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1 Introduction

The muon anomalous magnetic moment is one of the most precisely measured quantities in

high energy physics. The muon anomaly measures the deviation of the magnetic moment

away from the prediction of a Dirac point particle

aµ ≡
gµ − 2

2
. (1.1)

where gµ is the gyromagnetic ratio ~M = gµ(e/2mµ)~S. The most recent experiment at

BNL [1–4] obtains the value

aµ = 11 659 208.9(5.4)(3.3) 10−10 , (1.2)

an impressive precision of 0.54 ppm (or 0.3 ppb on gµ). The new experiment at Fermilab

aims to improve this precision to 0.14 ppm [5] and there is a discussion whether a precision

of 0.01 ppm is feasible [6]. In order to fully exploit the reach of these experiments an

equivalent precision needs to be reached by the theory. The theoretical prediction consist

of three main parts, the pure QED contribution, the electroweak contribution and the

hadronic contribution.

aµ = aQED
µ + aEW

µ + ahad
µ . (1.3)

An introductory review of the theory is [7] and more comprehensive reviews are [8, 9].

Recent results can be found in the proceedings of the conferences [10, 11].

The hadronic part has two different contributions, those due to hadronic vacuum po-

larization, both at lowest and higher orders, and the light-by-light scattering contributions.

ahad
µ = aLO-HVP

µ + aHO-HVP
µ + aHLbL

µ . (1.4)

These are depicted symbolically in figure 1.
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(a) (b) (c)

Figure 1. The thee main hadronic contributions to the muon anomalous magnetic moment. (a) The

lowest order hadronic vacuum polarization. (b) An example of a higher order hadronic vacuum

polarization contribution. (c) The light-by-light scattering contribution. In all three cases the

shaded regions represent the hadronic part.

The hadronic vacuum polarization contributions can be related to the experimentally

measured cross-section e+e− → hadrons. Here the accuracy can thus in principle be

improved as needed for the experimental measurements of aµ.

The more difficult light-by-light contribution has no such simple relation to experi-

mentally measurable quantities. A first comprehensive calculation appeared in [12]. One

of the main problems there was the possibility of double counting when comparing quark-

loop, hadron-loop and hadron exchange contributions. A significant step forward was done

when it was realized [13] that the different contributions start entering at a different order

in the expansion in the number of colours Nc and in the chiral power counting, order in

momentum p. This splitting was then used by two groups to estimate the light-by-light

contribution [14–17] (HKS) and [18–20] (BPP). After correcting a sign mistake made by

both groups for different reasons and discovered by [21] the results are

aHLbL
µ = 8.96(1.54) 10−10 (HKS), 8.3(3.2) 10−10 (BPP ) . (1.5)

A new development since then have been the inclusion of short distance constraints on the

full correction [22] (MV) which indicated a larger contribution

aHLbL
µ = 13.6(2.5) 10−10 (MV ) . (1.6)

Comparisons in detail of the various contributions in these three main estimates can be

found in [23] and [24]. An indication of a possibly larger quark-loop contribution are

the recent Schwinger-Dyson estimates of that contribution [25–28]. First results of using

dispersion relations to get an alternative handle on HLbL have also appeared [29–32].

Lattice QCD has now started to contribute to HLbL as well, see e.g. [33, 34] and references

therein.

In this paper we add a number of new results to the HLbL discussion. First, in section 2

we present an argument why in the lattice calculations the disconnected contribution is

expected to be large and of opposite sign to the connected contribution. This has been

confirmed by the first lattice calculation [35]. The second part is extending the Gegenbauer

polynomial method to do the integration over the photon momenta [9, 21] to the most
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general hadronic four-point function. This is the subject of section 3. The third and

largest part is about the charged pion and kaon loop. These have been estimated rather

differently in the the three main evaluations

aπ loop
µ = −0.45(0.81) 10−10 (HKS), −1.9(1.3) 10−10 (BPP ), 0.0(1.0) 10−10 (MV ).

(1.7)

The numerical result is always dominated by the charged pion-loop, the charged kaon

loop is about 5% of the numbers quoted in (1.7). The errors in all cases were mainly the

model dependence. The main goal of this part is to show how these differences arise in

the calculation and include a number of additional models. Given the uncertainties we will

concentrate on the pion-loop only.

There are several improvements in this paper over the previous work on the pion loop.

First, we use the Gegenbauer polynomial method of [9, 21] to do two more of the integrals

analytically compared to the earlier work. Second, we study more models by including

the vector mesons in a number of different ways and study the possible inclusion of axial-

vector mesons. That the latter might introduce some uncertainty has been emphasized

in [36, 37]. We present as well a new short-distance constraint that models have to satisfy

for the underlying γγππ vertex.

Our main tool for understanding the different results is to study the dependence on

the virtualities of the three internal photons in figure 1c. The use of this as a method

to understand contributions was started in [23] for the main pion exchange. One aspect

that will become clear is that one must be very careful in simply adding more terms in

a hadronic model. In general, these models are non-renormalizable and there is thus no

guarantee that there is a prediction for the muon anomaly in general. In fact, we have not

found a clean way to do it for the axial vector meson as discussed in section 4. However,

using that the results should have a decent agreement with ChPT at low energies and the

high-energy constraint and only integrating up to a reasonable hadronic scale we obtain

the result

aHLbL π loop
µ = −(2.0± 0.5) · 10−10 . (1.8)

This is discussed in section 4.

A short summary is given in section 5. Some of the results here have been presented

earlier in [10, 38, 39] and [40].

2 Large disconnected contributions

Lattice calculations of HLbL are starting to give useful results. One question here is how

to calculate the full contribution including both connected and disconnected contributions.

The latter is more difficult to calculate, see e.g. [41], and many calculations so far have only

presented results for the connected contribution. In this section we present an argument

why the disconnected contribution is expected to be large and of opposite sign to the

connected contribution. The connected contribution is the one where the four photons

present in figure 1c all connect to the same quark line, the disconnected contribution

where they connect to different quark lines. This is depicted schematically in figure 2. The
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Connected Disconnected

gray=lots of quarks/gluons

Figure 2. The connected contribution where all photons couple to a single quark-loop and an

example of a disconnected diagram where the photons couple to different quark-loops.

