cup problem [59]. Specifically, consider trying to collect at

least Z copies from each of k coupons, where at each stage you get

a random coupon. The following bounds the number of samples you

need.

THEOREM 5. After seeing

N = k ·
(
Z − 1 + ln(k/δ) +

√
(Z − 1 + ln(k/δ))2 − (Z − 1)2/4

)
samples, our algorithm has at least Z copies of each of the k

coupons.

PROOF. Therefore, the number of copies of the i’th coupon isa

binomial random variable we denote by Yi ∼ Bin(N , 1/k). Our goal

is to show that getting Yi < Z is unlikely; to that end, we use

the Chernoff inequality that states that Pr[Yi ≤ E[Yi](1 − γ)] ≤
e−E[Yi]γ

2/2 for any γ ∈ (0, 1]. We set γ = 1 − k(Z − 1)/N to get

Pr[Yi < Z] = Pr[Yi ≤ Z − 1] = Pr[Yi ≤ E[Yi](1 − γ)]

≤ e−E[Yi]γ
2/2
= e−N /2k ·(1−k (Z−1)/N)

2

= e−(N /2k−(Z−1)+k (Z−1)
2/2N)

= e−(x−(Z−1)+(Z−1)
2/4x)
,

where x = N /(2k). We want Pr[Xi < Z] ≤ δ/k , which according to

the above follows from

x − (Z − 1) + (Z − 1)2/4x ≥ lnk/δ ⇐⇒

x ≥ 0.5 ·
(
Z − 1 + ln(k/δ) +

√
(Z − 1 + ln(k/δ))2 − (Z − 1)2/4

)
.

The last inequality follows directly from our choice of N . Finally,

we use the union bound to get that after N samples all coupons get

at least Z copies except with probability k · Pr[Yi < Z] ≤ δ . □

We proceed with a tail bound on the Partial Coupon Collector

problem, in which we wish to get N out of r possible coupons, where

at each timestamp we get a random coupon. Our proofs relies on the

following result for a sharp bound on the sum of geometric random

variables:

THEOREM 6. ([35]) Let {A1, . . .AN } be independent geometric

random variables such that Ai ∼ Geo(pi) and p1 ≥ . . . ≥ pN . Then

the sum A =
∑N
i=1Ai satisfies:

Pr [A > E[A] · λ] ≤ e−pN E[A](λ−1−ln λ).

Additionally, we will use the following fact.

15

FACT 7. For any positive real number ε ∈ R+,

1 + ε +
√
2ε − ln(1 + ε +

√
2ε) ≥ 1 + ε .

We now prove our result.

THEOREM 8. Let E[A] = r (Hr − Hr−N) denote the expected

number of samples required for seeing N distinct coupons. With

probability 1 − δ , the number of samples required for seeing at least

N distinct coupons is at most

E[A] + r lnδ−1

(r − N) +

√
2rE[A] lnδ−1
(r − N) .

PROOF. We wish to use Theorem 6; notice that we need λ−ln λ ≥
1 + ln δ−1

pN E[A] which implies

e−pN E[A](λ−1−ln λ) ≤ δ .

According to Fact 7, for ε = ln δ−1
pN E[A] , it is enough to set

λ = 1 +
lnδ−1

pN E[A]
+

√
2 lnδ−1

pN E[A]
.

Plugging in pN = (1 − (N − 1)/r) > (r − N)/r we have that the

required number of required packets is at most

λ · E[A] = ©­«
E[A] + lnδ−1

pN
+

√
2E[A] lnδ−1

pN

ª®¬
≤ ©­«
E[A] + r lnδ−1

(r − N) +

√
2rE[A] lnδ−1
(r − N)

ª®¬
.

For example, if r = 2N , we have E[A] ≈ 1.39N and the number of

packets is

(
E[A] + 2 lnδ−1 +

√
4E[A] lnδ−1

)
≈
(
1.39N + 2 lnδ−1 + 2.35

√
N lnδ−1

)
. □

Next, we show a bound on the number of samples needed to

collect K(1 −ψ) in a Coupon Collector process [24] on K coupons.

LEMMA 9. LetK ∈ N+ andψ ∈ (0, 1/2]. The number of samples

required for collecting all butψK coupons is at most

K lnψ−1 +ψ−1 lnδ−1 +
√
2Kψ−1 lnψ−1 lnδ−1

= O(K lnψ−1 +ψ−1 lnδ−1).

