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PION INTERFEROMETRY OF NUCLEAR COLLISIONS I: THEORY
M. Gyulé#sy, S. K.:Kauffmann, Lance W. Wilson_
| | Nuclear Sciencé Division |
Lawrence Berkeley Laboratory
Berkeley, California 94720.
ABSTRACT - | |
* The topic of pion interferometrf‘(identical pion éorrelationé) is
analyzed in detail in the context of relativistic nuclear collisionms.
Through an exactly solQable field fheofetic model specified by an

ensemble of classical pion source cufrents, Ji(x), we calculate the

T W correlation function, R(El,iz), for chaotic, coherent, and partially

‘coherent pion fields. We analyze how R can be used to determine the

degree of coherence of the produéed pion field as well as the geometric
structure of the source of the chaotic field component; With this model

we are able to distinguish between those correlations due to Bose-Einstein

'symmetrization (the Hénbury Brown and Twiss or Goldhaber effect) and

those due to specific multipérticlé production dynamics. In particular
we show that Bose-Einsteiﬁ_symﬁetrization dominates the form of R(El;ﬁz)
only for chaotic pidn fields produced over a time scale large compared
to m%l.‘ If, due to  collective phenomena, there is some coherence
of the pion field, then thg intercept,_R(E,i) -2- Dz(ii, is shown to

measure mode by mode that degree of coherence D(k). Geometric

information'about the soﬁrce of the chaotic field component may be

 extracted from R(E;;ﬂz) only after D(E) has been determined. Expressions

are also derived that incorporate distortions of R due to one-body and
two-body - final state interactions. These expressiohs will be numerically

evaluated in a subsequent paper. Relative T 7 interactions lead to a
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penetration factor, G(ﬁ;,iz),-that modulates the form of R(§1,§2). An
expression for G is obtained to all orders in the one-body optical
potential but first order in the two-body potential. This penetrétion

factor must be evaluated before data for R can be used to determine D(K).

Key words: NUCLEAR REACTIONS Relativistic nuclear collisions, multipion
inclusive cross sections, T T~ correlations, Hanbury—Brown Twiss effect,
partially coherent fields, final state interactions.

PAC: 25.70-z, 24.11.-i, 11.80.~-m, 11.10.St, 07.60. Ly
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I. INTRODUCTION AND SUMMARY

Pion interferoﬁetry invblves the study of the correlations between
two identical pions (e.g., m 7 ) produced in hadronic processes. An
obvious measure of éuch correlations can be obtained by comparing the
double pion inclusive cross sectién, déo(j-ﬂ-)/dskldakﬁ, to the product
of single pion inclusive cross sections, dac(w—)/dak. . The precise
definition of the correlation function ‘R(El,iz) for negative pions
that we consider in this paper is -
<nﬂ_>2 i o - d%(r 1 )/d’k,d’k,

R(K,.K,) = @)
Y - 1)) (dlony/d’k ) (dPo(n) /%)

where O is the total negative pion production cross section, and (nﬁ_)

and (nﬂ;(nﬂ; - 1)) are the average first and second binomial moments of

the muliiplicity distribution. The ratio of multipiicity moments
in Eq. (1.1) is introduced since the siﬁgle and double pion inclusive

cross sections are normalized as
d’k, d%k dsotn' ")/’ d%, = (n_(n__ - 1)) (1.2)
R Rt Rl ™) e Op-
and
| deak, o )/d’%, = (n Vo . (1.3)
The definition of R via Eq. (1.1) insures that R =1 if the negative

pions are uncorrelated in momentum space [i.e., dso(ﬂ-n-)/dakldak2 o«

f(il)f(iz)] regardless of whether the m multiplicity distribution is

- Poisson or not. The correlation function for positively charged pion

pairs is defined similarly to Eq. (1.1);
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The term 'pion inferferometry" is used to emphasize thé'analogy that
the study of pion correlations via Eq. (1.1) ﬁas to the well known
technique of second order intensity interferometry1 developed by Hanbury-
Brown and Twiss to measure stellar radii. In quantum scattering fheory
the application of intensity‘interferometr} to deduce structural S
properties of the target was formalized by Goldberger, Lewis and WatSon.2
Later, the idea of using intenéify interferometry with pions to deduce-—— ———
the'Space—time structure of -high energy hadronic processes was deveioped
by Kopylov and Podgoretsky;s Shuryak,4 and Co‘cconi.5
Experimentally, pion interferometry was.first used by Goldhaber,
Goldhaber, Lee and Pais® (GGLP) to determine the dimensions of the pion
production region in pp annihilation. They suggested that intensity
interféfometry is a consequence of the Bose-Einstein symmetrization
required for two identical pions. In fact, the enhancemeht of_R(il,Ez)
in Eq. (1.1) above 1 for small relative momenta has sometimes been
referred to as the GGLP effect. Pion interfe;ometry has also been applied

to other processes such as mp, pp, Kp collisions%11

to determine the.
space-time dimensions of the pion source. The most recent and extensive
experimental analysis of pion Eorrelation data based on pion interferometry
is given in Ref. 12. | |

The most exciting recent theoretical development has been the

observationls_15

that not only can the study of pion correlations reveal
the space-time structure of the pion production region, but also R(k1’kz) ‘ r
can provide information on the degree of coherence of the produced pion

field. Thus R(il,iz) could ideally provide both geometrical and

dynamical information on pion production in a given reaction.
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It is therefore natural that these ideas on pion interferometry have

also found their way16’17

into the field of relativistic (~1 GeV/nucleon)
nﬁ#lear collisions. Since many of the models for nuclear collisions18
involve classical geometrical concepts (e.g., classical trajectories,
impact parameters), thé determination of the space-time structure of

the pion source region could in principle provide valuable constraints

on these models. For example,vthe dimensions‘énd lifetime of the pion-
production region as calculated with either intranu;lear cascade or
hydrodynamic models could then be éompared to data. However, in addition

17

to such geometrical information, ' the pion correlation function R(El,iz)

could ideally shed light on possible exotic processes that may also be
involved in ﬁuclear collisions.16

We note that the first data on pion intérferometry in nuclear
collisions (40Ar + Pb0, > T+ X at 1.8 GeV/nucleoﬁ) are now availablel®
and clearly demonstrate the feasibility of such studies. Furthermore,
future experiments20 using the Bevalac at.the-Lawrence Berkeley Laboratory '
are expected to increase significantly the amount of data on the two
pion correlations.

The purpose of this work is therefbre to analyze in detail the topic
of pioﬁ interferometry in the context of nuclear collisions. At the same
time we will discuss and attempt to clarify the theory of pion interfer-
ometry as applied to any hadronic process. In this paper we concentrate
on the interplay between the pion production and final stéte dynamics
and Bose-Einstein symmetrization in determining the form of R(§1’Ez)'

In particular, we focus on the difference between chaotic and coherent

pion fields and how the degree of coherence affects R(El,iz). In a
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subsequent paper,21 we will apply the fofmélism developed in‘Sections v
and V to obtain numerical estimates of the effects of final state
interactions on pion correlations in nuclear collisions and to discuss
specific experimental problems.

We now summarize the results obtained in the following sections.

In Section II, we discuss the various competing sources of pion correla-

tions in hadropicrprocessés with special attention given to nuclear
collisions. The role of Bose-Einstein symmetrization on the ideal
correlation function (the>GGLP effect) is then reviewed in Section III.
ihe usual‘heuristic derivations of the form of the correlation function
aré presented and criticized because they negléct effects of multi—
particle dynamics on R. To enable us to incorporate such effects we
develop next in Section IV a density matrix formalism for calculating
R(il,iz). The density matrix is parametrized via an ensemble of coherent
pion states, IJ), pfoduced by an ensémblé of classical (c-number) source
currents J(x). In Section IV.C, we show how such an ensemble of
currents arises from a space-time picture of pion production involving
isolated inelastic scattering centers. We analyze in detail the single
and double inclusive distribution and show that muitibion production
amplitudes lead to interference terms in R(El,ﬁz) that are, in general,
much more complex than those obtained from Bose-Einstein symmetrization
alone in Section III. We find that the necesséry conditions for R(Ei,ﬁz)
to reduce to the ideal Bose-Einstein form are that the number of inde-

pendent source currents is very large and that the total interaction

time be large compared to m;l.‘ Those conditions are shown in Section IV.C.2

to lead to the production of chaotic pion fields. In Section Iv.D, the
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effects of poséible ;ollective-pion prodﬁction mechanisms are calculated.
We derive the form of R(E;,Ez), Eq. (4.66), for the case of partially
coherent fields'that caﬁ arise when a group of nucleqns radiate pions
collectively. Equation (4.66) shows exactly how R(k;,k2) can determine
the degree of coherence of the pion,fiéld‘as well as the geometrical
structure of the source of the:chaotic component. The intércept-

R(E,E) = 2 - DZ(E) determines, in the absence of final state interactions,
the degree of coherence D(i), i.e.,. fraction of:piéns with momentum k in the
coherent state'gomponént; :finally, in Section V we calculate how final
state interactions distort the‘férm df R(El,iz). In Section V.B, the'
exactly solvable field theoretic model,AEqs. (S.l) and (5.6), is presented
shoﬁing ﬁow arbitrary one-body optical poﬁentials V(x) distort R(El,ﬁz)

via Eq. (5.36). In Section V.C, an approximate treatment of two-body final
state interacﬁions, U(x-y), is,présented in terms of Bethe-Salpeter

amplitudes. The effect of U(x~y) is shown in Eq. (5.52) to lead to a

- Gamow penetration factor that modulates the form of R(E;,iz). Our most

general result for R is Eq. (5.63) incorporating distortions to all
orders in v and fifst order in U, and applicable for partially coherent
fields.

The complexity of final state iﬁferactidn distortiéns displayed iﬁ
Eq. (5.63) demonstrates that the naive ahaljéis of correlation data
via Eq. (3.6) or (4.67) even for chaotic fields may lead to inaccurate
geometrical and dynamical information. For example, two-body T final
state interactions can simulate a finite degréé of coherence and one
body optical potentiais can lead to 100% distogtions of the apparent

geometry of the chaotic source. 1 A systematic numerical study to be
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reported in Ref. 21 of the expression obtained here has showm that

final state distortions are sensitive to the magnitude of the mean
momentum g = (ﬁl % Ez)/Z of the observed pion pair as well as to the
orientation of a = k; - kp with respect to k. The most ideal config—~
uration to study experimentally is E-a'é 0, i;e., equal energy pions,
because this configuration is found to be the least sensitive to
uncertainties in the one body optical potential. Furthermore, optical
potential distortions can be minimized by concentrating on high momentum
lil > mﬁ pion pairs. By measuring R(Ei,ﬁz) as a function of q for fixed
iarge k such that E-E = 0, it should be»péssible to unfold final state
distortioﬁ from correlation data. |

Note that throughout this paper we use natural units; h = ¢ = 1.
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II. GENERAL REMARKS ON PION CORRELATIONS

Correlations between identical pions produced in hadronic processes
can arise from a combination of several sources:

o ' 1) Conservation laws:
energy momentum

quantum numbers

2) Dynamics:
production dynamics

final state interactions
3) Bose-Einstein statistics

There are basically two types of conservation laws: those associ-
ated with kinematiés and those associated with internal symmetries or
quantum numbers. The conservafion of energy-momentum leads to kinematic
constraints betwéen the produced particles and leads to strong correla-
tions when one pion is observéd with a moméntum near a kinematic
boundary. For example, if one pion carries away ‘a lafge fraction of
the available center of mass energy, then a‘strong anticorrelation must
be observed (R(El,iz). << 1 for k,~k, when [k| > k ... Such
kinematic correlations can of course be evaluated from Lorentz Invariant
Phase Space (LIPS) integrals (éee, e.g,,-Ref. 22).

,Conéervation of internal symmetries and quantum numbers such as
isospin and parity lead to correlations between the number of different
charged pions that can be produced in a given reaction. Therefore, such
constraints affect mainly-the pion mﬁltiplicity distributions and, hence,
the binomial moments in Egs. (1.1)-(1.3).. An exaﬁple of such multiplicity
correlations is given in Ref. 23. To isolate the true momenfum space

correlations with R(il,ﬁz), it is therefore necessary to remove the
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dependence of the normalization of 'R on the specific multiplicity
distribution. The correlation function as defined in Eq. (1.1)
accompiishes this goal. For an independent pion emission mechanism,23 -4

R=1 regardless of the constraints imposed on (nﬂ_) and (n,lr_(n,rr - 1))

by internal symmetries. If should bevnoted‘that (n,"_)2 = (nﬂ(nTr - 1))

when the multiplicity distribution has a Poisson form, as seems to be the

case for fixed impact parameters in nuclear collisions.24
Besides correlations induced by conservation laws, it is clear that

the specific pion productibn mechanism as well as the interactions of

the produced pions with other hadrons in the final state can also lead

to pion correlations. The most obvious example of a production mechanism

that leadé to correlations is resonance productionzs’26 (e.g., p, Al’ etc.).

Another dynamical production model that leads to.strong correlations is

the cluster model15

in which pions and resonances arise as decay products

of hadronic clusters (fireballs) that are independently pfoduced in a

hadronic collision. In Ref. 15 the cluster model_pfovides an interesting

example of how dynamical, kinematical, and symmetry constraints can all

play major roles in influencing piomn correlations. In contrast to this

modei, there are also dynamical models that lead to no intensity |

correlations. As discussed in Ref. 23 and noted in Ref. 4, a classical
bremsstrahlung model for pion producfion leadé to coherent states which | “
exhibit no pion intensity correlations and, hence, no Hanbury-Brown,
Twiss (or GGLP) effect. Recently, Fowler and Weiner13 have also
emphasized this point. In addition, the role of coherent vs. incoherent

emission. processes in influencing pion correlations has been discussed

in Ref. 14 from a topological approach to hadron dynamics. It is



in fact precisely this sensitivity to.pion production dynamics that
makes'the study of pion correlations so attractive in our view.