πu, πd

(a)

π
0
, πη

(b)

Figure 3. The meson-exchange picture. (a) With πu and πd exchange. (b) With π0 and πη
exchange.

argument below is presented for the case of two-flavours and has been presented shortly

in [39].

A large part of the HLbL contribution comes from pseudo-scalar meson exchange.

For that part of the contribution we can give some arguments on the relative size of the

disconnected and connected contribution. An example of a limit where the connected

contribution is the only one is the large Nc limit. One important consequence of this

limit is that the anomalous breaking of the U(1)A symmetry disappears and the flavour

singlet pseudo-scalar meson becomes light as well. This also applies to exchanges of other

multiplets, but there the mass differences between the singlet and non-singlet states are

much smaller.

Let us first look at the quark-loop case with two flavours. The connected diagram

has four photon couplings, thus each quark flavour gives a contribution proportional to

its charge to the power four. The connected contribution has thus a factor of q4
u + q4

d =

(2/3)4+(−1/3)4 = 17/81. For the disconnected contribution we have instead charge factors

of the form (q2
u+q2

d) for each quark-loop, so the final result has a factor of (q2
u+q2

d)
2 = 25/81.

However, this does not give any indication of the relative size since the contributions are

very different.

In the large Nc limit the mesons are the flavour eigenstates. We then have two light

neutral pseudo-scalars, one with flavour content ūu, πu and one with d̄d, πd. In the meson

exchange picture, shown in figure 3a the coupling of πu to two photons is proportional to

q2
u, thus πu exchange has factor of q4

u. The same argument goes for the πd exchange and

we obtain a factor of q4
d. The total contribution is thus proportional to q4

u + q4
d = 17/81 in

agreement with the quark-loop argument for the same contribution.

We can also work with the isospin eigenstates instead. These are the π0 with flavour

content (ūu− d̄d)/
√

2 and the flavour singlet πη with flavour content (ūu+ d̄d)/
√

2. In the
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large Nc limit we should obtain the same result as with πu and πd. The π0 coupling to 2

photons is proportional to δπ0 = (q2
u− q2

d)/
√

2 = 3/(9
√

2). The πη coupling to two photons

is δπη = (q2
u + q2

d)/
√

2 = 5/(9
√

2). The exchange of π0 and πη leads to a contribution

proportional to δ2
π0 + δ2

πη = 17/81 in agreement with the argument from the quark-loop or

πu, πd exchange.

What happens now if we turn on the disconnected contribution or remove the large

Nc limit. The physical eigenstates are now πη and π0 and they no longer have the same

mass. In effect, from the breaking of the U(1)A the singlet has obtained a large mass

and its contribution becomes much smaller. In the limit of being able to neglect πη-

exchange completely the sum of connected and disconnected contributions is reproduced

by π0 exchange alone which is proportional to δ2
π0 = (9/2)/81. So in this limit we expect the

total contribution is δ2
π0 times a factor A. From the discussion in the previous paragraph

follows that the connected part is δ2
π0 + δ2

πη times the same factor A. The disconnected

part must thus cancel the δ2
πη part of the connected contribution and must be −δ2

πη times

again the factor A. We thus expect a large and negative disconnected contribution with a

ratio of disconnected to connected of −25/34.

There are really three flavours u, d, s to be considered but the argument generalizes

straightforward to that case with δπ0 = 3/(9
√

2), δη = 3/(9
√

6) and δη′ = 6/(9
√

3). In the

equal mass case the ratio of disconnected to connected is for three flavours −δη′2/(δ2
π0 +

δ2
η + δ2

η′) = −2/3.

The above argument is valid in the equal mass limit, assuming the singlet does not

contribute after U(1)A breaking is taken into account and only for the pseudo-scalar meson-

exchange. There are corrections following from all of these. For most other contributions

the disconnected effect is expected to be smaller. The ratio of disconnected to connected

of −2/3 is thus an overestimate but given that π0 exchange is the largest contribution we

expect large and negative disconnected contributions.

Note that the above argument was in fact already used in the pseudo-scalar exchange

estimate of [18–20], the comparison of the large Nc estimate and π0, η, η′ exchange is in

table 2 and the separate contributions in table 3 of [19], up to the earlier mentioned

overall sign.

Lattice QCD has been working hard on including disconnected contributions [41].

Using the same method of [33] at physical pion mass preliminary results were shown at

Lattice 2016 [35] of 11.60(96) for the connected and −6.25(80) for the disconnected in units

of 10−10. This is in good agreement with the arguments given above.

3 The Gegenbauer polynomial method

The hadronic light-by-light contribution to the muon anomalous magnetic moment is given

by [42]

aLbLµ =
−1

48mµ
tr
[
(p/+mµ)Mλβ(0) (p/+mµ) [γλ, γβ ]

]
, (3.1)
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↑ p3 β

↑ q µ

α p2 ւ ց p1 ν

p p5 p4 p

Figure 4. The momentum routing for the muon line and through the hadronic four-point function

as used in (3.2).

with

Mλβ(p3) = e6

∫
d4p1

(2π)4

d4p2

(2π)4

γν (p4/ +m) γµ (p5/ +m) γα

q2p2
1p

2
2

(
p2

4 −m2
) (
p2

5 −m2
) [ ∂

∂p3λ
Πµναβ (p1, p2, p3)

]
. (3.2)

Here m is the muon mass, p is the muon momentum, q = p1 + p2 + p3, p4 = p − p1 and

p5 = p+p2. The momentum routing in the diagram is shown in figure 4. Note that because

of charge conjugation the integration in (3.2) is symmetric under the interchange of p1 and

p2. The symmetry under the full interchange of −q, p1, p2 is only explicitly present if the

other permutations of the photons on the muon line are also added and then averaged. In

this manuscript we stick to using only the permutation shown. The integral gives still the

full contribution because the different permutations are included in the hadronic four-point

function Πµναβ(p1, p2, p3).

The hadronic four-point function is

Πµναβ(p1, p2, p3) = i3
∫
d4xd4yd4zei(p1·x+p2·y+p3·z)〈0|T

(
V µ(0)V ν(x)V α(y)V β(z)

)
|0〉 .
(3.3)

The current is Vµ =
∑

q Qq q̄γµq with q denoting the quarks and Qq the quark charge in

units of |e|. The four-point function has a rather complicated structure and we discuss this

in more detail section 3.1.