PROOF. For i = 1, . . . ,K(1 − ψ), let Ai ∼ Geo(1 − (i − 1)/K)
denote the number of samples we need for getting the i’th distinct

coupon, and let A =
∑K (1−ψ)
i=1 Ai . We have that

E[A] =
K(1−ψ)∑
i=1

K
K − (i − 1) = K

(
HK − HKψ

)
= K lnψ−1.

According to Theorem 8, it is enough to obtain the following

number of samples

E[A] + K lnδ−1

K(1 − (1 −ψ)) +

√
2KE[A] lnδ−1
K(1 − (1 −ψ))

= K lnψ−1 +ψ−1 lnδ−1 +
√
2Kψ−1 lnψ−1 lnδ−1.

Finally, we note that
√
Kψ−1 lnψ−1 lnδ−1 is the geometric mean of

K lnψ−1 andψ−1 lnδ−1 and thus:

K lnψ−1 +ψ−1 lnδ−1 +
√
2Kψ−1 lnψ−1 lnδ−1

≤
(
K lnψ−1 +ψ−1 lnδ−1

)
(1 + 1/

√
2)

= O
(
K lnψ−1 +ψ−1 lnδ−1

)
.

□

A.2.2 Analysis of the algorithm. We denote by d ≜ d
log∗ d the

number of hops we aim to decode using the XOR layers. Our algo-

rithm has ⌈log∗ d⌉+1 layers, where layer 0 runs the Baseline scheme

and the remaining L ≜ ⌈log∗ d⌉ layers use XOR. We denote by ↑↑
Knuth’s iterated exponentiation arrow notation, i.e., x ↑↑ 0 = 1 and

x ↑↑y = xx
x ·
··
x }

y-times.

The sampling probability in layer ℓ is then set to

pℓ =
e ↑↑ (ℓ − 1)

d
.

Each packet it hashed to choose a layer, such that layer 0 is chosen

with probability τ =
(
1 − 1

1+log log∗ d

)
= 1 − o(1) and otherwise one

of layers 1, . . . ,L is chosen uniformly. The pseudo code for the final

solution is given in Algorithm 1.

Algorithm 1 PINT Processing Procedure at Switch s

Input: A packet pj with b-bits digest pj .dig.

Output: Updated digest pj .dig.

Initialization:

τ =
log log∗ d

1+log log∗ d , ∀ℓ ∈ {1, . . . ,L} : pℓ = e↑↑(ℓ−1)
d

.

Let i such that the current switch is the i ′th so far

1: H←H(pj) ▷ Distributed uniformly on [0, 1]
2: if H < τ then ▷ Update layer 0

3: if д(pj , i) < 1/i then

4: pj .dig← h(s,pj) ▷ Sample with probability 1/i
5: else

6: ℓ ←
⌈
L · H−τ1−τ

⌉
▷ Choose the layer

7: if д(pj , i) < pℓ then

8: pj .dig← pj .dig ⊕ h(s,pj) ▷ Xor w.p. pℓ

For simplicity, we hereafter assume in the analysis that a packet

can encode an entire identifier. This assumption is not required in

practice and only serves for the purpose of the analysis. We note

that even under this assumption the existing approaches require

O(k logk) packets. In contrast, we show that except with probability

16

δ = e−O (k
0.99) the number of packets required for decoding a k-hops

path in our algorithm is just

X = k log log∗ k · (1 + o(1)).11

Note that log log∗ k is a function that grows extremely slowly, e.g.,

log log∗ P < 2 where P is the number of atoms in the universe.

Our assumption on the error probability δ allows us to simplify the

expressions and analysis but we can also show an

O
(
k log log∗ k + log∗ k logδ−1

)
bound on the required number of packets thus the dependency on δ

is minor.

For our proof, we define the quantities

Q ≜ k1 + ln

(
4 log∗ k1

δ

)
+

√
2k1 ln

(
4 log∗ k1

δ

)

= O

(
k

log∗ k
+ logδ−1

)
= O

(
k

log∗ k

)

and

S ≜

Q + 2 ln
(
4L
δ

)
+

√
2Q ln

(
4L
δ

)
c · e−c

= O

(
k

log∗ k
+ logδ−1

)
= O

(
k

log∗ k

)
.