Thére is, however, another dynamical source of correlations that
stands in the way of simple analysis of correlation data: namely, final
state interactions. While there is no rigorous separation between
production dynamics and final state interactions, an approximate
distinction can be made (see Section V). Thé.best example of this is
the long-range Coulomb interaction that exists between the final hadrons
for times long after the hadrons héve been produced and are out of the
range of strong interactions. Normally, we think of Coulomb interactions
as small perturbations to strong interactions. However, correlations
befWeen hadrons with small relative momentum (q < mnvaj) can be completely
dominated by Coulomb effects. In the case of nuclear collisions, Coulomb
distortions exﬁend to even larger relative momentum, q.S (Zozmﬂ/R)i/2 ~
Z&G(mWVE'). The correlations induced by such final state interactions
can therefore completely mask or distort the correlations (or non-corre-
lations) resulting'from particular productionvdynémics, Clearly, the
extent to which we can deduce various aépects of the production dynamics
from correlation measurementg dépends on our ability to untangle the
distortions due to final state interactions.

- The sources of correlations discussed so far apply to any pair of
hadrons in the final state. However, there is yet another source of
correlations when the two hadrons are indistinguishable -- Fermi-Dirac
(FD) or Bose-Einstein (BE) statistics. For identical pions (w m ), BE
statistics will obviously lead to enhanced correlations.(R(q) > 1) for

small relative momenta q (the GGLP effecté). On the other hand, for

[y
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1dent1ca1 fermlons (pp) FD statistics will lead to antrcorrelatlons
(R(q) < 1) for small q. However, it must always be remembered that
such correlations can Be'significantly modified by the other sources of
correlations mentioned above. Whether fhe GGLP effect dominates R(EI,EZ)
will depend strongly on the particular'reacrion under study.

In the case of relativistic nuclear‘coilisions, a typical reaction
19

of interest is

40
304

Ar + Pb,0, > w1 + X - (2.1)
for an Ar beam with 1.8 GeV/nucleon. lab kinetic energy. For a reaction
with Pb the total center of mass kinetic energy available for pion

production is Vs - MAII- MPB ~ 54 GeV. Therefore the number of pions

.that are kinematically allowed (but with vanishing probability) is

24,27 the number of'uegative pions observed

n"(max) ~ 386! In‘fact,
in reaction (2.1) ranges between 1-15 with-average energies im the
range ~10-200 MeV in theucenter of mass. .THerefore,'there are not
expected to be any significant kinematic correlations for pion pairs in
such reactions. Furthermore, quantum number constraints such as charge
and parity conservation_should also lead to negligible pion correlations
because of the "reservoir" of quantum numbers provided by the 102 protons
and 146 neutrons in the‘initial nuclear state. Therefore, we expecf
conservation laws'to have litfle effect on R(EI,EZ) for nuclear
collisions.

Next, COnsider‘dynamicél correlations. The dynamics of reactions
sucﬁ aé Eq. (2.1) are expected to be.dominated by multiple nucleon-

18,32

nucleon collisions (nucleon'cascading), where the relevant input

quantities are the nucleon-nucleon cross sections in the 1-2 GeV range.
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Therefore, multipion resonance (p, W, ...) production is infrequent, and
the main source of pions is through A33(1232)'production and decay.

Since the pions in the nuclear cascade model are produced singly at -
random space-time pqiﬁts with possibly many subsequent rescatterings in

1,17 in such

the nuclear system, the pion field is expected to be chaotic
a model. Nevertheless, exotic production dynamics due to collective
nuclear instabilities could possibly also occur in relativistic nuclear

16,28

collisions. If pionic instabilitieszs do in fact occur and lead

to a coherent pion field admixture in the final state, then R(il,iz)

could provide evidence for such phenomqgglfs’iﬁ_

_The form of R for =
paftially“coherent fields is derivéd in Seétioﬁ IvV.D. Hoﬁé?er, as noted
befbfé, fhé effects of finalvétate interactions must be unfolded frém
'R(El,iz) before suéh.an analysis is péssible. In the reaction (2.1)?
‘the typicai'residual nucleonvéhargebis Z ~100 and major distortions

of-R(il;iz) can be expected21 for Iil—ﬁ

,| <50 MeV/c.

In summary, dynamical correlations are expected to influence pion
correlations in nuclear éollisions only through final state interactions
if the cascade picture for pion production holds. VOn the other hand,)
bothﬁbroduction and final state dynamicérwill affect R if exotic |
phénoména occur.b In any case, conservation laws are expected to have
negligibie effectwbnvvR for nuclear colliéions. o , Cow
Bose-Einstein statistics of course must always be taken into account. -
However, BE ihterference will dominate R only if.nq exotic phenomena occur
and final state interactions can be shown to bg small (see Ref. 21).
We turn nexf to the speciél case when BE interference dominates

the 7 7 correlation function.
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ITI. IDEAL BOSE-EINSTEIN INTERFERENCE

2,5,6

The usual derivation of the GGLP effect begins with the

observdtion that the amplitude, le,

with momenta il and Ez given that' they were produced at points x, and

for observing two identical pions

1

~

x, is given by

- o~ o~ , -ik:x, -ik;x -ik:x, -ik;x
~ 1 i*a 2%z iX2 32Xy
¥, = (kik,[xx,) « —— e e + e e ,

- (3.1)

where the second ferm'in Eq. (3.1) arises, of course, from the symmetri—
zation required by BE sfatistics. The second step is to assume that -
the pion source points X, and Xx, are randoﬁly distributed in a region of
space'specified by a normalized.density distribution, p(x). Then the
probability of observing two ideﬁtical pions with momenta Ex and §2 is

obtained via
P(k.,k.) « [a&®x a®x. p(X)p(x )lw 12 « 1+]pCk, - k)2 (3.2)
l, 2 1 2 p 1 p 2 12 p 1 2 ’ .

where p(a) is'the Fourier transform of p(§). The second term in
Eq. (3.2) is the consequence of the BE interference between the two
parts of the ampiitude in Eq. (3.1). From Eq. (3.2) we therefore expect
R(il,il—a) « P(§) to measure the absolute square of:the Fourier transform
lp(ﬁ)lz, of the'pion source ‘distribution.

To incorporate also the time dependence of the pion source, Koﬁylov
and‘Podgoretskys‘derived the form of R(El,iz) using the first quantized

Klein-Gordon equation in the presence of several source currents, Ji(x,t).
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The amplitude ¢i(§,t) for a single pion to be found at (§,t), given that

it was produced by source Ji(§,t), was calculated in Ref. 3 from
. u 2 e = I .
@a" +n)) o;Gt) = G0 . (3.3)

By parametrizing the source currents as

Ji(x,t) = J(x = Xg t —ti) s _ (3.4)

where the '"'centers" (;i’ti) were assumed to be randomly distributed
'accordiﬁg to a space~time distribution p(x) = p(x,t), the amplitude
for observing two pions with momenta ix and iz was constructed as
Y1 = == {¢1(E1,w1)¢2(§2,w2) + ¢1(§2,w2)¢2(i1,w1)}
V2
ik,x, .ikéxz ik x, ik,x,

vc‘ ‘——/2‘: 3ve € + e €. z g(kl)g(kz) » (3°5)

where kixj = witj - kixj’ and where 2}(k) = J(K)A_(k), with J(k)

being the 5pace—time Fourier transform of J(§,t),'and Aw(k) = (kz- m? + is:)-1

being the pion propagator. Assuming J(x) = 8*(x) and ignoring the
problem associated with the on-shell singularity of A,n,(k2 = m;) = o

Ref. 3 finally obtained
~ ~ o -~ ~ 2 '
R,k = 1+ [olky-k,, w-w,)] . (3.6)

This heuristic derivation suggested then that R measures not only the
space but also the time Fourier transform of p(i,t). Equation (3.6) is. .
the basis of the expectation that the intensityiiﬁterference pattern

measured via R(il,iz) in Eq. (1.1) can (ideally) be used to deduce the

o
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space—timebstructure of the pion source .
In actual_applications the parametrization that is used most often

to determine a radius, Ro, and a lifetime, Ty of the pion source
is3,7,8,9,11,12 '

2
: o I (qtRO)
R(q ,q,.) « 14 ———— s (3.7)
o’'t 2 _
. 1+ (qoto) : _
where the Kopylov variables are defined as
9% T 9T w,
I(kl’kz) x(k1+k2)| '
qt = ~ ] (3' 8)

Ikl + k2|

and I(x) = 2J1(X)/x, where Jq is the first order Bessel function.
Equation (3.7) follows for a uniform radiating disc of radius Ro oriented

in direction .n = (§1+§2)/[i1+§2|, and having lifetime T, i.e.,

. 2 e e oain | -t/T,
p(X,t) = {G(x-n)e(RZ'-(x -(x-n)n)z) /nRz} {6(t) e ?/fo} .
: : ‘ (3.9)

Another parametrization that is sometimes convenient involves a

Gaussian form for the space-time distribution.2’10’17’19

In practice
though, the parametgrs Ro and To do not differ significantly when
obtained via Eq. (3.7) or its Gaussian analog.19

‘Having thus reviewed the usual derivationsyof-the GGLP effect, it
is important to note several deficiencies in these. First, there is the
question of normalization. The use of plane waves and free pion propa-

gators in Eq. (3.5) clearly leads to divergences which are hard to treat

in a rigorous manner. A second more serious criticism is that these
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derivations do not properly address the multiparticle nature of the

final hadronic state. Only two-particle pion wavefunctions wlZ are
considered, although in general, a coherent superposition of multipion
wavefunctions (and hehce, a nontrivial multiplicity distribution)

must describe the final hadronic state. Given the source term,

Eq. (3.3) must be considered.as a field equatioh and cannot be

justified as a first quantized wave equation. Thirdly,

a specific dynamical assumption has been made in Eq. (3.5) whereby pions
are produced independently at random space-time points. Such a derivation
therefore cannot reveal the effects of possible coherent pion production

dynamics.ls’”’16

Fourth, .in actual applications, Eq. (3.7) is still not
~ general enough even for chaotic pion fields. As discussed in Refs. 25
and 26, when pions are produced mainly via resonance decay, the existence
.of resonances with different lifetimes (Pp ~ 150 MeV, Pw ~ 10 MeV) can
;ignificantly distort the shape of R(qo,qt). For nuclear collisions,
this last‘problem is not expected to be impoftant though, as noted
in Section II. Finally, the question of final state interactions
has not been addressed. Often in applications,-]"12 there exist prescrip-
tions such as dividing the w m inclusive cross section by the T
inclusive cross section to cancel the effects of final state interactions.
However, not only Coulomb but also strong interactions differ for 1 i~ -
and ' pairs, and such prescriptions could therefore compound the
distortions of R(il,iz) due to final state interactions.

To overcome thegdiffigulties mentioned above,we turn in the next
section to a more general method for calculating R(il,iz), based on a

density matrix formalism for multiparticle production dynamics.

-
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._iV. COHERENT VERSUS CHAOTIC FIELDS

N

A. Density Matrix Formalism

At time t = -», the initial state |¢0) is assumed to be specified.

For nuclear collisions, |¢o) describes a state of two ground state nuclei

and their relative motion. No pions are assumed to be present initially
in |¢o). The asymptotic t=+ final state [¢*) is then obtained formally
by applying the full nuclear scattering S-matrix,

+

ety =8l . (4.1)

Note that |¢+) should not be confused with the Mgller outgoing scattering.
wave. Needless to say, |¢+) is tfemendously complicated and cannot be
calculated since it requires the completé solution of the coupled pion -
nuclear field equations. Nevertheless, we can attempt to parametrize |¢+)
based on a physically ﬁléusible picture of the dynamics. The parameters
specifying that picture would then be determined phenomenologically from
inclusive cross sections. The hope in such a bhenomenological approach
is that the values of the parameters obtained will shed 1light on the
dynamics of relativistic nuclear collisions. |

However, before discussing spe;ific parametrizations we proceed
formally to calculate pion inclusive distributions from |¢+) . The

~

single (negative) pion inclusive distribution for momentum k is given by

P, () = 1 [xjadaget?
X

1
.O',n_ d3k '»

(pflat®ad 6Ty = otIn (k) |97

ot N Y o 4.2)
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where the sum over X and the trace are over a complete basis of nuclear

: . s + =~ ~ . :
and multipion configurations, a (k) and N"(k) are the creation and number
density operators for (negative) pions of momentum k, and

+

ot = "¢ | (4.3)

is the scattering density matrix with unit trace. Note that energy-momentum

conservation is implicit in Eq. (4.2) because our definition of [¢") includes

an energy-momentum conserving §-function via the S—matrix.29 From Eq.

v(4.2) it is clear that the integral of Pl(i) over dsk gives (n“) as in

Eq. (1.3); and - that Pl(i) just counts tﬁe average number of pions in the
final state with momentum k.