The partial derivative in (3.2) was introduced by [42] to make each photon leg permu-

tation of the fermion-loop finite which allows to do the numerical calculation at p3 = 0. It

used p3βΠµναβ = 0 to obtain via ∂/∂p3λ

0 = Πµναλ + p3β
∂

∂p3λ
Πµναβ . (3.4)

The integral in (3.2) contains 8 degrees of freedom. After projecting on the muon

magnetic moment with (3.1) it can only depend on p2
1, p

2
2, p1 · p2, p · p1, p · p2. The earlier

work in [14–20] relied on doing all these integrals numerically and in [18–20] this was done

after an additional rotation to Euclidean space. For the pion exchange contribution a

method was developed to reduce the number of integrals from 5 to 2 using the method

of Gegenbauer polynomials [21]. The assumptions made there about the behaviour of the

– 6 –



J
H
E
P
0
9
(
2
0
1
6
)
1
1
3

hadronic four-point function are not valid for the parts we study in this paper. However,

in [9] for the pion and scalar exchange contributions the same method has been used to

explicitly perform the integrals over the p · p1 and p · p2 degrees of freedom. The same

method can be used to perform the integral over these two degrees of freedom also in the

case for the most general four-point function. This leads to an expression of about 260

terms expressed in the combinations [19] of the four point function that contribute to the

muon g − 2. We have checked that our calculation reproduces for the pion exchange the

results quoted in [9].

3.1 The general four-point function

The four-point functions defined in (3.3) contains 138 different Lorentz-structures [19]1

Πµναβ(p1, p2, p3) ≡ Π1(p1, p2, p3)gµνgαβ + Π2(p1, p2, p3)gµαgνβ + Π3(p1, p2, p3)gµβgνα

+ Π1jk(p1, p2, p3)gµνpαj p
β
k + Π2jk(p1, p2, p3)gµαpνj p

β
k

+ Π3jk(p1, p2, p3)gµβpνj p
α
k + Π4jk(p1, p2, p3)gναpµj p

β
k

+ Π5jk(p1, p2, p3)gνβpµj p
α
k + Π6jk(p1, p2, p3)gαβpµj p

ν
k

+ Πijkm(p1, p2, p3)pµi p
ν
j p
β
kp

α
m , (3.5)

where i, j, k,m = 1, 2 or 3 and repeated indices are summed. The functions are scalar

functions of all possible invariant products pi · pj .
The four point function satisfies the Ward-Takahashi identities

qµΠµναβ = p1νΠµναβ = p2αΠµναβ = p3βΠµναβ = 0 . (3.6)

These identities allow to show that there are 43 independent functions in general. Of

course, since the four-point function is symmetric under the interchange of the external

legs many of these are related by permutations.

In practice it is easier not to do this reduction, but only the partial step up to reducing

them to the 64 functions Πijkm. This can be done such that the powers of p3 appearing

explicitly never decrease. Not all of these contribute to aµ, in fact at most 32 combinations

can contribute [19]. These are the Π3jkm,Πi3km,Πij3m and the ΠDijk, all with i, j, k = 1, 2.

The ΠDijk come from derivatives of the Πijkm w.r.t. p3λ at p3 = 0

∂

∂p3λ
Πijkm = pλ1Π1ijkm + pλ2Π2ijkm

ΠDijk = Π1ijk2 −Π2ijk1 . (3.7)

3.2 The Gegenbauer method

The simplification introduced in [21] was that the Gegenbauer polynomial method can be

used to average over all directions of the muon momentum. After this averaging is done

1Note that this is the most general case also valid in other dimensions. For four dimensions there are

some additional constraints leading to only 136 independent components [28]. This is not relevant for the

work presented here.
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there is only dependence on the invariant quantities p2
1, p

2
2 and p1 · p2 left. The method is

fully explained in [9]. One can apply it to the full four-point function or to the one where

one has reduced the number of components by using the Ward identities to the 64 Πijkl.

So we first take (3.1) and (3.2) and rotate everything to Euclidean momenta P1, P2

and P with Q = P1 +P2, P4 = P −P1 and P5 = P +P2. We see that the muon momentum

P shows up in denominators with p2
4−m2 = −(P 2

4 +m2) and p2
5−m2 = −(P 2

5 +m2) only.

After taking the Dirac trace only scalar products of momenta are present in the numerator.

Removing the products P ·P1 and P ·P2 by completing them to the full P 2
4 +m2 and P 2

5 +m2,

the angular averaging over muon momenta can be performed using [9]〈
1

(P 2
4 +m2)(P 2

5 +m2)

〉
µ

= δX ,〈
P · P1

P 2
5 +m2

〉
µ

=
1

8
δP1 · P2r

2
2 ,〈

P · P2

P 2
4 +m2

〉
µ

=
1

8
δP1 · P2r

2
2 ,〈

1

P 2
4 +m2

〉
µ

=
1

2
δr1 ,〈

1

P 2
5 +m2

〉
µ

=
1

2
δr2 . (3.8)

Here we used the notation

δ =
1

m2
,

ri = 1−

√
1 +

4m2

P 2
i

X =
1

P1P2 sin θ
atan

(
z sin θ

1− z cos θ

)
cos θ =

P1 · P2

P1P2

z =
P1P2

4m2
r1r2 . (3.9)

The final contribution to the muon anomaly is given by

aµ =
α3

2π2

∫
P 2

1 dP
2
1P

2
2 dP

2
2 sin θd cos θAΠ(P1, P2, cos θ) . (3.10)

The quantity AΠ is given by

Π1131(−1/6 ρ2
3r

2
2δ − 2/3 ρ1ρ3r2δ + 8/3 ρ1ρ3X − ρ2

1r1δ − 4/3 ρ2
1ρ3Xδ − 2 ρ2

1ρ2Xδ)

+Π1132(+2/3ρ3 + 1/3ρ2ρ3r2δ − 1/6ρ2ρ3r
2
2δ − 2/3ρ1ρ3r1δ − 1/6ρ1ρ3r

2
1δ − 2/3ρ1ρ2r2δ

+ 1/3ρ1ρ2r1δ + 8/3ρ1ρ2X − 4/3ρ1ρ2ρ3Xδ + 2/3ρ1ρ
2
2Xδ − 4/3ρ2

1ρ2Xδ)