Note that Q and S are not known to our algorithm (which is only

aware of d) and they are used strictly for the analysis. Our proof

follows the next roadmap:

(1) When a flow has at least X ≜ k log log∗ k · (1 + o(1)) packets,

Baseline (layer 0) gets at least X · (1 − o(1)) = k log log∗ k ·
(1 + o(1)) digests and XOR (layers 1 and above) gets at least

Ω(X/log log∗ k) = Ω (k) digests with probability 1 − δ/6.

(2) When Baseline (layer 0) gets at least X · (1 − o(1)) digests, it

decodes all hops but k1 ≜
k

log∗ k with probability 1 − δ/6.

(3) When at least Ω (k) packets reach XOR (layers 1 and above),

with probability 1 − δ/6 each layer gets at least S digests.

(4) When a layer ℓ ∈ {1, . . . ,L} gets S digests, with probability

1 − δ/6L, at least Q of the digests contain exactly one of the

kℓ undecoded switches.

(5) When a layer ℓ ∈ {1, . . . ,L − 1} gets Q of digests that con-

tain exactly one of the kℓ ≜ k1/(e ↑↑ (ℓ − 1)) undecoded

switches, it decodes all hops but at most kℓ+1 with probability

1 − δ/6L.

(6) When the last layer L gets Q of digests that contain exactly

one of the kℓ undecoded switches, it decoded all the remain-

ing hops with probability 1 − δ/6L.

We then use the union bound over all bad events to conclude that

the algorithm succeeds with probability at least 1 − δ .

11The o(1) part hides an additive O (k) term, which we upper bound as k
c ·e−c up to

lower order terms. Specifically, if d = k (thus, c = 1), the required number of packets

is at most k log log∗ k + e · k + o(k).

A.2.3 Proof of Part (1). The first step is to observe that by a

straightforward application of the Chernoff bound, since layer 0 is

chosen with probability 1/2, the number of packets that it receives

is with probability 1 − δ/6:

X0 = τ · X ±O
(√

τ · X · logδ−1
)
.

Since X = ω(logδ−1), we have that

X0 ≥ X(τ − o(1)) = k log log∗ k · (1 + o(1)).

A.2.4 Proof of Part (2). Applying Lemma 9 for ψ = 1
log∗ k ,

we get that after

k ln log∗ k + log∗ k lnδ−1 +
√
2k log∗ k ln log∗ k lnδ−1

= k log log∗ k · (1 + o(1))
packets from layer 0 the number of hops that are not decoded is at

most k1 ≜ k ·ψ = k
log∗ k with probability 1 − δ/6. That is, we use

k1 to denote the number of undecoded hops that are left for layers 1

and above.

A.2.5 Proof of Part (3). When at least Ω(k) reach XOR, the

number of digests that the levels get is a balls and bins processes

with the levels being the bins. According to Theorem 5:

After seeing

L ·
(
S − 1 + ln(6L/δ) +

√
(S − 1 + ln(6L/δ))2 − (S − 1)2/4

)
= O (L · (S + log(L/δ)))

= O

(
log∗ k ·

(
k

log∗ k
+ logδ−1 + log(δ−1 log∗ k)

))
= O (k)

packets, with probability 1−δ/6 our algorithm has at least Q samples

in each layer.

A.2.6 Proof of Part (4). Follows from Lemma 4 for p = c ·e−c ,

k = Q and δ ′ = δ
6L .

A.2.7 Proof of Part (5). Follows from Lemma 9 with K = kℓ
andψ =

kℓ+1
kℓ

.

A.2.8 Proof of Part (6). The last layer is samples needs to

decode

kL ≤
k1

e ↑↑ (L − 1) =
k1

log d
= O

(
k1

logk1

)
and samples with probability

pL =
e ↑↑ (L − 1)

d
=

log d

d
= Θ

(
logk1

k1

)
.

Therefore, with a constant probability, a digest would be xor-ed by

exactly one of the kL undecoded hops, and the number of such pack-

ets needed to decode the remainder of the path is O
(
kL logkL

)
=

O(k1).