The double (negative) pion inclusive distribution is given in terms

of p* by
6
P,k .k,) = al ._____...;‘ "(1”3') _
. ‘ | k1 d ké

= T kxlak pa yle?
x

= o’ StdDatEpadatkpt . @)

The integral of P2 over dékldak2 then gives (n“(nﬂ-l)) as in Eq. (1.2).
Clealey,,P2 just counts the average number of (negative) pion pairs,with
momenta El and iz.
Equations (4.2) and (4.4) are written in terms of the density matrix
p+, because p+ is simplef to parametrizé than |¢+). In particular, we
shall see that a very convenient way to paraméérize p+ is through an

ensemble average over a given set of model states |¢&) as

o' = L@ loy) <o, 4.5)
o .

s
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with p(d) being a (normalized) probability distribution for the parameters
o specifying-|¢a>-. Thé ~ sign.in Eq.'(4.5j means that we require p+
w . " | together with Eqgs. (4.2) and (4.4) to pro?ide a good approximation to only
single and double inclusive data. In other words, only those parametri-
zations that éan'reproduce the measured P, and P, shall be conside;ed.
We note that the use of the density matrix formalism to compute
inclusive distributions is well known in high energy physics (see for
example Ref. 29). In—fhe following subsections we.utilize this formalism

. : {
to analyze the difference between chaotic and coherent fields, as revealed

through the correlation function R(EI,EZ).

B. Classical Current Parametrization

1. Coherent fields

In principle; we would like to solve the following field equation

for the pion Heisenberg field ¢(x):

(O+n)ex) = I, (4.6)

where J(x) is the nuclear current operator écting és the source of pions..
(Non-z.'elativisticalily, J=f vytoy .)  What makes Eq. (4.6) intractable
‘ in general is that the field equations for the nuclear fields are>coup1ed
to the pion field also.
However; in a nuclear collision, our first expectation would be that
multiple nucleon-nucleon collisions dominate the nuclear dynamics. As

long as the number of produced pions is not large compared to the nucleon
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number, we may expect that the pion source current J(x) is not
significantly altered by the presence of produced pions. Therefore
our first approximation to the nuclear dynamics will be to ignore pion- .
nucleon rescattering. This approximation decouples the pion and nuclear
field equations and replaces the pion source current operator in Eq. (4.6)
by its expectation value. The current J(x) then becomes a (c-number)
space-time function. The resulting physical picture of the pion production
dynamics is thus the same as that of bremsstrahlung radiation.31 As the
projecfile nucleons collide with the target nucleons, pions are radiated
due to the }arge decelerations involved. |
We stress that Eq. (4.6) is still regarded as é field equation for
¢ (x), even though J(x) i§ treated as a classicél current source. This is
in sharp contrast to the first quantized wave equation, Eq. (3.3), used
in Ref. 3. As we shall see below, the importan;e of treating Eq. (4.6)
as a field equation lies in the ﬁultipion nature of the final pion state.
Note also that the decoupling of the nuclear and pion field equations
- greatly simplifies the final density matrix p+ in Eq. (4.3). In this
approximation, p..+ factors into separate nuclear and pion density matrices,

o

huc and Pors each with unit trace. We therefore only need to study P

in order to compute Pl(i) and PZ(EI,EZ).
| The sdlution of Eq. (4.6) and the construction of the S-matrix .
when J is treated as a classical current are discussed in detail in Ref. 31.
See also Section Va; We only quote the main result: The final pion state
|¢:) produced by a classical current source is a coherent state IJ) given by31

-n/2 . - . |
e exp {ifd k J(k) a+(k)}|0) s (4.7)

=y
~
n

>
~
1]



-19-

where .

- iwkt-ii~; : o _
/d"x € I, O, (4.8)
[ ka(ZTr)S : B .

J ()

is the on-shell (wk.= v k2_+ m“?) Fourier transform of J(i,t), and

n o= fd’k RO I . 4.9)

Observe that the state |J) is a special coherent superposition of pion

states involving arbitrary numbers of pions. In terms of finite packet
states, I*l v X e . localized at space-time points X)s -e-X @S
defined in Appendix A, Eq. (A.1), we note thaf up to (21r)3/2 in the

definition of J,

-n/2. i$5(0)
e J ’IO

3y = e )
-n/2 .n
— 1 - - - -
= e Z R Ixi—xz— cee =X 0= 0)J .
- n=0 ‘ o (4.10)

- with ¢3(x) being'thé creation operator of a wavepacket centered at x

as_defined_in Eq.b(A.Z). Thus an’external‘classical‘current source J(;,t)
produces an indefinite number of pions in wave;baCketS with a space-time
distribution J(i,tj centered at the origin. An ;dditional property of
|J) is that the multiplicity’ distribution for pions is a Poisson with

a mean n given by Eq. (4.9). Therefore,

) | . ) .
(nw) = (nﬂ(n,’r 5_1)) = n . o | (4.11)
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The most useful property of |J) is that it is an eigenstate of

the annihilation operators a(k), i.e.,

a@ |3y = 136 |9 , 4.12) .

: ) ) o
Therefore, removing one particle from the final state does not change -

the structure of the final state! Coherent states such as in Eq. (4.7)
often arise in quantum optics and are used to characterize laser fields.1

The density matrix corresponding to this classical current model is

oy = ERX®1E , (4.13)

which describes a pure coherent state (TrpTr = Trp: = 1). We refer to

_Eq. (4.13) as. the coherent field paramétrization, the parameters here
being those that specify J(k).
Utilizing Eq. (4.12), the m pion inclusive distfibution is readily

calculated, as in Ref. 29, to be

f

—

)
~

et
[}

Tr(p“a+(il) ...a+(im)a(£m) --~3(E1))‘

|J(1?1)|2 .. |J(Em)|2 . (4.14)

The two pion correlation function is therefore given by

-~ -~

Rk ,k,) = 1 , | (4.15) N

showing that pions radiated in a classical current model are uncorrelated ¥
in momentum space! In quantum optics,1 the analog of Eq. (4.15) is the
absence of intensity interference or the Hanbury-Brown and Twiss effect

for laser fields. Similarly, there is no GGLP effect for coherent pions
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 generalization of the m coherent state
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even fhough BE symmetrization has automaticéllyvbeen taken intb account
in Eqs. (4.7) and (4.10). B

| We note finélly that the multiplicity‘distribution'of cbherent
pions which>occupy a given momentum state |k) is also Poisson, with a

mean (nﬂ(i)) ='|J(§)|2(2n)3/v, where V is the normalization volume.>.

1

2. Charge-constrained cohefent fields

One technical problem with coherent states involving charged bosons .
is that they are not eigenstates of charge. This problem can be easily

bypassed, however, by considering the following chérge-constrained
32

hod . -n ' | . ~ ~
l¢*3,2)) = M Z; = /dakl...dskn Ik) ... J()
n=0 - . _
x at®) ... @) o) ® [y (4.16)

where ,

| o

nt -8 wone . (4.17)

n=0

and where n is given by Eq. (4.9), while Iw;(Z)) is a state contain-
ing no 7 but arbitrary multiple 7 and T and nuclear configurations,

constrained only -to form an eigenstate of the total charge operator Q,

Qly,(2)) - (@+m) i@y . | (4.18)

Ih Eq. (4.18), Z is the total charge of the initial (no pion) state |¢o)-

in Eq. (4.1). Equation (4.18) then also guarantees that |¢+(J,Z)> is an
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eigenstate of charge with a total charge Z. With Eq. (4.16) we can now

construct the combined pion-nuclear density matrix for a fixed charge

Z as ’ -
ot~ 10°W,2) e, (4.19) e

from which we find

(n _nn-i'j...(nﬂ-m+1)>

~ ~ _ ~ 112 > 312 T
Pk ...k) = |J(k)] PNIRICN] = ,
(4.20)
where.
| -mv " -1 |
(n,"(nﬂ-l)...(nrr -m+1)) = n < — n > s (4.21)
an . ) :
is the mth binomial moment of the negative pion multiplicity distribution.

The (negative) pion correlation function is therefore given by
Eq. (4.15), just as for the simple coherent state parametrization, Eq.
(4.13). Note, in fact, that if the states Iw;(Z)) were unit normalized,
then 5?:1 = eﬁ, P(n) is Poisson, and hence Eq. (4.20) is identical to
Eq. (4.14). 1In that case, Eq. (4.19) is completély equivalent to Eq.

(4.13) as far as negative pion-inclusive cross sections are concerned.
We therefore see that Eq. (4.15) is indeed possible for charged boson
fields, and thus in the following sections we continue to use
unconstrained coherent states.

Observe that the energy-momentum conservation has not been
enforced in Eqs. (4.7) and (4.16). Since J(E) is to be constrained
by the form of the single-pion inclusive distribution to vanish rapidly
near kinematic boundaries, the inclusion of‘strict energy-momentum
conservation for nuclear collisions would lead, iﬁ fact, to négligible

corrections to Eq. (4.15).
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C. Space-Tiﬁe Picture and the Chaotic Field Limit

1. Classical current ensemble

In the previous section we showed that‘a single classical current
prbduces a coherent pion field that'exhibits no GGLP effect, even though
BE stafistics were properly taken inté acco@nt.' Since it is rather
unlikely that the s§urce current J(x) is the same in every'nuclear
collision, we consider now a more general dynamical model that will
enable us to incorporate variations of J(x].

The‘physical picture ﬁe'want to puréue is that of pions beiné
produced in N separate nucleon-nucleon collisions in the spirit of
intranuclear cascade models.33 In this picture, the total pion source

current J(E,t) would thus be a sum of N different currents, Ji(i,t);

I = Yy 3. (%) .  (4.22)

Each Ji is then taken to parametrize a different inelastic nucleon-nucleon

collision. To incorporate also the space-time picture of the cascade

model, we localize16

the strength of each current around some "inelastic
scattering center", x, = (§i,ti), as in Eq. (3.4).
If we parametrize the typical inelastic collision centered at x=0

by J“(x), then the pion source current becomes

| N |
Jx) = I (x-x) . (4.23)
i=1
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The on-shell Fourier transform, Eq..(4.8), is.given by ,-

5 LN et - iReE
Jky = J (k) Z e (4.24)
i=1 .
where W, = k? + mz . The space-time separation of the scattering -

centers therefore introduces a sum of phase factors‘in.Eq. (4.24).
In a given nuclear collision in which the_xi are fixed, the final pion
_state isiagéin given by Eq. (4.7), but ﬁith J given by Eq. (4.24).
Note that |J) is not equal to W12 of Eq. (3.5). It is also important
to remark that at this stage we still have not incorporated final
state intéractibns (see Seétion V). Our first aim is tb study the
effecfs of production dynamics on~R(§l,E2).
Since the number of ineléstic scatterings, N, Qill vary from event
to event as will the location of the spéce—time centers Xy i=1,...,N),
we will have to average over the distribution, PS(N), of inelastic scatter-
ings as well as the distributions, p(xi), of the centers X, . An additional
averaging over impact parameters will be discussed in section IV.C.3.
.The distribution of N and xi‘can be taken into account via an
ensémble aQerage with the pion sector density matrix given by
oy = g PS(N)fd“xl p(xl)...d"xN p(xy) lay <3 . (4.25)
This pion density matrix then describes an ensemble of coherent final
pion states. Note that the centers x; are assumed to be uncorrelated
in the spirit of independent multiple scattefing models.

Using Eq. (4.14), the m-pion inclusive distribution in this model

is given by
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L]
~—
It

| P (k,, k)= g PS(N)fd"xl p(xl')...d'fop(xN) { (k) |.2... |J(1"<m) Iz}

_ ] 4.26
| (IJ(kl)l .- IJ(km)I ){N’xi} | (4.26)
It is clear from Eq. (4.26), that as a_fesult of the ensemble average, there

will now be non-trivial pion correlations in contrast to the pure coherent

field result, Eq. (4.15).

For J given by Eq. (4.24), we then have

-~ N ST S ~ _
Pk, ...fkm) = |J"(k1)| . |Jﬂ(km)| C?;(kl, cee k) E (4.27)
where the dynamical form factor C?; is given by

S b >Rl |
j=1

{N,xk}

lkl Xi

N
2 e
i=1

g?;(ii;...,im)_._ <

m N N Py
S0 {3 3
N=1 i=1 i, =1

ik (x: -x3 ) ik (xy o -xs )
<e S P e MU,y 12m>

} . (4.28)
1x,) | |

The evaluation of Eq. (4.28) is complicated only by the combinatorial

problem of how many of the sz terms in the brackets have a given number

of the indices (il, ""iZm) equal to one another. -For a given index set

we only need the relation

. iqu} - Y ‘ iqu ’ ég
(e X, = ‘/.d Xy p(xk) e = p(q) o : (4- )



-26-

“where p(q) is the Fourier transform of the scattering center distributioﬁ
Cp(x). ‘Note that p(a=0, qo=0) = 1 by unit normalization of p(x).