– 8 –



J
H
E
P
0
9
(
2
0
1
6
)
1
1
3

+Π1231(−2/3ρ2
3r2δ − 1/6ρ2ρ3r

2
2δ − 2/3ρ1ρ3r1δ − 4/3ρ1ρ

2
3Xδ + 1/3ρ1ρ2r2δ

+ 8/3ρ1ρ2X − 4/3ρ1ρ2ρ3Xδ + 2/3ρ2
1ρ2Xδ)

+Π1232(−2/3ρ2
3r1δ − 2/3ρ2 − 2/3ρ2ρ3r2δ + 8/3ρ2ρ3X − 4/3ρ2ρ

2
3Xδ − 1/3ρ2

2r2δ

− 1/3ρ1ρ2r1δ − 4/3ρ1ρ2ρ3Xδ − 2/3ρ1ρ
2
2Xδ)

+Π1311(+1/3ρ1ρ3r2δ + 1/3ρ2
1r1δ + 2/3ρ2

1ρ3Xδ + 2/3ρ2
1ρ2Xδ)

+Π1312(−2/3ρ2
3r2δ + 4/3ρ2

3X − 1/12ρ2ρ3r
2
2δ − 4/3ρ1ρ3r1δ − 1/12ρ1ρ3r

2
1δ

− 4/3ρ1ρ
2
3Xδ + 1/2ρ1ρ2r2δ + 1/6ρ1ρ2r1δ + 4/3ρ1ρ2X − 8/3ρ1ρ2ρ3Xδ

+ 1/3ρ1ρ
2
2Xδ + ρ2

1ρ2Xδ)

+Π1322(−2/3ρ2 − 2/3ρ2ρ3r2δ + 8/3ρ2ρ3X − 1/3ρ2
2r2δ − 2ρ1ρ2r1δ

− 4/3ρ1ρ2ρ3Xδ − 4ρ1ρ
2
2Xδ)

+Π2131(−2/3ρ1 − 2/3ρ1ρ3r1δ + 8/3ρ1ρ3X − 2ρ1ρ2r2δ − 4/3ρ1ρ2ρ3Xδ − 1/3ρ2
1r1δ

− 4ρ2
1ρ2Xδ)

+Π2231(−2/3ρ2
3r1δ + 4/3ρ2

3X − 4/3ρ2ρ3r2δ − 1/12ρ2ρ3r
2
2δ − 4/3ρ2ρ

2
3Xδ − 1/12ρ1ρ3r

2
1δ

+ 1/6ρ1ρ2r2δ + 1/2ρ1ρ2r1δ + 4/3ρ1ρ2X − 8/3ρ1ρ2ρ3Xδ + ρ1ρ
2
2Xδ + 1/3ρ2

1ρ2Xδ)

+Π2232(+1/3ρ2ρ3r1δ + 1/3ρ2
2r2δ + 2/3ρ2

2ρ3Xδ + 2/3ρ1ρ
2
2Xδ)

+Π2311(−2/3ρ2
3r2δ − 2/3ρ1 − 2/3ρ1ρ3r1δ + 8/3ρ1ρ3X − 4/3ρ1ρ

2
3Xδ − 1/3ρ1ρ2r2δ

− 4/3ρ1ρ2ρ3Xδ − 1/3ρ2
1r1δ − 2/3ρ2

1ρ2Xδ)

+Π2312(−2/3ρ2
3r1δ − 2/3ρ2ρ3r2δ − 4/3ρ2ρ

2
3Xδ − 1/6ρ1ρ3r

2
1δ + 1/3ρ1ρ2r1δ + 8/3ρ1ρ2X

− 4/3ρ1ρ2ρ3Xδ + 2/3ρ1ρ
2
2Xδ)

+Π2321(+2/3ρ3 − 2/3ρ2ρ3r2δ − 1/6ρ2ρ3r
2
2δ + 1/3ρ1ρ3r1δ − 1/6ρ1ρ3r

2
1δ + 1/3ρ1ρ2r2δ

− 2/3ρ1ρ2r1δ + 8/3ρ1ρ2X − 4/3ρ1ρ2ρ3Xδ − 4/3ρ1ρ
2
2Xδ + 2/3ρ2

1ρ2Xδ)

+Π2322(−1/6ρ2
3r

2
1δ − 2/3ρ2ρ3r1δ + 8/3ρ2ρ3X − ρ2

2r2δ − 4/3ρ2
2ρ3Xδ − 2ρ1ρ

2
2Xδ)

+Π3111(+1/6ρ2
3r

2
2δ − 2/3ρ1 − 4/3ρ1ρ3r2δ + 1/2ρ1ρ3r

2
2δ − 1/3ρ1ρ2r2δ − ρ2

1r2δ

− 1/3ρ2
1r1δ − 8/3ρ2

1ρ3Xδ − 2/3ρ2
1ρ2Xδ − 2ρ3

1Xδ)

+Π3112(+4/3ρ3 + 2/3ρ2ρ3r2δ + 1/6ρ2ρ3r
2
2δ + 2/3ρ1 + 2/3ρ1ρ3r1δ − 1/3ρ1ρ3r

2
1δ

− 8/3ρ1ρ3X + 2/3ρ1ρ2r1δ − 8/3ρ1ρ2X + 4/3ρ1ρ2ρ3Xδ + 4/3ρ1ρ
2
2Xδ + 1/3ρ2

1r1δ)

+Π3121(+2ρ1 + ρ2
1r1δ)

+Π3122(+2ρ2 + ρ2
2r2δ)

+Π3211(+4/3ρ3 − 8/3ρ2
3X + 2/3ρ2ρ3r2δ + 2/3ρ1 + 2/3ρ1ρ3r1δ − 1/6ρ1ρ3r

2
1δ

− 8/3ρ1ρ3X + 1/3ρ1ρ2r2δ + 1/3ρ1ρ2r1δ + 4/3ρ1ρ2ρ3Xδ + 2/3ρ1ρ
2
2Xδ

+ 1/3ρ2
1r1δ + 2/3ρ2

1ρ2Xδ)