A.3 Revised Algorithm to Improve the Lower

Order Term’s Constant

Consider changing the algorithm to sample layer 0 with probability

τ ′ ≜
1 + log log∗ d
2 + log log∗ d

= 1 − 1

2 + log log∗ d
.

17

Then when getting X′ = k ·
(
log log∗ k + 1 + 1

ce1−c + o(1)
)
, we

will have

k · (log log∗ k + 1 + o(1))

packets that reach layer 0, which would leave only

k ′1 ≜
k

e · log∗ k

undecoded hops to layers 1 and above. As above, the number of

packets required for the upper layers to decode the missing hops is

k ′1 log
∗ k ′1

ce−c
≤ k

ce1−c
.

Since ce−c ≤ 1/e for any c > 0, we get that this is a strict improve-

ment in the number of packets that are required for the path decoding.

For example, if d = k (i.e., c = 1), we reduce the required number

of packets from k(log log∗ k + e + o(1)) to k(log log∗ k + 2 + o(1)).

A.4 An Extension – Detecting Routing Loops

Real-time detection of routing loops is challenging, as switches need

to recognize looping packets without storing them. Interestingly, we

can leverage PINT to detect loops on the fly. To do so, we check

whether the current switch’s hash matches the one on the packet.

Specifically, before choosing whether to sample or not, the switch

checks whether pj .dig = h(s,pj). If there is a loop and s was the last

switch to write the digest, it will be detected. Unfortunately, such an

approach may result in a significant number of false positives. For

example, if we use b = 16-bit hashes, the chance of reporting a false

loop over a path of length 32 would be roughly 0.05%, which means

several false positives per second on a reasonable network.

To mitigate false positives, we propose requiring multiple matches,

corresponding to multiple passes through the loop. We use an addi-

tional counter c to track the number of times a switch hash matched

the digest. When c = 0, the switches follow the same sampling

protocol as before. However, if c > 0 then the digest is no longer

changed, and if c exceeds a value of T then we report a loop. This

changes the loop detection time, but the switch that first incremented

c may report the loop after at most T cycles over the loop. This ap-

proach adds
⌈
log2 (T + 1)

⌉
bits of overhead, but drastically reduces

the probability of false positives. For example, if T = 1 and b = 15,

we still have an overhead of sixteen bits per packet, but the chance of

reporting false loops decreases to less than 5 · 10−7. If we use T = 3

and b = 14, the false reporting rate further decreases to 5 · 10−13,

which allows the system to operate without false alarms in practice.

Algorithm 2 PINT Processing at s with Loop Detection

Input: A packet pj with b-bits digest pj .dig and a counter pj .c.

Output: Updated digest pj .dig or LOOP message.

1: if pj .dig = h(s,pj) then

2: if pj .c = T then return LOOP

3: pj .c ← pj .c + 1

Let i such that the current switch is the i ′th so far

4: if pj .c = 0 and д(pj , i) < 1/i then

5: pj .dig← h(s,pj) ▷ Sample with probability 1/i

B COMPTING HPCC’S UTILIZATION

We first calculate the logarithm:

U _term = log(T − τ
T
·U) = log(T − τ) − logT + logU

qlen_term = log(qlen · τ
B ·T 2

) = log qlen + logτ − logB − 2 logT

byte_term = log(byte
B ·T) = log byte − logB − logT

Then calculate U using exponentiation:

U = 2U _term
+ 2qlen_term

+ 2byte_term

C ARITHMETIC OPERATIONS IN THE DATA

PLANE

Some of our algorithms require operations like multiplication and

division that may not be natively supported on the data plane of

current programmable switches. Nonetheless, we now discuss how

to approximate these operations through fixed-point representations,

logarithms, and exponentiation. We note that similar techniques have

appeared, for example, in [67], [79] and [20].

Fixed-point representation: Modern switches may not directly

support representation of fractional values. Instead, when requiring a

real-valued variable in the range [0,R], we can usem bits to represent

it so that the integer representation r ∈ {0, 1, . . . , 2m − 1} stands for

R · r · 2−m . R is called scaling factor and is often a power of two for

simplicity. For example, if our range is [0, 2], and we use m = 16

bits, then the encoding value 39131 represents 2 · 39131 · 2−16 ≈ 1.19.