For the case m=1, Eq. (4.28) is simply evaluated to be
Fy® = e -0 JoGup (4.30) Y

where (N) =Z N PS(N) is the average number of inelastic scatterings, and
(N(N-1) > is the second binomial moment of PS(N). (For a Poisson distri-
bution,as obtained in an intranuclear cascade model, (N(N-1) ) = Y(N)z )

The single pion inclusive distribution is thus

(N(N-1))

= ~12
Py(k) = [J“(k)l (N>{1+ N

~ 2
o, |t . (4.3D)
where Wy > m, . Note that Pl(f) is not equal to the incoherent sum of the
. . . . R >.12 '
inclusive distributions, |J"(k)| » from each separate nucleon-nucleon
collision. There is also an interference term growing as (N?) that
depends on the pion wavelength,lﬁrl, and the nuclear dimension, R,-

1, Ip(k)l2 << 1, and Eq. (4.31) reduces

For short wavelengths, |k|>> Ry
to the incoherent case Pl(i) o« (N). For long wavelengths,|£l<<R;1, so
|p(k)|2 & ]p(O,mﬁ)[z. Taking'the m_ > 0 limit for a moment and noting
that |p(0,0)|2 = 1, we see that the interference term then dominates and
Pl(i) o (Nz). This difference between the long and short wavelength
limits for m“==0 is Qell known in the case of Thompson scattering of ¥
photdns from.atoms..Physically, it is.due to the quantum property that a

particle with a given wavelength X cannot resolve the structure of a

system with dimensions less than X. ' For a finite mass particle such as
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the pion, there’is‘an_important'differehce however. The minimum frequency
that a pion can have is w(k=0) = m . To see what effect this finite

' - . . 17 s .
frequency has, consider a Gaussian parametrization™ of the inelastic

scattering center distribution:

' -1
(T RRR,)

pGx,t) = exp {-*/z[(tmz- v gt e )2 arp?] )

47*

(4.32)

where T is the root mean square time duration, R is the root mean
square x dimension, etc., of the space-time reaction volume containing

the'inelastic'centers (ii,ti). The Fourier transform is then simply
G0 = exp{-5[wn?« wrI?+ & rI?+ KR )2] (4.33)
pRxs e 2 N g < YRy 2z ) :

With this parametrization we then have the following bound on p(k),

Rk
e .

|D(i,wk)|2 < Ip(O,m“)I2 = . | (4.34)

As an estimate for the collision time T wé'noté that in intranuclear
cascade calculationsfs:pions are typically produced in nuclear collisions
over a time interval T ~ (5-10) fm/c. In that case 'm“T 2 5 and
exp(-(m“T)z) << 1. Therefore, the tollisidn time T is expected

-1 24

to be long compared to m sec, and the interference

~ 1.4 fm/c ~ 5x10°
term in Eq. (4.31) will be negligible even for:lil =0 . This is in sharp
contrast to the zero mass case (Thomson scattering) where the interference
term dominates in'the IEI::Q limit. If the interéction time were short,

T< m“-l, then p(O,mn)lw 1, and the interference term would dominate for

Iil < I/Rx. even for the finite mass case. While we have considered
- 1 : o .
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a specific model for p(x) in Eq. (4732), it is clear that also for the
generalicase, the crucial factor that determines the importance of the

. . . -1 -1
interference term is the relative size of T and L As long as T >> m.

P ~ o )Py, (4.35)

with small corrections depending on the specific form of p.

We pgte that the smallness of the interference term can be tested
experiment%lly by measuring the Aa(k) dependence of the pion-inclusive
cross section on the number of incident nucleons A. For equal mass
projectile-target combinations d(k) ~ 1.67 if pions are produced incoherently
While a(k) = 2.67 if the interference term dominates. (These estimates are
based on the assumptidn that the total pion cross section goes as A2/3
while the number of inelastic scatterings (N) « A].) Another consequence
of Eq. (4.35) is that the average (negative) pion multiplicity is well

approximated by

(n_) ~ n_(N) (4.36)

where

no = [dak ERGIE C(4.37)

is the average (negative) pion multiplicity from each inelastic nucleon- B
nucleon collision. 1In the 1 GeV range, ﬁ“ ~ 0.7, and thus the average
number of inelastic collisions, (N), is roughly given by (nﬂ) .

(Note that the total number of binary collisions may be much

larger than (N).) The smallness of the interference term in'
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Eq. (4.31) wduld'fhus.resultbiﬁ‘an A1 depehdence-of‘<ﬁﬁ). Evidence for -
an A2 dependence of (nﬁ) would, in contrast, indicate the importance of
the interference term and reflect an unexpectedly short interéction
time in this cascade picture.

We note finally that the small correction term in Eq. (4.35) also
decreases very rapidly with increasing Iil. Fof Iil 2 mos Ip(i,mk)lz «< 1
regardless of the value of T Since the nuclear dimensioné are large

1

compared to m; R, = Sm;l); We conclude that as long as pions are

X3

produced by separate inelaéticvcollisiops over a long enough time or we
consider |k| 2 m_, the single inclusive distribution is well'afproximated
by the incoherent sum of the distributions from each collision.

Cdnsider now the double pion inclusive distribution. From Eqs.
(4.27) and (4.28) we need to calculdte C?}(El,ié). There are ndw N4_term§
in the bfacket,'but most of the terms give rise to the same contribution.
For example;.there are N(N-1) (N-2)(N-3) ‘terms such that all four

indices (i ,1,) are distinct. Noting Eq. (4.29), the ensemble

oo
average of each of these terms is simply |p(k1)|2|p(k2)12. Similarly
there are N(N-1) terms such that il=iu' i2=ia, butvil#iz. Each of these

terms gives rise to [p(kl—kz)lz. Collecting all terms, we find

TRk, = (NP N1 o,k 2 ¢ otk k) |7}
s (NN-10) {lot )1+ otk %}
+ (NN-1) (N-2)) 2Re {p(K,Ky)p* (K, )p(k,) + plk,+k,)p* (k,)p* (k,)}
+ ONN-D -2 (-3)) Jot) [ Jotk) |2 (4.38)

First note that if N=1, i.e., there is only one current source,

then J?} =1, and we recover the coherent field resulf,vK. (4.14).
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As the number of sources N increases, more of the terms in Eq. (4.38)
start contributing. The various terms arise froﬁ the intefference’between
different possible amplitudes for producing two pions. In order to have
a clearer understanding of Eq. (4.38), it i§ instructive to identify the
amplitudes that lead to the various terms. | | ¥

In this classical current model there are twobways in which a
pion paif can be created. Either the two pions are produced by two
different sources (xi # xj) or they are produced by the same source.
Denote the amplitude to produce the two pions from different sources i
and j, i#j, by Aij' Denote the amplitude to produce the two pion; by
the same source i by B, . The total amplitude to producé the two pions
is then

M = 1>EJ {Aij + Aji} + E B, ., (4.39)

as illustrated in Fig. 1. The probability of observing the two pions is
then ]Mlz. By grouping the N4 terms in IMIZ, we can associate the

following interference terms with each of the terms in Eq. (4.38):



IR

Iolagl2 z |B |2 — N (4. 40a)

ifj | " o | |
I oA == (N1 ook 2, (4.40b)
ifgj - . |
I B8 L e NE-1D) Jolgk)]?, (da400)
i#] | | -

Z (A 5A5k * Ay5Ang) e (sz-l)){lp(kl)lz + otk )%
itj#k _ o | |

. * B (4.40d)

I (A..BY + A..B; + c.c.) ' - N ’ _
iy 3 g _ ; | |

'(Ai By + c.c.j -— (N(N-l)(N-Z))
. i#j#k, - | : x 2Re(p(k +k2)p (k )p (k, )) (4-40¢)

(AijAjk JlAkJ) - | (N(N-l] (N-Z] ) |
SCILT % melp, k20" (K, )p(k )) |, (4.406)

:>:' A13Ak2, -— (N’(N—l)(N-Z)(_N-'s).)va(kl)lzlp(kz)lz*v 3 A(4,40g).>
i#j#kiL S
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These equations display the physical origin of each of the terms in Eq.

(4.38). Note especially the origin of Ip(kl—kz)l2 from Eq. (4.40b).

It is due to the interference between the amplitude, Aij(k1’k2) « ST
ikyx;  ik,xy

e e J for producing a pion with momentum k, from source i

together with avpion wi;h momentum k2 from source j#i and the amplitude
Aji(kl,kz) for‘producing.a pioﬁ with mo‘mentum'k2 from source i together
with a pion with momentum k, from source j#i. This is clearly the Bose-
Einstein statistics interference term as considered in Section IIIT.
However, in contrast to thé results of Section III, there alSovappear
many more interference terms due to fhe multiparticle dynamics. The
“term in Eq. "(4.40c), for example, arises only because a given source can
emit two or more pions by itself.

What Eq. (4.38) demonstrates in this simple analytical model is
that the details of the multipa?ficle pfoduction dynamicé can lead to major
modifications of the ideal Bose-Einstein correlation result, Eq. (3.6).

In the case of nuclear collisions though, we can argue that the
correction terms in Eqs. (4.40c-g) are very small. This follows again
from the fact that the collision time T is long compared to m;l. Thus
Eq. (4.34) implies that all terms containing p(k;) and p(k,) are negligible.
Noting that lp(kl+k2)|2 = |p(il+i2, wl+w2)]2 < lp(O,Zmﬂ)l2 , the term from
Eq. (4.40c), is then also negligible. For nuclear collisions we can *

therefore well approximate g?}(il,iz) by

TR = v+ (NW-1D) ook, 1% (106 (4.41)

with
e ~ O((N)Ip(O,mﬂ)lz) < 1
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Note that p(k,-k,) = p(il-iz,wl-wz) .can be of order unity since for

. Iill =|i2|, w,-w, = 0, and p(0,0) =1. The only interference term that

survives for long interaction times is that due to Bose-Einstein symmetri-
zation, Eq. (4.40b).
From Eq. (4.41), we calculate next the second binomial moment of

the multipiicity distribution. Noting Eq. (4.36), we find'

' 2 (N%)
(n,"(n_‘r -1)) = (n“) 5 {1 +e+—6)‘ (4.42)
(N) :
where ' _ ' 20
e ~ 0( Jp(o,m)|%)
~and : , . -

CAN(N-D) 5, 3 e ~ 12

§ = W—fd k,d%k, |3, G Dok -k, ), (K,) ] |
T v . ,

~ 0(1/A) . (4.43)

where A is the number of nucleons involved in the nuciear collision.
To arrive at this estimate for 6§ in Eq. (4.43) we used (N(N-l))/(Nz) <1
and estimated the integral divided by ﬁ;_to be 0((<k“)Ro)_3) via

Eq. (A.21) in Section A.2 of Appendix A. Here, (k) is the average

~cm pion momentum produced by Jﬂ(k) and Ro is the average radius of

p(x,t). Since ((kn>Ro)3 ~ 0(A) for relatiVispic nuclear collisions

as we show in Appendix A, we finally get Eq. (4.43)."

We note that for one source current, PS(N) =8 e=68=0

_ N,1’
rigorousiy,as expected because pions are Poisson distributed in a
coherent state, Eq. (4.11). As the number of sources increases, € >0 and

6 >0 lead to non-Poisson behavior. However, as the number of sources

~ becomes very largé, § +0, and as long as the total interaction time grows
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with (N such that
(N) pl(O;mﬂ)l2 < 1 o (4.44)
is satisfied, the Poisson relation between the first two moments is

recovered again. ' ' ' .

2. The chaotic field limit

From the results of the last section on the classical current
ensemble, we can now derive a set of conditions under which the correla-
tion function R(k,,k,) reducés to the ideal BE form of Eq. (3.6). In

terms of the form factors C;ﬁ ,

~ = 2
- o~ AR NI (n_)

F &) F (k) < -1

-
~
i

(4.45)

In general, we see from (4.31) and (4.38) that R is much more complicated
than Eq. (3.6) due to interference of multipion production awplitudes.
However, for long interaction times, for which Eq. (4.44) is satisfied,

R reduces to

~ (N) 2 '
Rlky k) = 1+ 1= g lotk-k )%, (4.46)

with corrections Q(1/A) from Eq. (4.43). In the limit (N) >> 1,
Eq. (4.46)‘therefore reduces to the ideal BE result, Eq. (3.6).
We saw that the long time constraint, Eq. (4.44), leads to Eq{'(4.35). -
Now we see that Eq. (3.6) follows from Eq. (4.45) in the limit when a large
number of soufces produce pions incoherently with respect to each other
in a large space time volume. This type of pion field ensemble is thus

referred to as a chaotic field.
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We have thus found one dynamical model that leads to the ideal BE

16, 34 Tb demonstrate that the

form, Eq. (3.6), in the appropriate limit.
essential-ingredient leading to. this résult is the space-time piéture
of the distributioﬁ of SOurce$ and not the specific dynamicél model
involving classical currents, we present another derivation of Eq. (3.6)
in Appendix A. That derivation deais‘exclﬁsively with a space-time
parametrization of p",-Eqs.'(A.6), using normaliied wave.packets
localized in space-time. - Agaiﬁ.Eq. (3;6) follows in the limit,
‘Eq. (A.15), where the averége spacing between two localized packets is
much larger than the dimensions of the packets. In that case the
ielative ﬁhases between any two pions, A¢ = klxl —kzxz, is essentially
‘randomly distributed between 0 aﬁd_Zﬂ, and the resulting pion field is
again chaotic. | |

.We note that there ié a mathematical short-cut to obtaining Eq.
(4.46) wheh condition (4.44) is satisfied. Thaf is fo introduce random
phases ¢i between the currents Ji(x) in Eq. (4.22). The Fourier transform
of the chaotic source ;urrént in this space-time picture is thus defined as

L Lo iy dwt-ikeX; |
I = 3@ e e N (4.47)
i=1

The m-pion inclusive distribution is then calculated as in Eq. (4.26)
except that wé must also avérage over all ¢i from 0 to 2w. The
resulting form factors then lead directly to Eqs. (4.35, 4.41, 4.46);
The additional iﬁterféréhce terms in Eqs. (4.31, 4.38) vaﬁish upon
averaging over ¢i, Wé shall use this mathematical;short—cut_to chaotic

fields below and in Section IV.D.
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An important property of the chaotic field limit is that the multi-
plicity distribution of pions which occupy a given momentum state IE) ,
denoted by P(n;i), becomes a Bose-Einstein (geometric) distribution.1
To see this, we recall from Section IV.B.1 that for a coherent state ]J),
P(n;i) is a Poisson distribution with mean iJ(i)lz/Q, whereJ(Zn)SQ is
the normalization volume arising in the usual transition from discrete
sums to integrals (Zi - Q Idsk). For a chaotic ensemble of coherent

states, similar to Eq. (4.25), we thus have

(13, @ 1%/2)"

n!

expl- lJch (k) 12/9]> ~
{N,¢;,x;}
(4.48)

P(n;fc') S lim <
(N) >

where Jch(i) is given by Eq. (4.47) -- the ensemble average over the ¢i-
is just a short-cut to incorporating condition (4.44). As a device for
taking the limit.(N) +w, it is convenient to use a sequence of "spike".
~source number distributions, Pg(N') = GN'N , With N+, This, plus the
definition (4.47) and the (now exact) result (4.35), allows us to express

the chaotic current strength in the form

~

P, (k)| & 2
N

SR
i=1 :

~ 12 .
IJCh(k)| = lim

N->oo .

s (4.49)

where PI(E) is the single pion-inclusive distribution, which we shall
hold fixed as N » o, To evaluate Eq. (4.48), it is sufficient to obtain
the probability density for the limiting random variable IJCh(E)|2 to

have the value |Jl2. In Appendix'B we show this to be
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pch(IJIZ;E). = (PIU?))‘1 ?XP{-IJI?/PI(E)} . (4.50)
Therefore,
~ - . - 2 n.
st =+ [alsl? pycatn QL woroa)
oy 0/e)" R |
) n+1 - g | (4.51)

(1+ P (®)/9)

which is the Bose-Einstein (geometric) distribution with mean Pl(i)/Q,

We _note24 that the thermodynamic (fireball) pion multiplicity distribution
for momentum state |§)>is a special case of the chaotic field result,

Eq. (4.51), when the single pibn-inclusive distribution is thermal,1

i.e., when | |

3 Bu |
PR = 8 f-n71 - (4.52)

where B:is'the inverse temperature and (ZW)SQ is the volume of the system.
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3. Impact paraméter average

Up to now we have implicitly considefed a nuclear collision at a
fixed impact parameter for which p(x,t) could be calculated, for example,
via'anvintranuclear cascade.model.33 The reaction volume specified by p
clearly depends30 on the impact parameter, b. Obviously that vblume is
largest for ceﬁtral collisions, b~0, and smalleStvfbr peripheral collisions,
bNRA-l-l-RAZ. :
Pg(N) in Eq. (4.25) must also depend on b.