+Π3212(+4/3ρ3 − 8/3ρ2
3X + 2/3ρ2 + 2/3ρ2ρ3r2δ − 1/6ρ2ρ3r

2
2δ − 8/3ρ2ρ3X

+ 1/3ρ2
2r2δ + 2/3ρ1ρ3r1δ + 1/3ρ1ρ2r2δ + 1/3ρ1ρ2r1δ + 4/3ρ1ρ2ρ3Xδ

+ 2/3ρ1ρ
2
2Xδ + 2/3ρ2

1ρ2Xδ)
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+Π3221(+4/3ρ3 + 2/3ρ2 + 2/3ρ2ρ3r2δ − 1/3ρ2ρ3r
2
2δ − 8/3ρ2ρ3X + 1/3ρ2

2r2δ + 2/3ρ1ρ3r1δ

+ 1/6ρ1ρ3r
2
1δ + 2/3ρ1ρ2r2δ − 8/3ρ1ρ2X + 4/3ρ1ρ2ρ3Xδ + 4/3ρ2

1ρ2Xδ)

+Π3222(+1/6ρ2
3r

2
1δ − 2/3ρ2 − 4/3ρ2ρ3r1δ + 1/2ρ2ρ3r

2
1δ − 1/3ρ2

2r2δ − ρ2
2r1δ − 8/3ρ2

2ρ3Xδ

− 2ρ3
2Xδ − 1/3ρ1ρ2r1δ − 2/3ρ1ρ

2
2Xδ)

+ΠD111(−1/3ρ1ρ3 + 2/3ρ1ρ
2
3X − 1/6ρ1ρ2ρ3r2δ + 1/24ρ1ρ2ρ3r

2
2δ − 1/6ρ2

1ρ3r1δ

+ 1/24ρ2
1ρ3r

2
1δ − 1/12ρ2

1ρ2r2δ − 1/12ρ2
1ρ2r1δ − 2/3ρ2

1ρ2X − 1/3ρ2
1ρ2ρ3Xδ

− 1/6ρ2
1ρ

2
2Xδ − 1/6ρ3

1ρ2Xδ)

+ΠD121(+1/3ρ2
3 − 2/3ρ3

3X + 1/6ρ2ρ
2
3r2δ − 1/24ρ2ρ

2
3r

2
2δ + 1/6ρ1ρ

2
3r1δ − 1/24ρ1ρ

2
3r

2
1δ

+ 1/12ρ1ρ2ρ3r2δ + 1/12ρ1ρ2ρ3r1δ + 2/3ρ1ρ2ρ3X + 1/3ρ1ρ2ρ
2
3Xδ + 1/6ρ1ρ

2
2ρ3Xδ

+ 1/6ρ2
1ρ2ρ3Xδ)

+ΠD122(+2/3ρ2ρ3 − 4/3ρ2ρ
2
3X + 1/3ρ2

2ρ3r2δ − 1/12ρ2
2ρ3r

2
2δ + 1/3ρ1ρ2ρ3r1δ

− 1/12ρ1ρ2ρ3r
2
1δ + 1/6ρ1ρ

2
2r2δ + 1/6ρ1ρ

2
2r1δ + 4/3ρ1ρ

2
2X + 2/3ρ1ρ

2
2ρ3Xδ

+ 1/3ρ1ρ
3
2Xδ + 1/3ρ2

1ρ
2
2Xδ)

+ΠD211(−2/3ρ1ρ3 + 4/3ρ1ρ
2
3X − 1/3ρ1ρ2ρ3r2δ

+ 1/12ρ1ρ2ρ3r
2
2δ − 1/3ρ2

1ρ3r1δ + 1/12ρ2
1ρ3r

2
1δ − 1/6ρ2

1ρ2r2δ − 1/6ρ2
1ρ2r1δ

− 4/3ρ2
1ρ2X − 2/3ρ2

1ρ2ρ3Xδ − 1/3ρ2
1ρ

2
2Xδ − 1/3ρ3

1ρ2Xδ)

+ΠD221(−1/3 ρ2
3 + 2/3 ρ3

3X − 1/6 ρ2ρ
2
3r2δ + 1/24 ρ2ρ

2
3r

2
2δ − 1/6 ρ1ρ

2
3r1δ + 1/24 ρ1ρ

2
3r

2
1δ

− 1/12 ρ1ρ2ρ3r2δ − 1/12 ρ1ρ2ρ3r1δ − 2/3 ρ1ρ2ρ3X − 1/3 ρ1ρ2ρ
2
3Xδ

− 1/6 ρ1ρ
2
2ρ3Xδ − 1/6 ρ2

1ρ2ρ3Xδ)

+ΠD222(+1/3 ρ2ρ3 − 2/3 ρ2ρ
2
3X + 1/6 ρ2

2ρ3r2δ − 1/24 ρ2
2ρ3r

2
2δ + 1/6 ρ1ρ2ρ3r1δ

− 1/24 ρ1ρ2ρ3r
2
1δ + 1/12 ρ1ρ

2
2r2δ + 1/12 ρ1ρ

2
2r1δ + 2/3 ρ1ρ

2
2X + 1/3 ρ1ρ

2
2ρ3Xδ

+ 1/6 ρ1ρ
3
2Xδ + 1/6 ρ2

1ρ
2
2Xδ) . (3.11)

Here we used the abbreviations ρ1 = P 2
1 , ρ2 = P 2

2 and ρ3 = P1 · P2. in addition to those

defined above.

A more general formula without using the Ward identities can also be derived. Quoting

this one would be too long. In practice for many models, the method without using Ward

identities leads to shorter but equivalent results. We have used both options for the bare

pion loop, the full VMD (Vector Meson Dominance) model and the hidden local symmetry

(HLS) model and only the latter method for the antisymmetric field model for the vector

and axial vector mesons.

4 The pion-loop contribution to HLbL

The pion loop contribution is depicted in figure 5. In the models we consider all the

diagrams depicted can appear. The shaded blob indicates the presence of form-factors.

In this section we will only discuss models and not include rescattering and a possible

ambiguity in distinguishing two-pion contributions from scalar-exchanges. The dispersive

– 10 –
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Figure 5. The pion-loop contributions to the vector four-point function of eq. (3.3). The modeling

is in the expressions for the form-factors designated by the shaded blobs.

method [29–31] will include this automatically but at present no full numerical results from

this approach are available.