Conveniently, this representation immediately allows using inte-

ger operations (e.g., addition or multiplication) to manipulate the

variables. For example, if x and y are variables with scale factor R

that are represented using r (x), r (y), then their sum is represented

using r (x)+r (y) (assuming no overflow, this keeps the scaling factor

intact) and their product is r (x) · r (y) with a scaling factor of R2. As

a result, we hereafter consider operating on integer values.

Computing logarithms and exponentiating: Consider needing

to approximate log2(x) for some integer x (and storing the result

using a fixed-point representation). If the domain of x is small (e.g.,

it is an 8-bit value), we can immediately get the value using a lookup

table. Conversely, say that x is an m-bit value for a large m (e.g.,

m = 64). In this case, we can use the switch’s TCAM to find the most

significant set bit in x , denoted ℓ. That is, we have that x = 2ℓ · α for

some α ∈ [1, 2). Next, consider the next q bits of x , denoted by xq ,

where q is such that it is feasible to store a 2q -sized lookup table on

the switch (e.g., q = 8). 12 Then we have that x = xq · 2ℓ−q (1 + ε)
for a small relative error ε < 2−q . Therefore, we write

log2(x) = log2(xq · 2ℓ−q (1 + ε)) = (ℓ − q) + log2(xq) + log2(1 + ε).

Applying the lookup table to xq , we can compute ỹ ≜ (ℓ − q) +
log2(xq) on the data plane and get that ỹ ∈ [log2 x − log2(1 +
ε), log2 x].13 We can further simplify the error expression as log2(1+

12If q < ℓ we can simply look up the exact value as before.
13In addition to the potential error that arises from the lookup table.

18

ε) ≤ ε/ln 2 ≈ 1.44 · 2−q . We also note that computing logarithms

with other bases can be done similarly as logy x = log2 x/log2 y.

For exponentiation, we can use a similar trick. Assume that we

wish to compute 2x for some real-valued x that has a fixed-point

representation r . Consider using a lookup table of 2q entries for a

suitable value of q, and using the TCAM to find the most significant

set bit in r . Then we can compute 2x up to a multiplicative factor of

2xε for some ε ≤ 2−q . Assuming that x is bounded by R ≤ 2q , this

further simplifies to 2xε ≤ 2x2
−q ≤ 1+R ·2−q . For example, if x is in

the range [0, 2] and we are using q = 8 then logarithms are computed

to within a (1 + 2−7)-multiplicative factor (less than 1% error).

Multiplying and dividing: We overcome the lack of support for

arithmetic operations such as multiplication and division using ap-

proximations, via logarithms and exponentiation. Intuitively, we have

that x · y = 2log2 x+log2 y and x/y = 2log2 x−log2 y . We have already

discussed how to approximate logarithms and exponentiation, while

addition and subtraction are currently supported. We note that the er-

rors of the different approximations compound and thus it is crucial

to maintain sufficient accuracy at each step to produce a meaningful

approximation for the multiplication and division operations.

An alternative approach is to directly use a lookup table that takes

the q/2 most significant bits, starting with the first set bit, of x and

y and return their product/quotient (as before, this would require

a 2q -sized table). However, going through logarithms may give a

more accurate result as the same lookup table can be used for both

x and y, and its keys are a single value, which allows considering q

bits for the same memory usage.

19

	Abstract
	1 Introduction
	2 INT and its Packet Overhead
	3 The PINT Framework
	3.1 Aggregation Operations
	3.2 Use Cases
	3.3 Query Language
	3.4 Query Engine
	3.5 Challenges

	4 Aggregation Techniques
	4.1 Implicit Coordination via Global Hash Functions
	4.2 Distributed Coding Schemes
	4.3 Approximating Numeric Values

	5 Implementation
	6 Evaluation
	6.1 Congestion Control
	6.2 Latency Measurements
	6.3 Path Tracing
	6.4 Combined Experiment

	7 Limitations
	8 Related Work
	9 Conclusion
	References
	A Analysis
	A.1 Dynamic per-flow Aggregation
	A.2 Static per-flow Aggregation
	A.3 Revised Algorithm to Improve the Lower Order Term's Constant
	A.4 An Extension – Detecting Routing Loops

	B Compting HPCC's Utilization
	C Arithmetic Operations in the Data Plane