Likewise, the distribution of inelastic scatterings,

It is possible to select experimentally a range of impact parameters,
specified by a distribution_B(E), by an appropriate trigger system based,
for.example, on associated multiplicities or azimuthal symmetry or |
asymmetry of reaction products. ‘In Ref. 19, for example,‘the inelastic
trigger mode for Ar +Pb corresponds to B(b) = 0, .y - b)/an;ax ,
with b = 9.6 fm, as determined in Ref. 24. |

X

The impact parameter distribution can be incorporated‘ihto Py as
o, = fdzb B(D) F e NB) [d'x,...d%. o(x ,B)... p(xy,b) |30 ¢J] '
T st 17 %N 1200 PANR ’
- N ‘ (4.53)

which is the obvious generalization of‘Eq. (4.25). The m-pion inclusive

distribution in Eq. (4.26) will thus involve an additional _fdzb B(g)

L
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~ integration, and ;9; in Eqs. (4.27) and (4.28) also acquires this impact
parameter average. Since Eq. (4.44) is expected to hold for all
but the most peripheral collisions, which are excluded anyway 

" in inelastic triggered data, wé‘then havevfrom Eqs. (4.35) and (4.41):

L L -
'Pl(k)_.N_-lJﬂ(k)I AN N o (4.54)
and ‘ |
PELE) ~ O EO P @) | F UND ¢ NN-1) [pCy-k,) |20
251552 R L et ML L N L
| | ‘ | | '(4.55)

where 1...)3 denotes the impact parameter average for a particular
experimentalltriggér system specified.byAB(B).'
“In the chaotic field limit where (N(b) ) >> 1 for all b in B(b),

the correlation function therefore reduces to

R(K,,k,) 1+ ('lp_(kl-;kz)|2>B . ~ (4.56)

To get the maximum geometriCal information out of R it is clearly
' necessary to select as narrow a range of B_IWith B(E)ias experimentally
possible, for Rimeasufes the impact-parameter-averaged Space—timef

reaction volume in the chaotic field 1limit.

D. Partially Coherent Pion Fields

1. Definition of degree of coherence

If the pion production dynamics in nuclear collisions were simply a
superposition of isolatéd n+n > T+X ‘as,in iﬁtranuclear-cascade'models,
then the results of Section IV.C and’Appendix A suggest thaf the pion

cor:eiation function is dominated by BE interference. On the other hand,
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speculations have‘arisenm"28 suggesting that collective insfabilities
involving the pion field could occur in dense nuclear systems. In that
case, it is possible that in addition to the cﬁaotic field component | .-
coming from isolated nucleon-nucleon collisions, there may be a coherent
field component resulting from the collective action of a large group of
hucleons. 7
To study the effect of such a possibie coherent and chaotic field
admixtﬁre on the correlation function, consider the following model of |

the pion source:

Ik = I 0 + Jch'(i) , , (4.57)

where Jo describes the current due to the collective action of a group of
nucleons, while Jﬁh is the current describing the chaotic component due to
isolated nucleon-nucleon collisions given by Eq. (4.47).

The average number of pions in the chaotic component is then

" 3 /. ~ 2 -

n, = Jd (o, &]| = (N>n_ ,

~ch .[ ch {N,$.,x.} T |
i’7i (4.58)

with ﬁ“ given by Eq. (4.37).
On the other hand, the average number of pions in the coherent

component is
N .2
n, = [k g @2 . (4.59)

The single pion inclusive distribution is then found to be

P = (n B = (|3 @ I, @D

{N,¢i,xi}

| 3,G01% + <Ny |3 (B |2

n,(®) + n (}) , | (4.60)
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from which. the total averagé pion multiplicity is seen to be (nﬂ) = n6-+nch;'
In Eq. (4.60), no(i)-and nch(i) are the average number densities of

- " coherent and chaotic field pions with momentum k.

- The double pion inclusive distribution is in turn given by

EXES <IJ (B + 3G P13, 6y) + 35,6 17

{N¢,x}

~ 12 g 2
BACHINMRCRY

N [3, DR R 12+ 19, &) Pl &) 1%

o+

+

|3, (k)I 15 ®,)1° fen? )+(N(N 1)) lp(k -k,) 1%}

+ 2Re{(J (k )J (k ))(J (k )J (k )) (N)p(k,-k )}
. (4.61)
The second binomial moment is then
(nn(nw- ) = (no*-nch) +tngE nonch6 s (4.62)
where 6,6 ~ 0(1/A); by estimates of integrals as in Appendix A.2.
The.éorrelation function is thus finally given by
| : (k) n_ (k,)
> ~ ch ch
R(k,,k,) 1+ AR |p(k -k )|
| (95 (k) (k,)) (J;;ckzno (k,)) u
+ 2Re (N) p(k,-k_)
N 4 Pl(k1) P (kz)_» 1 2
| (4.63)

with corrections 0(1/A). Note especially the value of R at the intercept
k_l=k2§k.

RGE) = 2- (0@) , | (4.64)
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where we have defined the degree of coherence of mode k as

~ 2 ~ .
. J (&) n_(k) "
D(k) = i ;J—f = 2 _ . (4.65)
P, (k) - n (k) + 0y (k)

Note that with this definition of the degree of coherence for mode i,
D(i) is simply the.fraction of ﬁions with momentum k produced by the
coherent source Jo‘ |

If we further assume that Jb(k), Jﬂ(k), and p(k) are real (as for

a Gaussian parametrization, e.g., Eq. (4.33)), then we can write

~ ~

R(k,,k,) 1+ (1-D(k))(1-D(k,)) p*(k-k,)

200Gk p(k,) (1 -D(ED) (1 -DE,)T® plk,oK,)
(4.66)

+

In the chaotic field limit,D(E) = 0 and Eq. (4.66) reduceé to the ideal BE
interference result, Eqs. (3.6) and (4.46). In the opposite limit of a
pure coherent field, D(i) =1, énd Eq. (4.66) reduces to Eq. (4.15).
For a partialiy coherent field with 0 < D(ij'< 1, and D(E) varying from
mode td mode, R(il,iz) has the more complex structure of Eq. (4.66).
Equation (4.66) is our main result of Section IV, showing that R
contains both geometrical and dynamical'information. As is clear from
the way that the functional form of D(Ej and p(k,-k,) enter Eq. (4.66),
for partially coherent fieldé we cannot simply extract p(q) from R(EI,EZ)
without first determining D(K) via Eq. (4.64).
To illustrate the effect of a finite degree of coherence, D #0, on
the apparent radius of the system, consider a spherical source with root

mean square radius Ro' To determine Ro from correlation data, R(El,ﬂz),
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the usual procedure is to fit R(ii,iz)‘with a simple parametrization
such as in Eq. (3.7) or its Gaussian'analog. To eliminate the dependence

of the shape of R(il,iz) on the interaction time, the difference

-~

q = il-izlmust be varied so that q, = w,-w, =0 is held fixed. In

other words, we consider only equal energy pions ([ill =|§zl) and vary
the angle between i1 and Ez. Letting K = %(i1+iz) be the average pion
momentum, an effective radius R éould be obtained by fitting R(il,izj
| 12

eff

with the two parameter form

R(K'*Q/Z K-a/2)|. . ~ 1+ xexp[-q®R%..] . (4.67)
| Keq=0 o eff -

In Ref. 12, ‘A was interpreted as the interfering fraction of all m m

pairs and R off Was interpreted as the chaot1c source radius. From Eq.

(4.64) we would interpret A as 1 -(D(K)) In practice A and R ;e

can be determined by a least squares fit to the data. For our purposes

we define Reff througﬁ

R = % lin 2 R(K+d/2, R-3/2)
e :

5 . (4.68)
Q>0 3q (R(K,K) - 1)  'Keq=0 :

Note that the constraintv R-&:o insures that both pions have the saﬁe
energy. If the chaotic source distribution is given by'lp(a,qo=0)|2 =
exp[—qué] and the variation of D(K+q/2) with respect to q is small
compared to Ro; i.e., IVD(i)|'<§ Ro’ then‘froﬁ Egs. (4.66)’and (4.68)
we get |

R:ff ~ R/(1+D®) | (4.69)

with corrections O(IVDIZ,VZD). Equation (4.69) shows that the effective
- radius is smaller than the true radius for partially coherent fields.
Furthermore ,Reff may then have an explicit dependence on the mean pion

. momentum vector, K. It is therefore clear that for partially coherent

fields, D(i) must first be determined before geometrical information about
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the reaction volume can be obtained from R(kl,kz).

In addition, once D(E) is known, then the total number of pions in

the coherent and chaotic components can be determined from ..
n, = /dsk D(K) P, (k) (4.70)
and
3 -~ -~
n, = /d k (1 -D(k))Pl(k) . . (4.71)

Note that while it is possiblé to define a global degree of.

- coherence yiakno/(no+nch) és in Ref. 13, it is clear that the degree of
coherence per mode D(E) is a much more complete way of characterizing
partially coherent fields.

To summarize these results, we illustrate in Fig. 2 the expected
form of the correlation function for partially coherent fields. We

consider a case where D(E) is slowly varying so that Eq. (4.69) holds.

2. Effect of impact parameter average

As in Eq. (4.53), we can incorporate an impact parameter average
over a range of 'impact parameters specified by a distribution B(b). 1In
addition to the b dependence of the chaotic field component, we may also
expect that if there is a coherent field component, then the source Jo(ﬁ;g)
may depend sensitively on b. In particular, no(g) is expected to be
greatest for central collisions which involve the largest number of
nucleons in fhe interaction region and, thus, maximize the probability

' of‘collective phenoména.

The effect of such an imﬁact parameter average is to introduce

_fdzb.B(g) on:the‘right-hand side of both Eqs. (4;60) and (4.61). Because

anvaverage over a product of functions can be quite different from the
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. product of their averages, the résulting correlation function for an

arbitrary B(b) will not have the'simble-structure of Eq. (4.66).
| In order to extract information out of_R(iI,iz)_it is absolutely

vital to select a sufficiently narrow band of impact parameters, Ab,

‘via B(S).over which thevdegree‘of coherence D(E;E) satisfies

[aD/3b| << D(k;b)/|Ab]. We must therefore insure that

ENCHI I

PGm e el g | BT ERy @
is approximately independent of b over the range Ab specified by B(g).
Note that Eq. (4.72) doeé not prevent Jo(i,s).and Jch(i,g) from varying
with b over that range. It only requires that the ratio of the nuﬁber
of cohérent'to_chaotic field pions.in each mode k . be independent of .E‘
over a limited fange.‘-Iﬁ effect, all the_variation of-i'—’1 and P2 with |

respect to b in that range then comes from the variation of (nﬁ(ﬁ)_x

<(n,n(i’>))2>, and from p(q,b). With Eq. (4.72), R(k,,k,) is given by

Eq. (4.66) with D(K) replééed by Dé(i) and p(q) replaced by (p(q)’ g.
| ' In practice, to maximize DB(kL we mus; selecf a narrow range of
| 1 and P2 with addifidnal constraints oﬁ fhe
distribution of the remaining fragménts produced in fhe nuclear collision.
To isolate such desired beﬁtral collisions, high associated (chafged or’

pion) multiplicities, tdgether with approximate azimuthal symmetry may

be required.19
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This concludes our discussion of the effects of different production
dynémics on R(il,iz). We turn next to the question of how final state
interactions can distort the interference pattern resulting from a

" given production mechanism.
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V. FINAL STATE INTERACTIONS

'A.  Graphical Analysis

In Section IV ‘we' considered a model of plon productlon and absorp—
tion for nuclear collisions which is based on an 1nteract10n part of the

actlon functional of the form“
= fd“x J(x) $(x) , (5.1)

where ¢ is the pion Heisenberg field and’J(x).is a classical source
current. Equation (4.6) follows immediately from Eq. (5.1), and
in the interaction picture I, (EISJ[0> = J(k), given by Eq. (4.8), is the -

amplitude to create one pion of momentum k as illustrated in Fig. 1.