4.1 VMD versus HLS

The simplest model is a point-like pion or scalar QED (sQED). This gives a contribution

of aπ loop
µ ≈ −4 · 10−10. However, at high energies a pion is clearly not point-like. A

first step is to include the pion form-factor in the vertices with a single photon. Gauge

invariance then requires the presence of more terms with form-factors. The simplest gauge-

invariant addition is to add the pion form-factor also to both legs of the ππγ∗γ∗ vertices

and neglect vertices with three or more photons. For the pion form-factor one can use

either the VMD expression or a more model/experimental inspired version. Using a model

for the form-factor, is what was called full VMD [18, 19] and using the experimental

data corresponds to what is called the model-independent or FsQED part of the two-

pion contribution in [29–31]. The ENJL model used for the form-factor of [18, 19] led to

aπ loop
µ ≈ −1.9 · 10−10. A form-factor parametrization of the form m2

V /(m
2
V − q2), a VMD

parametrization, leads to aπ loop
µ ≈ −1.6 · 10−10 and using the experimental data FsQED

gives aπ loop
µ ≈ −1.6 · 10−10 [43].

We study which momentum regions contribute most to aµ by rewriting eq. (3.10) with

integration variables the (Euclidean) off-shellness of the three photons, P 2
1 , P

2
2 , Q

2. In fact

to see the regions better we use [23] lP = (1/2) ln
(
P 2/GeV2

)
for P = P1, P2, Q. With

these variables we define

aµ =

∫
dlP1dlP2dlQ a

LLQ
µ . (4.1)

As a first example we show −aLLQ
µ along the plane with P1 = P2 for the bare pion-loop

or sQED and the full VMD in figure 6. The minus sign is included to make the plots

easier to see. The contribution to aµ as shown is proportional to the volume under the

surfaces. It is clearly seen how the form-factors have little effect at low energies but are

much more important at high momenta. We have three variables in principle but we only

show plots with P1 = P2. The reason is that one can see in all our figures that the results

are concentrated along the line Q = P1 = P2 and fall off fast away from there. The plots

with P1 6= P2 look similar but are smaller and do not show anything new qualitatively.

The other main evaluation of the pion-loop in [14, 15] (HKS) used a different approach.

It was believed then that the full VMD approach did not respect gauge invariance. HKS

therefore used the hidden local symmetry model with only vector mesons (HLS) [44] and

– 11 –
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Figure 6. The momentum dependence of the pion loop contribution. Plotted is aLLQµ of (4.1) as

a function of P1 = P2 and Q. Top surface: sQED, bottom surface: full VMD.
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Figure 7. −aLLQµ of (4.1) as a function of P1 = P2 and Q. Top surface: full VMD, bottom

surface: HLS.

obtained −0.45× 10−10. The only difference with full VMD is in the ππγ∗γ∗ as discussed

in [19]. In [19] it was shown that the full VMD approach is gauge invariant. However, the

large spread in the results for models that are rather similar was puzzling, both have a good

description of the pion form-factor. We can make a similar study of the momentum range

contributions, shown in figure 7. It is clearly visible that the two models agree very well for

low momenta but there is a surprisingly large dip of the opposite sign for the HLS model

at higher momenta, above and around 1 GeV. This is the reason for the large difference in

the final number for aπ loop
µ . A comparison as a function of the cut-off can be found in [40].

4.1.1 Short distance constraint: VMD is better

In QCD we know that the total hadronic contribution to the muon anomalous mag-

netic moment must be finite. This is however not necessarily true when looking at non-
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renormalizable models that in addition only describe part of the total hadronic contribu-

tion. For these one has to apply them intelligently, i.e. only use them in momentum regions

where they are valid.

One tool to study possible regions of validity is to check how well the models do in

reproducing short-distance constraints following directly from QCD. Examples of these are

the Weinberg sum rules but there are also some applicable to more restricted observables.

Unfortunately it is known that in general one cannot satisfy all QCD constraints with a

finite number of hadrons included as discussed in detail in [45]. Still one wants to include

as much as possible of QCD knowledge in the models used.

One constraint on the amplitude for γ∗γ∗ → ππ can be easily derived analoguously

to the short-distance constraint of [22] for the pion exchange contribution. If we take

both photons to be far off-shell and at a similar Q2 then the leading term in the operator

product expansion of the two electromagnetic currents is proportional to the axial current.

However, a matrix element of the axial current with two pions vanishes so we have the

constraint

lim
Q2→∞

A(γ∗(q1 = Q+ k)γ∗(q2 = −Q+ k)→ π(p1)π(p2)) ∝ 1

Q2
(4.2)

when all scalar products involving k, p1, p2 and at most one power of Q are small compared

to Q2.

In scalar QED the amplitude for γ∗γ∗ → ππ is

ie2

[
2gµν +

(kµ +Qµ − 2pµ1 )(kν −Qν − 2pν2)

(Q+ k − p1)2 −m2
π

+
(kµ +Qµ − 2pµ2 )(kν −Qν − 2pν1)

(Q− k + p1)2 −m2
π

]
(4.3)

which to lowest order in 1/Q2 is

2ie2

[
gµν − QµQν

Q2

]
. (4.4)

This amplitude does not vanish in the large Q2 limit. sQED does not satsify the short

distance constraint.

In full VMD the γππ and γγππ vertices of scalar QED are multiplied by a factor

m2
ρg
µν − qµqν

m2
ρ − q2

(4.5)

for each photon line, where q is the momentum of the photon. The (Q2)0 term in the

γ∗γ∗ → ππ amplitude is then zero. The full VMD model does respect the short distance

constraint.

In HLS the γππ vertex of scalar QED is multiplied by

gµν − a

2

q2gµν − qµqν

q2 −m2
ρ

(4.6)

and the γγππ vertex is multiplied by

gµαgνβ − gµαa
2

q2gνβ − qνqβ

q2 −m2
ρ

− gνβ a
2

p2gµα − pµpα

p2 −m2
ρ

. (4.7)
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Figure 8. The momentum dependence of the pion loop contribution. −aLLQµ of (4.1) as a function

of P1 = P2 and Q. Top surface: HLS a=1, bottom surface: full VMD.

To lowest order in 1/Q2 the amplitude for γ∗γ∗ → ππ is

2ie2

[
gµν − QµQν

Q2

]
(1− a). (4.8)

The HLS model with its usual value of a = 2 does not satisfy the short distance constraint.