The amplitude_S00 for no pions to be produced can be evaluated

using Wick's theorem in the interaction'picture31 as .

S

00 ‘°|T(e¥P i [a*x 360 4,00) |03

= exp'{-v%-j.d"x d“y J(x) AF(X-Y)J(Y)}

= .exp (- }..f d*k lJ(k’ko)l ' ;
. 2 4 .2 2 2 .
| (2m) ko-lkl -@ﬂ + ie
-n/2 iXJ .
= e e S - (5.2)

'where 1A (x-y) = (0]T(¢I(x)¢1(y))|0) is the Feynman pion propagator, n

is given by Eq. (4.9), and the'real phase XJ is given by the principal

4 4 |J(k,k.)| .
Xy = -k p[ d’k 5 . (5.3)

value integral

2 _ 2
(Zn) k -m

‘Note that J(k,k ) is the usual Fourier transform of J(X, t) and related to
J() in Eq. (4.8) via J(k wk)((zn) 20072 < 5.
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Equafion (5.2).can be.simpiy interpreted in terms of Feynman'diagrﬁms.
First we recall that the Linked Cluster Théorem ésserts fhat log S00

is equal to the sum of all connected graphs in- the theory. For Eq. (5.1),
there is'only one connected diagram, ®3>® , whereby a pion is created
at some poinf x and destroyéd at.somevothef.point' y.; The value‘ofb
the diagfam is precisely -5/2‘+ iXJ as computed»aﬁove.’

-~

The amplitude to produce exactly m ‘pions with momenta_kl,...,km is

SCyseeoky) = (R

it

T(exp i f d*x J(x)¢1(x)) 0)

N - -ﬁ/2+iXJ _ -
iJ(kl)..;iJ(km) e , (5.4)

which is what we also get by evaluating the Feynman diagrams in Fig. 3.
We can now recover the previoué result, Eq. (4.14), for the m-pion

inclusive from

| | o o .
r > - RS | 3 48 ~ ~ 22
Pplkyseennk)) = E ——(n_m)!]d Koop---dk (S, K|
‘ . n=m .
_ o (5.5)
In this model, ﬁm'is obtaine&‘by Simply squaring the diagram in Fig. 3a.
Now we turn to the effects of final state interactions. To incorporate

such interactions, we introduce effective one- and two-body potentials,

V(x) énd U(x-y), via the following action fﬁnctiénals'

s, = fdx Ve, .8
L | | -

Su

'%fd"x d*y $2(x) U(x-y)¢> () . 5.7

The optical potential V (dimensions m?) describes the interaction of the

produced pions with the nuclear system. The 7T final state interactions
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are‘to-bevqéscribed via U (dimensions m*) in Eq. (5.7). For Coulomb

finél state interactions, Egs. (5.6) and (5.7) are modified in the usuai
wayvto take into accbumt the four-vector ngture of the Coulomb field Au(X).
' vin addition té S

Introducing‘Sv and S obviously modifies the pion

] J
production amplitudes. In Fig. 4 typical final state distortion’diag:ams
are shown. . In Fig. 4a, two pioné are producedvat_space-time points x
and y with amplitude J(ij(y). bThe pions then scatter in the externai
‘potential V(xi) at arbitrary points X4 5 and they also scattef off each
other via U before béing detectedrwith momgntum El‘and.iz. What greatly
cdmplicates the problem is the two-body potentiai U which also leads to
interactions with virtual pions wﬁich.are’produced and reabsorbed during
the nuclear collision asfilluStrated in Fig. 4b. In contrast, the ' |
diétortion'graphs due to the one-body optical pdtentiai, V, illustrated

in Fig. 4c, can be easily summed. We turn in the next section to that

special case, when S

y can be ignored compared to SV'

B. ' One-Body Optical Potential Case

1. Coherent state distortions

To sum all rescatterihg diagrams in Fig. 4c due to an optical
potential V, we need only to solve.fdr the pion‘propagation iAV(x,y) =
(O|T(¢V(x)¢V(Y))|O)§ in the Furry picture [see p.566-575 of Ref. 35]

in which the field ¢v(x) satisfies
(D + -m:r + V(x)) ¢v(x) = 0 - | (5.8)

Then AV satisfies the integral equation

By) = 8,0en) [ V@G (509)
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. with onbeing the free Feynman propagator. In terms of AV; we can sum

all disconnected diagramsvfo obtain for the vacuum-to-vacuum amplitude

g ' . i8
Spo) = exp {-1/2fd d“y-JCx_),{sV(x,y)J(y)}e Vo, (5.10)

which is the natural extensionbof Eq. (5}2).' In Eq. (5.10), there is an

additional phase, 6, arising from virtual pair production and annihilation

v’
in the potential V(x). - The expression for Bv

integration over .rV(X)AV(x,x)d“x, which we do not display since we

involves a coupling constant

will only be interested in'|Soo(V)|2; Wé assume that V(x) is not strong
enough to produce real pion pairs and hence that ev is real. This
assumption is quite reasonable for the final state interaction
potentiéls involved in nuclear collisions,:and indeed,.called for by the
very definition of final state interactions;”-Only the external source
current, J(x), produces real pions in our caée.

Therefore, the probability thét no pions are produced in the reaction

is

Ispe 12 xp {-f‘d"x d'y J(x) Re{ iA,(x,y) } J(y)}

. -nv
(]

(5.11)

As we will'See below, under the assumptlon that V(x) doe5<not lead to
real pair productlon and the assumption that V(x) supports no bound states,
the number n defined via Eq (5.11) w111 turn out to be the average '
p1on multiplicity.

Now, we compute the amplitude, iJV(E), tO'pfoduce one pion of momentﬁm
k  with no Vacuum'fluctuations as illustrated in Fig. 4c. - For fhe'case'

V=0, we already saw that JV=0(§) is given by Eq. (4.8).
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For V# 0, we compute JV in the (out) interaction picture using standard

techniques [see p.146-149, 178-189 of Ref. 31]

iJ\I ) ¢ kout 'Oin )/( 0out | Oin )

. 3 * g _ =1 »
[d x fE(x) i9 (°out|¢out(")|°in’ Soo W)

3 o .'-*+ |
x(1’1_;11‘,:, f x fi(X) 19 (ooutld’out(x)sloout connected

lim f adx £ (x) 1’5:

Xo

{:V: ni, (%)nf d"zl.:.-.d"zn dy I
n=0 .

X

* Ogut|T (d)out(x)¢out(zl)v(zl)¢out(.zl) e

Sout Z)V ()00, (200 o ¥)|0 out’ connected f
- Jlin, ii(-i)n d®x f‘;(x)i*a_:fd“zl...vd“zn d*y I
x {iB (x-2,)V(z))ib (z,-2,) ... V(zn)iAo(zn-y)}.

= -ifd")' J(y) (‘Pi(Y))* ., (5.12)
h in standard notati 31'f*' -ikx '32 3 =3 -3
where in standard no allon, k(x) =e /¥ (2m) we o= 9% %>’

and S is the S-matrix for the combined interaction SjAand SV in Egs.

(5.1) and (5.6). We have also defined the incoming scattering wavefunction
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‘(wl:‘(x))*' 'ygi_al;fé y f %) 13 1Av(y.x)

f 4%y £ 175y° U OGN

(kyeloyfor . - 6.13)

In Eq. (5.13), the second line follows from the definition of Av in terms
of the Furry picture fields, ¢V,'and from: the as}'mptotic weak convergence
.of ¢v to the non-interacting out-field ¢out
From Eq. (5.8) we see then that‘\p]'; satisfies
(Q+n®+V@N 0 = 0 - (5.14)
together with the boundary condition that

-ikx

,,Mx) - () e
:5-*" k Vv (2m3 Zwk

(5.15)

Thus tp;(' reduces fo a plane wave at xo+°°. Naturally, tp]: also reduces

tp fk .in the case V.->0. Note that»we have implicitly usedvin Eq.v .(5.13)
the assumption‘that the vacuum |0) is stable with respect to the interaction
SV in Eq. (5.6)f '»I'hisr cé.n be seen from the fii'_st line of Eq. .(5.13) since,
in geﬁeral, both positive and negative energy solutions of Eq. (5.14)
contribute to Av(x,yj. Equation (5.15) only follows when the negative |
energy solutions vdo not con_tribute in the Yo T limit, i.e., no pair
production occurs. | |

~Under this same assumption we can write
. _ 3 _ >
id, (x,y) = fd kq0(x, yo) (0|¢V(x)lkout koutl¢v(y)|o>

‘o0, x)<ol<1>‘,cy)lkout oyl .6
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since ¢v connects then only one particie state to fhe vacuum. Actually,
Eq..(5.16) also requires that V(x) does not supporf bound states, i.e.,
only continuum one-particle intermediate statés contribute. This latter
requirement should also be well satisfied in nuclear collisions.
Sﬁmmarizing Eqs. (5.12) and (5.13), we have obtained tﬁe intuitive

Tesult

@ - f-d"x I (ke 00000, (5.17)

~

which states that the amplitude to observe one pion with momentum k is
th¢ p?6duct of the amplitude .J(x) for creating a pion at some space-time
point: x times the amplitude, (Eout|¢v(x)|0); for propagating that pion.
from x such that its wavefunction approaches a plane wave as t =+ +,

We can now immediately calculate the amplitude for creating exacfly

m-pions as

Sky,.oonk) = 13,k ..o igu) Soo (), (5.18)

1°° n

with the vacuum fluctuation amplitude Spo(V) given by Eq. (5.10). To
calculate the m-pion inclusive distribution via Eq. (5.5) we need to

: evaluate

f]JV(k)lzdak = fd“xd',‘y J) I@y) {fdgk (0], () [k o) <kout|¢v(y)|o>}

~

[a'xa'y 360 Re(ity (e,))3 )

S VN |  (5.19)

which follows from Eqs. (5.17)(5.16)(5.11).

Using Eqs. (5.18) and (5.19) in Eq. (5.5), we obtain finally
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Pa(k k) = IJV(k1)| iee |Jv(km)| o, (5. 20)

which is the natﬁral genérélizatioﬁ of Eq. (4.14). Infegrating the
single pioh inclusive distributipn (m=1) showsiimmediately.that ﬂv in
Eq. (5.19) is the mean pion'multiplicity.

Equafion (5.20) demonstrates that_for a pure current‘ﬁource,‘the
-only effect of the external potential is to redistribute the momentum
distribution of pions without intrdducting correlations. 1Thi§ is clear
from the diagfammafic analysis.' Thé resulting correlation function is

thus identical to Eq. (4.15).

.2.  Chaotic field distortions

Now consider a chaotic ensemble of currents as in Eq. (4.47). The

on-shell Fourier transform Jch(i) is now replaéed by -

th(k_): = /d"x (w%(x))* 12-:1 e J (x-x.)
a" . D igy  igxy :
= = @@ e e T, (5.21)
- Jemt ko i=1 o
in terms of the space-time Fourier transforﬁ§
_ iqk _ :
V@ = f e Wl d'x (5.22)
and : _
iqx 6
J,n,(q) = /e J(x)d x . (5.23)

Note that in the limit V-0, vy_(x) » fE(X) as in Eq. (5.15), and
1 =

therefore
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@ g @0’ 8- 9@ -8 —— (5.24)

w/(2n)32wk
In that same limit,' h(k) reduces'to Eq. (4.47).
' We can now evaluate the ensemble average over “{N, ¢ ,x } for P (k)

as in Eq. (4.60),

~ \' ~ 2 .
P, (k) Clag, @] I, 6,3

(N> f o Lo s @e@an @} e
@my” (2m) " 2 k
(5.25)

where p(q) is thé space—timé Fourier transform of the chaotic source
. distribution p(x) in Eq. (4.29).

.To ;implify Eq. (5.25); we note that according to Eq. (5.24), ¢£(q)
must be sharply peaked around q6==wk and‘a==E. The "widthf of.?i(q)
around q>= (wk,i) of course depends on the strength and form of the
external potential V(x). It is cléar that the average valuev(V) of thé_
external potential must set the scale of the width of w~(q) On the.

other hand, J (q) varies on a scale >mﬂ | Thus, if (V) << m;, then

J“(q) varies slowly compared to wi(q),.and we can approximate
vo@ Jp@ = v(@) Jpln) (5.26)

When Eq. (5.26) holds, Eq. (5.25) simplifies to
' ' .~ ~ 12 S R
P(k). = |J“(k)| (N} py (k,K) , (5.27)

where J“(i) is given by Eq. (4.8), and the distorted transform of p(x)

is defined asv(note convention aboutvf(Zn)3 Zwk factors)
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1

| | Y L : LI ‘ e | _ : D
) f 19 L4 Ven w,  L@e@a) @)V eEn
: i 2

emt em?

=

Pv(ki’

| f d*x p(x) ("’i("))* b () (2m® Vi 2 - . (5.28)
: ' S 2 ‘ .