It was also noticed [23] in a similar vein that the ENJL model, that essentially has full

VMD, lives up to the Weinberg sum rules but the HLS does not.

In fact, using the HLS with an unphysical value of the parameter a = 1 satisfies the

short-distance constraint (4.2) and lives up to the first Weinberg sum rule. The total result

for that model is aπ loop
µ = −2.1 · 10−10, similar to the ENJL model. A comparison for

different momentum regions between the full VMD model and a HLS model with a = 1 is

shown in figure 8. Notice in particular that the part with the opposite sign from figure 7

has disappeared.

From this we conclude that a number in the range aπ loop
µ = −(1.5–2.1)× 10−10 would

be more appropriate.

4.2 Including polarizability at low energies

It was pointed out that the effect of pion polarizability was neglected in the estimates of

the pion-loop in [14, 15, 18, 19] and a first estimate of this effect was given using the Euler-

Heisenberg four photon effective vertex produced by pions [36] within Chiral Perturbation

Theory. This approximation is only valid below the pion mass. In order to check the

size of the pion radius effect and the polarizability, we have implemented the low energy

part of the four-point function and computed aLLQ
µ for these cases in Chiral Perturbation

Theory (ChPT). First results were shown in [38, 40]. The plots shown include the p4 result

which is the same as the bare pion-loop and we include in the vertices the effect of the

terms from the L9 and L10 terms in the p4 ChPT Lagrangian. The effect of the charge

radius is shown in figure 9 compared to the VMD parametrization of it, notice the different
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Figure 9. −aLLQµ of (4.1) as a function of P1 = P2 and Q. Top surface: full VMD, bottom surface:

ChPT with L9 = −L10 so the charge radius is included but no polarizability.
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Figure 10. −aLLQµ of (4.1) as a function of P1 = P2 and Q. Bottom surface: full VMD, top surface:

ChPT with L9 6= −L10 so the charge radius and the polarizability are included.

momentum scales compared to the earlier figures 6–8. The polarizability we have set to

zero by setting L9 +L10 = 0. As expected, the charge radius effect is included in the VMD

result since the latter gives a good description of the pion form-factor. Including the effect

of the polarizability can be done in ChPT by using experimentally determined values for

L9 and L10. The latter can be determined from π+ → eνγ or the hadronic vector two-point

functions. Both are in good agreement and lead to a prediction of the pion polarizability

confirmed by the Compass experiment [46]. The effect of including this in ChPT on aLLQ
µ

is shown in figure 10. An increase of 10–15% over the VMD estimate can be seen.

ChPT at lowest order, or p4, for aµ is just the point-like pion loop or sQED. At NLO

pion exchange with point-like vertices and the pion-loop calculated at NLO in ChPT are

needed. Both give divergent contributions to aµ, so pure ChPT is of little use in predicting
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Figure 11. Left: the a1-exchange that produces the pion polarizability. Right: an example of a

diagram that is required by gauge invariance.

aµ. If we had tried to extend the plots in figures 9 and 10 to higher momenta the bad high

energy behaviour would have been clearly visible. We therefore need to go beyond ChPT.

This is done in the next subsection.

4.3 Including polarizability at higher energies

If we want to see the full effect of the polarizability we need to include a model that

can be extended all the way, or at least to a cut-off of about 1 GeV. For the approach

of [36] this was done in [37] by including a propagator description of a1 and choosing it

such that the full contribution of the pion-loop to aµ is finite. They obtained a range of

−(1.1–7.1) × 10−10 for the pion-loop contribution. This seems a very broad range when

compared with all earlier estimates. One reason is that the range of polarizabilities used

in [37] is simply not compatible with ChPT. The pion polarizability is an observable where

ChPT should work and indeed the convergence is excellent. The ChPT prediction has

also recently been confirmed by experiment [46]. Our work discussed below indicates that

−(2.0± 0.5)× 10−10 is a more appropriate range for the pion-loop contribution.

The polarizability comes from L9 + L10 in ChPT [47, 48]. Using [49], we notice that

the polarizability is produced by a1-exchange depicted in figure 11. This is depicted in the

left diagram of figure 11. However, once such an exchange is there, diagrams like the right

one in figure 11 lead to effective ππγγγ vertices and are required by electromagnetic gauge

invariance. This issue can be dealt with in several ways. Ref. [37] introduced modifications

of the a1 propagator that introduces one form of the extra vertices. We deal with them via

effective Lagrangians incorporating vector and axial-vector mesons.

If one studies figure 11 one could raise the question “is including a π-loop but no

a1-loop consistent?” The answer is yes with the following argument. We can first look

at a tree level Lagrangian including pions, ρ and a1. We then integrate out the ρ and

a1 and calculate the one-loop pion diagrams with the resulting all order Lagrangian. In

the diagrams of the original Lagrangian this corresponds to only including loops with at

least one pion propagator present. Numerical results for cases including full a1-loops are

presented as well below. As a technicality, we use anti-symmetric vector fields for the

vector and axial-vector mesons. This avoids complications due to π–a1 mixing. We add

vector Vµν and axial-vector Aµν nonet fields. The kinetic terms are given by [49]

− 1

2

〈
∇λVλµ∇νV νµ −

M2
V

2
VµνV

µν

〉
+ V ↔ A . (4.9)
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We add first the terms that contribute to the Li [49]

FV

2
√

2
〈f+µνV

µν〉+
iGV√

2
〈V µνuµuν〉+

FA

2
√

2
〈f−µνAµν〉 (4.10)

with L9 = FV GV
2M2

V
, L10 = − F 2

V

4M2
V

+
F 2
A

4M2
A

. The Weinberg sum rules in the chiral limit imply

F 2
V = F 2

A + F 2
π , F 2

VM
2
V = F 2

AM
2
A and requiring VMD behaviour for the pion form-factor

FVGV = F 2
π . We have used input values for L9 and L10 consistent with this in the previous

subsection.