From Eq.'(5.24), the distorted transform redﬁces to the Fourier transform

when V>0, i.e.,

py (k) =55 olk-k,, wiwy) o (5.29)
Thus p,(K,k) » 1 in that limit, and Eq. (5.27) reduces then to Eq. (4.35).
For il=E2, pv(il,iz), has the simple interpretation of being the
probability to find,the pion in the interactioﬁ regioﬁ 5pecified by p(x)
given that it was measured at t+e in ﬁtate Iﬁ).- Fbr a repulsive
potential, lw;[z < 1 for small x and hence pv(ﬁ,i) < 1. Thus -
rpv(i,ﬁ) can be thought.of as a penetration probability through the ”
external final State interaction potential. | |

Evaluating next the double pion inclusive distribution in the

approximation where Eq. (5.26) holds and (N) >> 1, we get ,

P, (&, ,k,)

V o= 5124V & 412
B KT G . )

. -~ 2 V ~
~ | (1210 &k,) |2 (0

X

loy Gk G, 8 + Ioy Gk ) . 63

In this chaotic field limit, we therefore obtain the following expression

for the two-pion correlation function:.
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. loy (k, ,k,) |2
R K) ~ 1+ ~pv~ e . (5.31)
oy (KK, )y (6, ) |

Noting Eq. (5.28), we can rewrite this expression in analogy to the

simﬁlevform in Eq. (3.6) as
de“xd“' p(x) p(y) l-—l—-(ﬁ;(x)w'( )+ @)
. YRR R TR El)l
R(k,,k,) = . ' | 2 ‘z. ' ’
| / d*xd’y p(x)p ) Vo) | |- |
' k, k,
(5.32)

In the numerator the symmetrized‘twofpion amplitude appears, whereas in
the denominator the unsymmetrized amplitude appears. This is the
expected form of the correlation function for the chaotic fi§1d~case
béséd on the heuristic arguments in Section III. Our derivations have
the advantage of showing the conditions necessary to derive Eq. (5.32)

in an exactly solvable field theoretic ‘model specified by Eqs. (5.1,5.6).

3. Partially coherent case
For this more general case, the current in Eq. (5.12) is written

in analogy to Eq. (4.57) as

~ V .~ vV .~
I,E® = I @)+ I [ (5.33)

with JXh given by Eq. (5.21) and JX given by Eq. (5.12) with
J(x) = Jo(x). '

Evaluating the single-pion inclusive distribution gives

~. V. ~ V ~.,2
Py k) (lJo(k) * Jch(k)l ){N,¢i,xi}

n (k,V) + n 4 (k,V) . (5.34)
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with nch(i,V) ‘given by Eq. (5;27).and ‘na = IJXIZ. Note thét the
- degree of coherence, Eq. (4;65),_is'affectedvby final state intefactions.
The distorted degree of coherence is given by

n, (k V)

D, () = — . . (5.35)
(n (k,V) + n h(k V)) ‘ : ,

-Finally, evaluatlng the double 1nc1u51ve dlstrlbutlon the correlation

functlon replacing Eq. (4. 66) is found to be

REyE) = 1o (-0, F)( -0y K,)) 5, &,k
+Dmm&mnmnunmmﬂmmwm
| (5.36)
where
oy (k,.k,)
T oy, K,y Gy k)

- Bylk, Lk , (5.37)
repiaces fhe Fourier tr#ﬁsfqrm p(kl—kz) in terms of the distorted transforms
given by Eq. (5.28). OfvéourSe, in the limit V+0, Eq. (5.36) reduces to
(4.66). | |

Note.thaf the intercept 'R(i,ij»= 2-D;(i) measures the distorted
degree of coherence. Also, it is.clear that the geometrical information
provided by R(il,iz) is distorted by final state inte:actions. For a
general partially coherent field in the presence of final state interactions
it is thefefore a non-trivial.task-to unfold the effects.of V(x). In a
subsequenf paper,21.we étudy Sygtematically how to unfold final state

interactions for potentials V(x) appropriate for nuclear collisions.



-58-

Our aim here has been to display the structure of the relations between

R(EI,EZ), p(x), D(ﬁ), and V(x) as summarized by Eq. (5.36).

C. Two-Body Final State Interactions

1. The Bethe-Salpeter amplitude

With the inclusion of a two-body potential U via Eq. (5.7), no
exact calculation of final state distortions is possible. However, an
important class of diagrams (Figs. 4a,4c) can be summed to obtain a
reasonable approximation to such distortions.

The essential physical approximation is that the'single-pion inclusive
diStribution,vPI(E), is not affected significantly by U(x-y). This approx-
imation is expected to be good when the single pion trajectories (wave
functions) are determihed mainly by the external potential V(x). For
Coulomb final state interactions'the strength of the external potential
Za ~ 1, is much larger than that of the relative potential, a << 1, In
this approximation, we therefore neglect the effect of two-body final
state interactions between observed and unobserved pions as in Fig. 4b.

Only diagrams summed in Fig. 4c are considered, i.e.,
P~ (@)%, (5.38)

as given, fof example; by Eq. (5.34) for partiélly coherent fields.

.The double pién inclusive disfribution, on the other hand, isvclearly
sensitivé to the distortions of the relative wave function of the observed
pion pair. This is especially true for small momentum fransfers,

IEI-EZ] < mn\ﬁf, corrésponding to classically forbidden regions‘of

‘phase space. The class of diagrams that lead in the non-relativistic
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limit to the two-body Schrodinger equations for potentials V and U
is illustrated in Fig. 4a. Our second physical approXimation is therefore
to calculate the two-pion production aﬁplitudev'Jz(il,iz) as in Fig. 4a.

In this approximation then
Ik, k) = % f d'xd'y (I KK out|T(60I6M) [0, . (5.39)

where ¢(x) is the Heisenberg field for the final state functionals

3

vV U :
In ahalogy to Eq. (5.13), we will denote the symmetrized two-pion

S,,+S. in Eqs. (5.6) and (5.7), not including S

scattéring wavefunction appearing in Eq. (5.39) as

[y~ &5"’”? = <k1;k2’°utl'r(¢(x)_¢(y))lo>4a - (5.40)

1

In order to sum all diagrams of the type in Fig. 4a, we first express

-w; x in terms of the two-pion propagator
12 '

N2, :
Gy(x'y';xy) = (-1)° CO|T(6(x")d(y"Ie(x)$(¥))]0)
via the usual reduction procedure.:”1 Then the Bethe-Salpeter ladder sum

corresponding to Fig. 4a‘1eads to the following integral equation for GZ:

6, yxy) = A, 0N 00y + 4GB0 0 b

eoif a'xd'y" Gy (x', y XY UGy A (XA, )
_ (5.41)
where we used U(r) = U(-r) and the symmetry property of Gz with respect
to interchange of labels x'" <> y".

From Eq. (5.41), we theréfore obtain the Bethe-Salpeter integral
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36 -
i £
equathn or wklkz as |
w: ..,(X,)’) - ¢: ~(x,y) - ifd“x"duxﬂ w: ~(xl!,y")u(x"_y")A";(x'l,x)A;(yil,Y) s
1sX2 k,k, k,,k, . .
(5.42)

where

0. ~(x,y) = VL(OUL(Y) + ULGOVO) (5.43)

kl, > kI k2 } k2 kl

is the asymptotic form of w; k(x,y) with w%(x) given by Eq. (5.13),

1°°2
i.e.,
Lim Y. _(x,y) = ¢ . (xy) . T (5.48)
Xo"’m 1282 kl’ 2 :
yO -3 0O
Equations (5.42)-(5.44) show that w_ is the incoming two-pion scattering
172

wavefunction in the pbtentials V(x) and U(x—y).

" In diffefential form, it is straightforward to verify that

. 2 2 - ' . -
(O, +m + veaX(d, + my + V(Y))w~1:isx’YJ = - 1U(x—y)¢E1}E£x,y)
(5.45)

In terms of this Bethe-Salpeter amplitude, the double-pion inclusive

distribution in this approximation is given by
P (k. ,K,) ~ (|3 (k%)%
2Vh12 72 2V 12

. . ,
= <34'Ud"xd"y Jx) I wi i(x,y) y . (5.46)
. 1’ 2

Note that in the limit where the two-body final state interactions

are negligible (UZ0), ¢ reduces to ¢- ~ in Eq. (5.43), and

1™2 1h2
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P, reduces to the external field distortion form in Eq. (5.20).

2. Gamow penetration factor

An extreme case of interest is when the external potential, V, can

- be neglected, and only the relative potential U contributes to final

state distortions. In that case ¢; X can be decomposed into a product
' 12 ‘

"of a center of mass and relative wavefunction as

e_m. {or ¢ + 67 em}

)

v . (xy) :
K10k (2m° (2w, 20,)"

R - -
. dq' e e 3¢ (q') + ¢— (-q") |
[ ent endvmoae, ek 7 TaK

e - (5.47)

where K = k,+k,, q= (k-k,)/2, x=R+r/2, and y = R -1/2, and

¢; ¢(a') satisfies from Eq. 5.42

0@ = 06t @-a) - iy (Fea)ag (5-a)
y
x | -SB_ 4 () u'- p) , (5.48)
[(2ﬂ)4 q k7 TP

with AZ(p),a p?-n?-ie)" L.

In the non-relativistic limit (|q|,|K]| << mﬂ), the integral of

b

Lippmann-Schwinger equation.36 The important point to note in Eq. (5.48)

K(q') over 'dq; , which is ¢; K(§,t=0), satisfies the non-relativistic
2 >

is that v¢; K(q') is sharply peaked arouhd qQ'=q, with a width that is

determined mainly by U(q-q'). This suggests that to a good‘approximation
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~ > d'q' JK/2+9") I(K/2-0" gy, - *
J.(k,,k,) = -f ¥lo (@) + ¢  (-q")
arine (2my* (2n)® 2w, 20, * K ak |

~ 13(k)ITE,) (¢;K(r50))* , | (5.49)

where J(i) is given by Eq. (4.8).
This'approximation holds when ¢; k(a') is sharply peaked compared
to J(q'). In this case, the double pion inclusive distribuiton, Eq. (5.46),

becomes approximately

Py(kpRy) = oge(=0,e=0) > < U@ I3 D . (5.50)

For a partially coherent current ensemble,_for example, the ensemble
average is evaluated as in Eq. (4.61). Therefore, the effect of two-body
final state interactions on the corréiation function R is simply to
multiply the correlation function in the absence of final state interactions

(Eq. (4.63)) by a penetration factor

G(k

ot
N
—
|

I¢;,K (F=0,t=0)|* | - (5.51)

[Rk, k) ~ 6,k [RGLEDT, - (5.52)

In the non-relativistic limit and for a Coulomb final state interaction,
G is the well-known Gamow factor21

- . : 2mn - .
G(k,,k,) = 2m/(e -1) , n = am/|k-k,| ,

which is the modulus square of the non-relativistic Coulomb wavefunction
at the origin}. In analogy to that Coulomb casé we will refer to G(Ei,iz)

as the Gamow penetration factor.
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- 3. Distorted Born_approximatioﬁ and generalized Gamow factor

Up'to now we have analyzed two special cases: (1) external one-body

potential only; V(x), Eq. (5.20), an& (2) relative two-body potenfial
- only, U(x-y),_Eqr (5.503. The moie genefal problem of combined one and

~ two body final state interactions involves the solution of Eq. (5.42),
which even in the non—relativistic.limit is an extremely difficult task.
The needed two pion amplitude Y. ~ in Eq. (5.46) is too complicated
in practice to caléulate, especiaiiyzfor Coulomb poténfials. We can;
however, obtain a reasonable estim;te for Jz(il,iz) in Eq. (5.39) in the
case that U is weak compared to V in‘the spirit of the distorted Born .

approximation.

From Eq. (5.42), wi . m ¢% > to zeroth order in U. This means

1%2 12 .
that in the distorted basis specified by ¢~' ~, » the coefficients
~ o~ : - 1°%2 : '
C(klkz,klk;) in the expansion of wE'E in that basis are peaked. around
172
k] = k,, k,=k, and k;= kK, k;= kl.. If U is weak compared to V then

the width of C(iliz,iiié) around those peaks will be small, and an
: approximation similar tb-that in Eq. (4.49) will be possible.
Tovdevelop'this approximation Qe assume first that the time

. dependence ofA V(ix,t) is so slow that we can replace V(x,t) by an

effective time independent potential V(x). -In that case the one-body

distorted waves in Eq. (5.14) have the form

-iwkt

v ~ e
P (x,t) = v~(x) s (5.53)
'k k < /2(“]((2‘")3 :
L ikeX . o |
where vi(x) > e as |x|+ . These incoming scattering waves

form a complete orthonormal basis in the potential V(X). Again we

assume as in section V.B that V(X) supports no bound States, Inserting
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Eq. (5.53) into Eq. (5.16), the external potentialy propagator can be

decomposed into its positive and negative frequency parts as

| fd.,.k- - eloo) {vi(i')vi(i) v Vi) }

g (X', x) -
b (2}1r)4 - 2wy w-w +ie - w+w -ie

A;(x',x) ;PA‘-,(X',X) | .‘ . (5.54)

To calculate the first order correction, Gw]:(» 7o to w: . from Eq. (5.42),
1 2_ 172
we will neglect the negative frequency part, Av(x',x), of Av(x',x)
because U 1is assumed so weak that virtual pair creation by U is negligible.

. . -% .
Therefore, the first order correction, kav % from Eq. (5.42) is
' . . ' ‘12 . .

SV )~ f a'a'y 02" Oy UG -y A (K O y)

1272

d'x,  d'k, .
i INCRINCD;
j em? @mt °rer?

x {«kl_k2|ulk'1k'2_»+<< k.zk,[u[k;k;»}

1 X o~ ko~ ik'lox.:) ik;o Yo
X 3 'v.,'(x) v.,'(y) e e ,
(2m° Vaw 2w, k) k, (5.55)

where A;(k) (Zu)k(ko- w, + ie))—l, and the off-shell matrix element is

defined as

1ot b gt * B LR SR
€kk, |Ulkjk, » = [ d'xd'y VRV, () e
1 S |
~ ~ i(kzo'k;o) Y5
x  Ulx-y) 3\/2‘, (y) v. (y) e _ o . (5.56)
k,” k) - 7
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In the limit V-0, Vi(;i) > e and-
€k k, UKL Y —> 2m* 8% (k,+k, - k! -K') UCk,-k]) (5.57)
. l 2 172 . 1 2 1 2 1 1 . .

We can now evaluate the two-pion production amplitude, Eq. (5.39), to

first order in U as

3,6,k = i3 R)Di3,R,) + 63,(K,,K,)  (5.58)
where S J
R Cdhky A 1
Motk - f e e ey

x {10 (k)AL () Cka [Ulkpky )  (5.59)
and the off-shell distorted transform.lv(i,ko)is given by
. ~ y ikoxo ‘% - L .
Jv(k,ko) = |dxe- v&(x) J(x) . (5.60)

Npte that in our convention in=Eq:~(5.12j, JV(E) ='JV(E;wk)((2n)3 2u,)
Using Eq. (5.57), it is easy to show that when V-0, Eqs. (5.58)
and (5.59) agree with‘Eqs. (5.48) and (5.49) to first order in U, as
they.must. |
We can now invoke the sémé approximationlleading to Eq. (5.45),
i.e., the'funcfion in the brackets in Eq. (5.59) is sharply peaked around
k;=k1; k;=k, compared to the slowly varying function Jv(k;)Jv(k;).

Therefore we obtain an approximate factorization as

-1/2

’
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GJz(kl,kz) 2 iJv(kl)iJv(kz)6¢*(kz’kz) s (5.6;)
where ‘
L bt . :
Lo bog e ] d kl . d kz +.' ] + ' (( k lk'kl ))
5¢*(k1’kz) =1 4 4 'Ao(kl)Ao(kz) kl 2|U 172
J (2m)”  (2m) | (5.62)

Finally, we obtain via Eqs. (5.46, 5.58, 5.61) the distorted Born

approximation for the correlation function as
[RGeK)Ty y = GG RIIRGG K gy (5.63)

where &7 is the generalized Gamow factor to first order in U but all
’brders in VvV,

Gk ,ky) = 1+ 2Red¢f(§1,§2) e (5.64)
with 8¢* givenby Eq. (5.62). In Eq. (5.63) RU;O,V is given for
partially-coherent fields by Eq. (5.36).

Equation (5.63) is the main result of section V, showing how both
relative and external final state interactions affect the correlation
function. If we conﬁider V to be the external Coulomb field of strength
Za, and ﬁ to be the relative Coulomb 7 T potential of strength.d, then
Eq. (5.63) incorporatéé final state interaction to ail orders in (Za)
But only first ordef in o. The numerical evaluation of Eq. (5.63) will

be published elsewhere.21 For a brief summary of those results refer back

to Section I.
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APPENDIX A
SPACE-TIME PARAMETRIZATION FOR CHAOTIC FIELDS

1. Two-Pion Ensemble

In this section, we derive the chaotic field corfelation functiqn,
Eq. (3.6), using a simple space-fime péramefrizatioﬁ of the pion density
matrix. The mbdel states in Eq. (4.5) will be chosen to be localized packets
|x1, -+« »X )z around space—time‘points Xss which are assumed to be
distributed in a space-time volume specified by p(x).

We construct the normalizable, symmetrized packets via

|%ys eenx e = ¢;(x1) ¢;(xn)[o> -, | (A.1)
where , ,
ikx . . .
op0) = f &k ——— f£() 2’k B
(2m) -

- with v - L _
kx = wx -kex, and [a(k),a+(k')1 = 83(k-x') .

To insure that ‘f(xlx)f = 1, we normalize f such that

3 ‘ N :
fdks e 1? = 1 . (A.3)

(2m)

The two-pion state Ixy)f is then normalized to

, 2 ‘
f(xylxy)f = 1+ If(x[y)fl , - (A.4)

with :

| | 3, -ik(x-y)

e £® 1% . @.5)
(2m)
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From Eqs: (A.3 -A.5), it follows that 1 <€ f(xylxy < 2.
We can now construct a two-pion ensemble in this space-time

picture as

o = N [d'xd'y 000 Ixy vl L @

where

[a'x 'y o0 gavlxyyg

| S S (o > 012
1+ £k p(k-kK',w -, ,) £CRkY]C .
] 2m*®  (2m? | A% '(A "
-1
f

The single inclusive distribution in this picture is obtained via

Clearly, 1 < N.° < 2 because lp(q)]z < 1.

Eqs. (4.2) and (A.6):

P = N [da'xd'y o) faylat®ad® [xy ),
= N [d'%xd"y ppt) [ @Kk [y 2 L (A8)
where
o ikx ik'y ik'x iky et
(kk'lxy>f = {e e + e e ﬂlif—(?]:—l s (A.9)
(2m)

is the two-pion wavefunction in momentum space that is analogous to

le in Eq. (3.5). Evaluating‘Eq. (A.8), we find
- ~ 12 .
p) = an £ g4 eday (A.10)
! £ en’ )

where g(k) is a correction term given by

~ L) ~
e® = |25 jed@n)? [owkn|* (A.11)
(2m)
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which because Ip(q)l2 < 1 satisfies 0 < e < 1.
The double inclusive distribution with this parametrization is in-
turn given by

HeRIERIICRIE
- - 3 {1 + Ip(kl'kz)lz} . (A.].Z)

P(k.E) = N
2( 1772 £ (2“)3 (2m)

Integrating Eqs. (A.10) and (A.12) and noting Eq. (A.7) we see that
(nﬂ>= (nﬂ(nﬂ-l)) = 2 as it must be from Eq. (A.6). Therefore the

correlation function, Eq. (1.1), which is to be compared to Eq. (3.6) is

Rk k) = {1+ |9(k1-k2)| Hi-ek k)} (A.13)
with a corréction function given'by'
.:, : ' -~ ~' _1
ek, k) = 1-{N(1+ek))@ ek} . (A.14)

We show bélow tﬁat.fOr nuclear collisions'; <<'1 and, thus, that the
ideal BE interference result, Eq. (3.6), follows in tﬁis simple space-
time parametrization of P Our aim in deriving Eq. (376)'from Eq. (A.6)
was.toldemonstrate that this form for the correlation function is a

_ generél consequence of a space-time picture of the production dynamics
and not unique to the classical current ensemble derivation in Section
Iv.C. 1t ié in fact straightforward (though tedious) to demonstrate

that Eq. (3.6) also féllows under suitable conditions from the more
'general space-time pérametrization'

e fxyeeex |,

(A.15)

| Y "
oy = %‘ Pn(n)/d x,0(x;) ... dx p(x) lxl"’xn

with P“(n) being the pion multiplicify distribution. The necessary
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condition to derive Eq. (3.6) from Eq. (A.15) is that the
pion wave packets be small compared to the dimensions of the

reaction volume specified by p(x).

2. Estimate of Correction Terms

Next we show that if the spatial extent, r_., of the packet Ix)f

is small compared'to the spatial extent, Ro’ of the pion source p(x),

then

e ~ 0((rf/Ro)3) << 1 | (A.16)

~ in both Egs. (A.10) and (A.ig). To see this we note first-that Eq;
(A.10) places a'strong constraint on If(l‘z)l2 since the definition of the
~ sign in Eq. (4.13) and (A.6) is thét the right-hand side of both Egs.
(A.10) and (A.12) provide a good approximation to the observed inclusive
distribution. Thus we are not free to choose f(k) as we like, but
rather, Eq. (A.10) constrains lf(ijlz to have a momentum dependence
similar to the observed single pion inclusive distribution. Note the
similarity between the role of f here and the classical current J(k)
in Section IV.

For relativisticvnuclear collisions the observed pion distri-

bution, and hence lf(lz)l2 falls off rapidly for |k| >> (kﬂ) ~m.
_Therefore, we can estimate Te ~ (k. Y1~ 1 fm. Next, from dimensional
considerations of Eq} (A.3), we can estimate the order of magnitude

|£®) | for [R] < 1/r; as
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. | |
J___J_f(k)3 ~ 0(x) ~ om ') . (A.17)
- (2m) | '

On the other hand, for huclear collisions, the dimensionless p(k)
" satisfies |p(k)| <1 and must fall off rapidly for |k| > 1/R, where

Ro ~ O(Al/3 m;l), A being the average nucleon number in the pion

vproductibn region. For Eq. (2.1), A~40. Therefore

. ’ 3
L l Cpea 12 3., - nfl 1 Moy
_p(k-k)l ~ | a&x 0 e ~ol=-) . @8

[k-k| S1/R

For A >>1, lp(k)l2 is sharply peaked compared to lf(E)Iz, and we

finaliy obtain, for k £ l/rf;

- a2 N e :
k) ~ J—fﬁ)—z!——[dak' ok, w312

(2m)
: 3 ) B ) ) . . 7
~ 0((xg/RD7) ~ 0(1/8) << 1 . (A. 19)
Note that for k > 1/r., [flz and, hence, € decreases rapidly.

Next, from Eq. (A.7)

-1 Ak o2
N = 1+ — |f®)]° e(k)
£ [czm"’

< 1+¢k) = 1+00/0) , (A.20)

and then Eq.

where we used Eq. (A.3) to obtain the upper bound on N;'
(A.19) to obtain the estimate for é(i).
Equations (A.19) and (A.ZO) therefore imply that e(il,ﬁz) given

by Eq. (A.14) is 'o((rf/Ro)S) = 0(1/A) as stated in Eq. (A.16).
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Finally, we note that the samé arguments leading to Eq. (A.20) can
be made to estimate the correction term § in Eq. (4.43) of section
Iv.C.1. In particular, comparing Eqs. (4.43) and (A.7), we see that

¥

we can identify

§ - SNQ-D))

-1 .
Neo -1} . (A.21)
(N%) £

where |£®) % = (2m?> 'lJngE)lz/ﬁﬂ, with f_ given by Eq. (4.37).

From Eq. (4.35), this If(E)I2 is also constrained by the single pion
inclusive distribution to decrease rapidly for [EI 2 m. Thus, Eq. (A.17)
'still holds and the estimate for N%l‘—l in‘Eq, (A.20) still holds.

Therefore, 8§ = Q(1/A) as stated in (4.43)._
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APPENDIX B

We derive here the limiting ensemble probability density for the
chaotic current strength |Jch(lz) |2 to have the value |J|2-, Eq. '(4_.50).'
First define a vector pair of limiting random variables

. e 1’1(1’2);5 N N | |
(x(¥),Y(E)) = lin ( . ) D cosd, , ) sing, ,  (B.1)

F o i=1 i=1

where ei = k‘xi+¢i. The chaotic current strength, Eq. (4.49), is then

given by o
L2 = X« Y ®.2)

The joint probability density of (X(k),Y(k)) is obtained as follows:

~ ';i o~k
: P (k) N . (P (K)\* N
~ . ~ 1 _ 1 .
p(x,y;k) r\}i]:»<6< - (—-—N——> 2 cosei) 6(}' -(T> E 51n6i).>

N

i=1
| | B8
e
N+ (27)
x <exp§ ( ) Z (u cosg, + v sinei)§'> '
i=1 .3}
= 1lim f fdv e
N-+eo (21r bt _
2 o~ N
| f Trc1<1> P (k) )li .
X d x p(x f > exp; N ‘(u c_os(kx1+¢)w+ \' 51n(kxl+¢))f
0 ' ‘

-0 - 00

2 . 0 -.‘. P(k) N
) [ o st [ (1 e o)

1 -(x2+ ) o
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We emphasize that we have implicitly incorporated the éondition of Eq.
(4.449), N%Ip(k)l <? 1, via the device of averaging over the ¢i in
obtaining Eq. (B.3). Now we write the probability density for |J¢h(i)|2
to have the value |J|2, in terms of p(x,y;E):»

<0 [}

p, (131545 - fdxvfdy 51917 - x* - ¥?) p(x,y3K) (B.4)

- 0

from which Eq. (4.50) follows immediately.
We note that the bivariate Gaussian result for p(x,y;k) is simply

an aspect of the Central Limit Theorem, asldiscussed in Ref. 1.

»”»
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FIGURE CAPTIONS |

Fig, 1.

Fig. 2. .

Fig. 3.

Fig. 4.

The amplitude M to produce two.négative pions with momenta
El,izvdue to an ensemble of'élassicai chrrent-sources

Jﬂ(x - xi) centered at space-time points X; . These Feynman
diagrams correspond to the amplitudes A.ij'and-Bj in

Eqs. (4.39) and (4.40). | |

Identical pion correlation function, Eq. (4.66), as a function
of relative momentum § = k; - k» fof fixed k = (k; + k2)/2. |
The orientation of q with respect to k is held fixed at a-i ='0,
corresponding to équal energy pions (|ki| = |k2|). The effect |
of a finite degree of coherence D(k) is illustrated. The
source df the chaotic component is assumed to be p(ﬁ;q6 =0) =
exp(-1/2 qué); Note that the effective radius Eq. (4.69)
decreases with increasing coherence. Final state distortions
are not taken into account.

Feynman diagrams corresponding to the amplitude, Eq. (5.4),

to produce (a) exactly m pions with (b) arbitrary vacuum
fluctuation in the cléssical current model Eq. (5.2).

(a) The amplitude Jz(ix,iz), Eq. (5.39), to produce two pions
including final state interactions with one- and two-body
poténtials V and U. (b) Scattering diagrams with virtual pions
that are neglected in comparison with scattering diagrams

(c) in the optical potential V. (c) The infinite élass of
diagrams summed via Eq. (5.9) and (5.12) to incorporate final

state interactions with the optical potential V.
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