Calculating the γ∗γ∗ → ππ amplitude in this framework using antisymmetric tensor

notation to lowest order in 1/Q2 gives the amplitude

2ie2 F 2
A

Q2
1m

2
aF

2
(−pµ1Q

ν
1p1 ·Q1 − pν1Q

µ
1p1 ·Q1 +Qµ1Q

ν
1m

2
π + gµν(p1 ·Q1)2)

+ 2ie2 F 2
A

m2
aF

2
(pµ1p

ν
1 − gµνm2

π) + 2ie2(F 2
A + F 2 − F 2

V )

(
gµν

F 2
− Qµ1Q

ν
1

Q2
1F

2

)
. (4.11)

The last term vanishes for F 2
A+F 2−F 2

V = 0 which is one of Weinberg’s sum rules. However,

the first two terms give the additional requirement F 2
A = 0. In this model it is not possible

to incorporate the a1 meson and satisfy the short distance constraint (4.2).

First, we take the model with only π and ρ, i.e. we only keep the first two terms

of (4.9) and (4.10). The one-loop contributions to Πρναβ are not finite. They were also

not finite for the HLS model of HKS, but the relevant δΠρναβ/δp3λ was. However, in the

present model, the derivative can be made finite only for GV = FV /2. With this value

of the parameters the result for aµ is identical to that of the HLS model and suffers as a

consequence from the same defects discussed above.

Next we do add the a1 and require FA 6= 0. After a lot of work we find that

δΠρναβ/δp3λ|p3=0 is finite only for GV = FV = 0 and F 2
A = −2F 2

π or, if including a

full a1-loop, F 2
A = −F 2

π . These solutions are clearly unphysical.

We then add all ρa1π vertices given by

λ1 〈[V µν , Aµν ]χ−〉+ λ2

〈
[V µν , Aνα]h α

µ

〉
+ λ3 〈i [∇µVµν , Aνα]uα〉+ λ4 〈i [∇αVµν , Aαν ]uµ〉

+ λ5 〈i [∇αVµν , Aµν ]uα〉+ λ6 〈i [V µν , Aµα] f−
α
ν〉+ λ7 〈iVµνAµρAνρ〉 . (4.12)

These are not all independent due to the constraints on Vµν and Aµν [50], there are three

relations. After a lot of work, we found that no solutions with δΠρναβ/δp3λ|p3=0 exists

except those already obtained without λi terms. The same conclusions holds if we look at

the combination that shows up in the integral over P 2
1 , P

2
2 , Q

2. We thus find no reasonable

model that has a finite prediction for aµ for the pion-loop including a1. In the remainder

we therefore stick to λi = 0 for the numerical results.

Let us first show the result for one of the finite cases, no a1-loop, FV = GV = 0 and

F 2
A = −2F 2

π . The resulting contribution from the different momentum regimes is shown

in figure 12. The high-energy behaviour is by definition finite but there is a large bump

at rather high energies. The other finite solution, including a full a1-loop and F 2
A = −F 2

π ,
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A = −2F 2

π and FV = GV = 0. The bare pion loop is shown for comparison.
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Figure 13. −aLLQµ as defined in (4.1) as a function of P1 = P2 and Q with a1 with a full a1-loop,

F 2
A = −F 2

π and FV = GV = 0. The bare pion loop is shown for comparison.

FV = GV = 0 is shown in figure 13. Here the funny bump at high energies has disappeared

but the parameters are still unphysical. The high-energy behaviour is good by definition

since we enforced a finite aµ.

We can now look at the cases where aπ loop
µ was not finite but that include a good low-

energy behaviour. I.e. they have F 2
V = F 2

π/2, FVGV = F 2
π , F 2

A = F 2
π/2 and M2

A = 2M2
V .

The resulting model then satisfies the Ward identities and the VMD behaviour of the pion-

form factor. For the case with no a1-loop we obtain −aLLQ
µ as shown in figure 14. The bad

high energy behaviour is clearly visible, but it only starts above 1 GeV. The same input
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Parameters determined by the Weinberg sum rules.
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Parameters determined by the Weinberg sum rules.

parameters but with a full a1-loop leads to only small changes in the momentum regime

considered as shown in figure 15. Again the bad high-energy behaviour is clearly visible.

As a last model, we take the case with F 2
A = +F 2

π and add VMD propagators also in

the photons coming from vertices involving a1. This makes the model satisfy the short-

distance constraint (4.2). The contributions to aπ loop
µ are shown in figure 16. The same

model but now with the full a1-loop is shown in figure 17. Both cases are very similar and
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here is a good high energy behaviour due to the VMD propagators added. This model

cannot be reproduced by the Lagrangians shown above, we need higher order terms to do

so. However, the arguments of [19] showing that the full VMD model was gauge invariant

also apply to this model.

Now how does the full contribution to aπ loop
µ of these various models look like. The

integrated contribution up to a maximum Λ for the size of P1, P2 and Q is shown in

figure 18. The models with good high energy behaviour are the ones with a horizontal

behaviour towards the right. We see that the HLS is quite similar to the others below
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about 0.5 GeV but then drops due to the part with the other sign as shown in figure 7.

All physically acceptable models show a reasonable enhancement over the full VMD result.

In fact, all models except HLS end up with a value of aµ = −(2.0 ± 0.5) × 10−10 when

integrated up-to a cut-off of order 1–2 GeV. We conclude that that is a reasonable estimate

for the pion-loop contribution.

We have not redone the calculation with the model of [37], however their large spread of

numbers comes from considering a very broad range of pion polarizabilities and we suspect

that the result might contain a large contribution from high energies similarly to the model

shown in figure 12. We therefore feel that their broad range should be discarded.

5 Summary and conclusions

In this paper we have two main results and two smaller ones. The first main result is

that we expect a large and opposite sign contribution from the disconnected versus the

connected parts in lattice calculations of the HLbL contribution to the muon anomalous

magnetic moment.

The second main result is that the estimate of the pion-loop is

aπ loop
µ = −(2.0± 0.5) · 10−10 . (5.1)

This contains the effects of the pion polarizability as well as estimates of other a1 effects.

The main constraints are that a realistic limit to low-energy ChPT seems to constrain the
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models enough to provide the result and range given in (5.1). We have given a number of

arguments why the HLS number of [14, 15] should be considered obsolete. In this context

we have also derived a short distance constraint on the underlying ππγ∗γ∗ amplitude.

As a minor result we have given the extension of the Gegenbauer polynomial method

of [9, 21] to the most general hadronic vector four-point function.
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